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Abstract  
The paper considers some computational problems arising in the important practical field of 
the determination of safe operation conditions of engineering facilities that pollute soils and 
groundwater. In the case of complex geological and hydrological conditions, such problems 
are widely considered using mathematical modeling of deformation and consolidation 
processes in water-saturated soils, particularly, in the foundations of hydraulic structures. To 
simulate the dynamics of such processes, we use a fractional-fractal approach that allows 
considering temporal non-locality of transfer processes in media of fractal structure. The used 
one-dimensional differential model contains a non-local Caputo derivative with respect to the 
time variable and a local fractal derivative with respect to the space variable. Some of 
model’s parameters, namely the orders of fractional derivatives, can only be determined 
fitting them to the measured data related to the state of a process. We propose to use particle 
swarm optimization algorithm to perform an identification of fractional derivatives’ orders 
and present the results of its testing on noised subsets of direct problem solutions. In this 
context, we have determined that the order of space-fractal derivative is restored with a 
relative error of not more than 1% while the order of time-fractional derivative is restored 
with higher errors of not more than 10%. The lowest number of observation points that 
ensures stable restoration of the orders was equal to 25. As high computational complexity is 
combined with highly independent computational blocks while applying evolutionary 
optimization algorithms to the problems of differential models’ parameters identification, we 
implemented the proposed algorithm on graphical processing units (GPU) using OpenCL 
framework and on multi-threaded systems using OpenMP. The results of performance testing 
showed up to 4-times lower GPU execution time compared to the case of multi-threaded 
execution on 6 cores of central processing unit (CPU). 
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1. Introduction 

The determination of the conditions for safe functioning of numerous engineering facilities that 
pollute soils and groundwater are among the most important and relevant in the connection with 
environment protection issues. This makes urgent the development of effective and reliable methods 
for mathematical modeling of deformation and consolidation dynamics in saturated soils, particularly, 
in the foundations of hydraulic structures. Such methods are usually based on the solution of initial-
boundary value problems for the corresponding systems of partial differential equations (e.g. [1-3]). 
Recently, in order to take into account the effects of temporal and spatial correlations, a series of 
models have been developed by introducing into them local and non-local operators of fractional-
order differentiation (e.g. [4-6]). 
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In this context, we continue the studies presented in [6] on the simulation of anomalous processes 
of filtration-consolidation in water-saturated soils under the influence of salt transfer. The model 
developed in [6] uses the fractional-fractal approach [7-10] that enables modeling of temporal non-
locality of processes in soils of fractal structure. Comparing to the previously developed mass transfer 
models within such an approach this model widens its application taking into consideration soil 
compaction and chemical osmosis. 

Practical usage of fractional-order differential models to predict the dynamics of mass transfer and 
soil compaction requires identification of their parameters. However, the orders of fractional 
derivatives usually do not have technical means of measurement. The only approach that can be used 
to determine their values is to select them the way to make the model best describe available 
measurements. 

In general, two approaches used to identify the parameters of fractional-differential models can be 
singled out. Within the first one, corresponding inverse problems are solved analytically or using 
numerical-analytical methods (e.g. [11, 12]). Such an approach is usually applied to relatively simple, 
mostly one-dimensional models. Despite some problems of restoration of fractional derivative orders 
are solved by least-squares techniques [13] or the Tikhonov method [14], the second approach that is 
based on metaheuristic optimization techniques (e.g. [15-17]) have less limitation on its usage. One of 
such algorithms that were efficiently applied [17] to some models of mass transfer processes in soils 
is the particle swarm optimization (PSO) algorithm [18]. Regarding most metaheuristic optimization 
algorithms it should also be noted that data parallelism can be easily exploited in them.  

Hence, in this paper we study the accuracy and performance of the PSO algorithm applying it to 
solve parameters identification problem for the fractal-fractional model of filtration-consolidation 
proposed recently in [6]. We also consider PSO algorithm’s implementation on graphical processors 
(GPU) and study its performance comparing it with the case of multi-threaded implementation 
on CPU. 

2. Direct problem 

Considering the non-local in time isothermal filtration-consolidation process in a soil of fractal 
structure saturated with a salt solution, we study the following mathematical model [6]:  
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where ( , )H x t  is the water head ( m ), ( , )C x t  is the concentration of salts in the liquid phase 
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The equations (1),(2) contains coefficients in fractal dimension in space and time. To make them 
consistent with measurable values, we, following [22], introduce parameters t  ( s ), x  ( m ) of time 



and space dimensions and represent fractal dimensional filtration coefficient as 
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is the measurable value of the coefficient. The same is performed for the other coefficients in fractal 
dimension. While the choice of the values of dimensional parameters t , x  strongly influence 
simulation results, there are significant difficulties of their direct determination. Thus, we consider the 
model (1),(2) as semi-empirical and set 1t x    (one of the cases studied in [22]) further focusing 
on the identification of fractional derivatives' orders only. 

Let us note, that from equations (1), (2) when 1   we obtain a system of equations [23] of the 
corresponding fractional-differential model that does not consider fractal properties of a soil. When 

, 1    we obtain the integer-order classical model [1, 2]. 
Using in (1), (2) the representation of the fractal derivative operator on the base of integer-order 

derivative [7-9] we obtain the system of equations in the following form [6]: 
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To describe the dynamics of the considered process in the domain  ( , ) : 0 , 0x t x l t      

with permeable boundaries we complement the equations (3), (4) with boundary conditions 

0(0, ) 0, ( , ) 0, ( , 0)H t H l t H x H     (5) 

0(0, ) , ( , ) 0, ( , 0) 0C t C C l t C x     (6) 

where 0H  is the initial value of water head, 0C  is the specific value of salts concentration at the inlet 
of filtration flow. 

3. Numerical method for the direct problem 

We numerically solve the boundary value problem (3)-(6) using a finite-difference technique 
briefly described below. 

In the grid domain  ( , ) : ( 0, 1 ), ( 0, )h i j i jx t x ih i m t j j n        where ,h   are the 

grid steps with respect to the spatial variable and time the considered problem can be discretized using 
the linearized Crank–Nicholson scheme written using the notations from [24] as [6] 
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where ( )
t u  is the discrete analogue of the fractional derivative ( )
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and ( )z  is the Euler's gamma function. 
Substituting (9) into (7), (8) we reduce the solution of the problem (3)-(6) on the ( 1)j  -th time 

step to the solution of the systems of linear algebraic equations 
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Equations (10)-(13) can be effectively solved by the Thomas algorithm [24]. 

4. Inverse problem and particle swarm optimization algorithm 

Having the direct problem and numerical method stated, we further consider the inverse problem 
of identification of derivatives’ orders ,   in the model (3)-(6) on the base of some subset of 
possibly noised measurements. The inverse problem is posed the following way: 

- assume there are N  known values iC , , 1,...,iH i N  of concentration and water head 

measured in the moments of time iT  in the depths ix ; 

- assuming that the values of other model’s parameters are known, find such values ,   of 
orders ,   that minimize the following goal function: 
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where ˆˆ( , , , )C x t   , ˆˆ( , , , )H x t    are the solutions of the direct problem (3)-(6) with ˆ  , ˆ   in 
the point x  at the time t . 

Taking into account the complexity of the inverse problem and the fact that the parameters to be 
identified are floating-point numbers, we propose to solve it by the particle swarm optimization (PSO) 
algorithm [18], which can be briefly described as follows: 

- denote S  as the number of particles in the swarm; ˆˆ( , )ix   , iv  as the coordinates and 

velocity of the particle i ; ip  as the coordinates of the particle i  that corresponds to the best goal 
function (14) value obtained by it; g  as the coordinates that corresponds to the best goal function 
value obtained by the swarm; 

- introduce the parameters of the algorithm , ,p g   ; 

- at the initialization stage, the coordinates of the particles are generated randomly and 
velocities are set to zero. The values of the goal function are calculated for each particle along with 
the initial values of ip  and g . 

- on the iteration j  for the particle i  



o generate random numbers , [0,1]P gr r  ; 

o modify the velocity: ( 1) ( ) ( ) ( ) ( ) ( )= ( ) ( )j j j j j j
i i p p i i g g iv v r p x r g x        ; 

o modify particle's coordinates: ( 1) ( ) ( )=j j j
i i ix x v  ; 

o calculate goal function value and modify ip  and g . 

- Iteration process is finished when the given maximal number of iterations maxI  is reached, the 
zero best value of the goal function is achieved, or the difference between the best and the worst 
values of the goal function for the particles in the swarm becomes lower than the given constant. 

In our case, the computation of direct problem’s solutions is the most time-consuming part when 
identifying parameters values. As the changes in particles’ states are independent, the corresponding 
direct problems can be efficiently solved on shared-memory parallel systems. 

5. Parallel implementation 

The following scheme is used to implement the solution of parameters’ identification problem 
on GPU. 

As the solution of direct problems while calculating goal function values forms the main part of 
algorithm’s computational complexity, we choose it as the only part that is executed on GPU. We 
allocate a group of threads for each particle and, correspondingly, for a set of derivatives’ orders for 
which the problem (3)-(6) has to be solved.  

The main share of time while solving the direct problem is formed by the calculation of sums 
derived from the discretization (9) of the Caputo fractional derivative because the number of terms in 
them grows linearly with the increase of time step number. These sums must be calculated on each 
time step for each grid node, thus, within a thread block we use thread to grid node mapping. So, on 
each time step, at the first stage all threads compute the values of sums in the right parts of (10),(11) 
and then the threads with local ids 0 perform the solution of (10),(11). Solution on GPU is performed 
up to the moment of time max i

i

T  without interaction with CPU. Then the solutions for the time steps 

1: j i jj t T t    are transferred into the memory of CPU and the values of ˆˆ( , , , )i iH x T    and 

ˆˆ( , , , )i iC x T    are determined using linear interpolation both in space and time. 

In such a computational scheme, the amount of used GPU memory is ( 2) max /i
i

S m T        and 

the number of running GPU threads is ( 2)S m  . Assuming that the time spent on calculations on 
CPU can be neglected comparing with the time spent on GPU and recalling that the Thomas 
algorithm has the complexity order ( )O m , the execution time of the presented algorithm is 

( , , ) ( 2) / ( 1) / 2cT S m n k m S m N n n           where k  is the parameter of system’s performance, 

cN  is the number of GPU cores, n  is the number of time steps. 
Further, we compare GPU implementation’s performance with the performance of multi-threaded 

implementation in which for the same procedure CPU core to particle mapping is used. 

6. Accuracy testing results 

The described solution schemes for direct and inverse problems were implemented in C++ 
language. The source codes are publicly available through 
https://github.com/sevaboh/cons_chem_osm. To experimentally study the accuracy of the inverse 
problem’s solution algorithm, we generate testing datasets as described below.  

We fix the following values of physical parameters [6]: 0.34vC  , 25l  , 0.00095  , 

0.38  , 0.02d  , 0.01k  , 52.8 10   , 0 200C  , 0 10H  . With 0.01   and fixed , ,m   , 

the problem (3)-(6) is solved up to the time step for which 1eT  . Then, the given per cent P  of grid 

nodes that simulate the number of observation points are randomly selected as ix . Setting all i eT T , 



we further set ˆˆ( , , , )i i eH H x T r   , ˆˆ( , , , )i i eC C x T r    where r  is the random variable that is 

uniform in  0.5 ,0.5R R , R  is the given noise level. The solution to the problem (3)-(6) obtained for 

2eT   and noised values in observation points for 2R  , 0.5P  , 0.6, 0.8    are depicted in 
Figure 1. 

 
Figure 1: Solutions and noised values in observation points 
 

Several series of computational experiments were performed for 100m   and different values of 
, , ,P R  . In the first one with fixed 0.6, 0.8    and 10, 0.5p gS       , we tested the 

influence of noise level and number of observation points on the accuracy of fractional derivatives 
orders restoration. The values of ,   were restricted to the range  0.5,1 ; P  was equal to 0.75, 0.5, 

0.25, and 0.1; R  was equal to 1, 2, and 3. We performed 10 runs of the algorithm with 30 iterations in 
each run. 

The value of   was in all conducted experiments restored with the maximal relative error of 
0.65%. Standard deviation within the performed 10 runs was not more than 0.29% of the obtained 
average values of  .  

The relative errors for the case of   are given in Table. 1. Here the errors increase with the 
increase of noise level R . For 0.25P   (more than 25 observation points) changes in the errors are 
small but its decrease to 0.1 (10 observation points) up to 3 times decrease the accuracy. Standard 
deviation behave the similar way being 4% of the average values for 0.25P   and becoming up to 
8% for 0.1P  . 
 
Table 1 
Relative errors of the restoration of    

R  0.75P    0.5 0.25 0.1 

1 4.98% 1.85% 4.36% 16.66% 

2 6.78% 6.86% 7.10% 26.13% 

3 9.13% 8.74% 10.16% 34.16% 

To determine the influence of initial values of   and   on the accuracy of their restoration we 
change   in the range [0.55, 0.95] for the fixed 0.75   and vice versa change   in the same range 

for 0.75  . The obtained relative errors are given for 0.5, 2P R   in Tables 2 and 3. In these 
computational experiments,   was as in the previous one restored with rather high accuracy (relative 
error not more than 0.6% in all cases). The error of   restoration being not more than 8.43% was 
higher when   tends to the edges of the range.  



The last series of experiments with variable eT  showed that better accuracy of parameters 

identification can be achieved for higher values of eT : relative error of   restoration with 2R  , 

0.5P   lowered from ~7% for 0.1 1eT   to ~1.5% for 2eT  . 

Table 2 

Relative errors  ,e e   of   and    restoration for the fixed  0.75   

  e  e  

0.55 6.96% 0.30% 

0.6 6.67% 0.28% 

0.7 3.26% 0.25% 

0.8 0.94% 0.32% 

0.95 8.43% 0.60% 

Table 3 

Relative errors  ,e e   of   and    restoration for the fixed  0.75   

  e  e  

0.55 0.48% 0.18% 

0.6 0.23% 0.16% 

0.7 4.73% 0.22% 

0.8 0.96% 0.43% 

0.95 5.52% 0.55% 

7. Solution time testing results 

GPU implementation of the PSO algorithm was performed using the OpenCL framework while 
multi-threaded implementation used OpenMP. 

Time spent on parameters' identification using GPU and multi-threaded implementations was 
measured solving the problem with 0.6, 0.8, 0.5, 2P R      on one node of SCIT-4 cluster of 
VM Glushkov Institute of cybernetics of NAS of Ukraine (NVidia RTX 2080 Ti GPU, 2 Intel(R) 
Xeon(R) Bronze 3104 CPUs, 1 CPU with 6 cores was allocated for OpenMP).  

During the tests we changed the number m  of nodes in the finite-difference grid and the number 
S  of particles in PSO swarm. Average solution time among 10 runs is given in Table 4. Regarding 
the accuracy, it increased with the increase of the number of observation points as m  increases with 
fixed P  reaching the maximal relative error of 0.24% for 200m  . 
Table 4 
Average solution time, ms 

  50m   100m   200m   

S   GPU CPU GPU CPU GPU CPU 

10 10524 11819 19944 23586 38791 46907 

20 10539 23162 20010 46407 38930 92550 

30 10590 29163 20082 58477 39008 116521 

40 10652 40834 20089 80818 39160 162622 



As can be seen from the data in Table 4, execution time of GPU algorithm does not depend on the 
number of particles and linearly increases with the increase of grid size. This can be due to the non-
complete allocation of GPU’s computational resources. On the other hand, CPU execution time 
linearly increases both with the increase of m  and S  that proves the efficiency of GPU 
implementation, which in the conducted experiments gave up to 4-times decrease of solution time. 

The efficiency of GPU implementation slightly increased with the increase of m : average solution 
time per one grid node per particle decreased from 21.1 ms for 50m   to 19.4 ms for 200m  . The 
corresponding indicator for CPU implementation did not change significantly with the change of m  
but decreased from 23.6 ms for 10S   to 20.4 ms for 40S  . Such behavior reflects the general 
heuristic that parallel implementation’s efficiency increase with the increase of the volume of 
computations. 

The series of computational experiments conducted for 10S  , 100N   with variable 
0.5,1,2,3,4eT   confirmed quadratic dependency of execution time on the number of time steps 

(Figure 2). GPU implementation here allowed obtaining slower increase of solution time. 
 

 
Figure 2: Execution time of GPU and CPU implementations subject to the ending time of simulation 

8. Conclusions 

In the paper we presented the computational scheme for identifying the values of fractional 
derivatives orders in the fractional-fractal model of filtration-consolidation based on the available 
measurements. The scheme is based on the particle swarm optimization technique and is implemented 
in multi-threaded mode and for the execution on GPU.  

The results of computational experiments show that the order of the local fractal derivative with 
respect to the spatial variable can be restored with significantly higher accuracy than the order of non-
local time-fractional derivative. Expectedly, relative errors increase with the increase of noise level. 
Considering the number of observation points, errors less than ~10% were obtained in all cases for 
their number more or equal to 25. 

OpenCL GPU implementation of the inverse problem’s solution algorithm performed closely to 
the OpenMP CPU implementation that used 6 CPU cores on the minimal tested volume of 
computations ( 50m  , 10S  ). With the increase of the volume, GPU overperformed CPU by up to 
4 times. 

Thus, the proposed computational scheme can be effectively applied with regard to both accuracy 
and speed to adapt the fractional-fractal model to the observed dynamics of salt transfer and 
compaction of water-saturated soils in complex geological and hydrological conditions. 



9. References 
[1] V.M. Bulavatsky, Iu.H. Kryvonos, V.V. Skopetsky, Non-classical mathematical models of heat 

and mass transfer (in Ukrainian), Naukova Dumka, Kyiv, Ukraine, 2005. 
[2] A.P. Vlasiuk, P.M. Martyniuk, Mathematical modeling of consolidation in soils in the conditions 

of salt solution filtration (in Ukrainian), Publishing house of UDUVHP, Rivne, Ukraine, 2004. 
[3] V.A. Florin, Fundamentals of Soil Mechanics, National Technical Information Service, Moscow, 

USSR, 1961. 
[4] V.M. Bulavatsky, Some modelling problems of fractional-differential geofiltrational dynamics 

within the framework of generalized mathematical models. Journal of Automation and 
Information Science 48(5) (2016) 27–41. doi:10.1615/JAutomatInfScien.v48.i5.30. 

[5] V.M. Bulavatsky, Bohaienko V.O., Numerical simulation of fractional-differential filtration-
consolidation dynamics within the framework of models with non-singular kernel. Cybernetics 
and Systems Analysis 54(2) (2018) 193–204. doi:10.1007/s10559-018-0020-5. 

[6] V. Bohaienko, V. Bulavatsky, Fractional-Fractal Modeling of Filtration-Consolidation Processes 
in Saline Saturated Soils. Fractal and Fractional 4 (4) 2020. doi:10.3390/fractalfract4040059. 

[7] A. Allwright, A. Atangana, Fractal advection-dispersion equation for groundwater transport in 
fractured aquifers with self-similarities. The European Physical Journal Plus 133(2) (2018) 1–14. 
doi:10.1140/epjp/i2018-11885-3. 

[8] W. Chen, Time-space fabric underlying anomalous diffusion. Chaos, Soliton. Fract. 28(4) (2006) 
923–929. doi:10.1016/j.chaos.2005.08.199. 

[9] W. Cai, W. Chen, F. Wang, Three-dimensional Hausdorff derivative diffusion model for 
isotropic/anisotropic fractal porous media. Thermal Science 22(1) (2018) S1-S6. 

[10] A. Atangana, A. Akgül, K.M. Owolabi, Analysis of fractal fractional differential equations. 
Alexandria Engineering Journal 59(3) 2020 1117-1134. doi:10.1016/j.aej.2020.01.005. 

[11] L.D. Long, N.H. Luc, Y. Zhou, C. Nguyen, Identification of Source Term for the Time-
Fractional Diffusion-Wave Equation by Fractional Tikhonov Method. Mathematics 7 (2019). 
doi:10.3390/math7100934. 

[12] V.M. Bulavatsky, V.O. Bohaienko, Some Consolidation Dynamics Problems within the 
Framework of the Biparabolic Mathematical Model and its Fractional-Differential Analog. 
Cybernetics and Systems Analysis 56(5) (2020) 770-783. doi:10.1007/s10559-020-00298-7. 

[13] K. Liao, T. Wei, Identifying a fractional order and a space source term in a time-fractional 
diffusion-wave equation simultaneously. Inverse Problems 35(11) (2019). doi:10.1088/1361-
6420/ab383f. 

[14] M. Krasnoschok, S. Pereverzyev, S.V. Siryk, N. Vasylyeva, Determination of the fractional 
order in semilinear subdiffusion equations. Fractional Calculus and Applied Analysis 23(3) 
(2020) 694-722. doi:10.1515/fca-2020-0035. 

[15] F. Gao, X.J. Lee, H.Q. Tong, F.X. Fei, H.L. Zhao, Identification of Unknown Parameters and 
Orders via Cuckoo Search Oriented Statistically by Differential Evolution for Noncommensurate 
Fractional-Order Chaotic Systems. Abstract and Applied Analysis 2013 (2013). 
doi:10.1155/2013/382834. 

[16] L.G. Yuan, Q.G. Yang, Parameter identification and synchronization of fractional-order chaotic 
systems. Commun. Nonlinear Sci. Numer. Simul. 17(1) (2012) 305–316. 
doi:10.1016/j.cnsns.2011.04.005. 

[17] V. Bohaienko, A. Gladky, M. Romashchenko, T. Matiash, Identification of fractional water 
transport model with ψ-Caputo derivatives using particle swarm optimization algorithm. Applied 
Mathematics and Computation 390 (2021). doi:10.1016/j.amc.2020.125665. 

[18] Y. Zhang, Sh. Wang, G. Ji, A Comprehensive Survey on Particle Swarm Optimization 
Algorithm and Its Applications. Mathematical Problems in Engineering. 2015 (2015). 
doi:10.1155/2015/931256. 

[19] I. Podlubny, Fractional differential equations, Academic Press, New York, 1999. 
[20] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential 

equations, Elsevier, Amsterdam, The Netherlands, 2006. 
[21] T. Sandev, Z. Tomovsky, Fractional equations and models. Theory and applications, Springer 

Nature Switzerland AG, Cham, Switzerland, 2019. 



[22] J.F. Gómez-Aguilar, M. Miranda-Hernández, M.G. López-López, V.M. Alvarado-Martínez, D. 
Baleanu, Modeling and simulation of the fractional space-time diffusion equation. 
Communications in Nonlinear Science and Numerical Simulation 30 (2016) 115–127. 
doi:10.1016/j.cnsns.2015.06.014. 

[23] V.M. Bulavatsky, Mathematical Model of Geoinformatics for Investigation of Dynamics for 
Locally Nonequlibrium Geofiltration Processes. Journal of Automation and Information Sciences 
43(12) (2011) 12–20. doi:10.1615/JAutomatInfScien.v43.i12.20. 

[24] A. Samarskii, The Theory of Difference Schemes, CRC Press, New York, 2001. 
 


