
Copyright © 2020 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0). 198

UDC 681.3
ELEMENTS OF CONCRETE ALGORITMICS:

COMPUTABILITY AND SOLVABILITY
О.І. Provotar, О.О. Provotar

Taras Shevchenko national university of Kyiv

Abstract. An approach to proving the fundamental results of the theory of recursive functions using specific algorithms is consider.
For this, the basic constructions of the algorithm are describing exactly and Church's thesis for more narrow classes of
algorithmically computational functions is specified (concretized). Using this approach, the belonging of functions to classes of
algorithmically computable is argued by the construction of the corresponding algorithms.
Ключові слова: теза Чорча, розв’язність, універсальна функція.
Ключевые слова: тезис Черча, разрешимость, универсальная функция.
Key words: Church thesis, solvability, universal function.
Анотацiя. Розглядається підхід до доведення фундаментальних результатів теорії рекурсивних функцій за допомогою
використання конкретних алгоритмів. Для цього точно описуються основні конструкції алгоритму і переформульовується
(конкретизується) теза Чорча для більш вузьких класів алгоритмічно обчислюваних функцій. За допомогою такого підходу
належність функцій до класів алгоритмічно обчислюваних аргументується побудовою відповідних алгоритмів.
Аннотация. Рассматривается подход к доказательству фундаментальных результатов теории рекурсивных функций с
помощью использования конкретных алгоритмов. Для этого точно описываются основные конструкции алгоритма и
уточняется (конкретизируется) тезис Черча для более узких классов алгоритмически вычислительных функций. С
помощью такого подхода принадлежность функций к классам алгоритмически вычислимых аргументируется построением
соответствующих алгоритмов.

Introduction
Everyone knows Church's thesis [1-3] that the class of algorithmically calculated functions coincides with the

class of partially recursive functions. The class of partially recursive functions is determined mathematically accurately.
Therefore, this thesis can be used both to prove the algorithmic computability of functions and to prove that the function
is not algorithmically computable. To do this, we only need to show that such a function belongs to the class of partially
recursive functions and in this case it is algorithmically calculated, or does not belong and, accordingly, is not
algorithmically calculated.

 It is pretty difficult to show the algorithmic computability of functions by its belonging to the class of partially
recursive functions, except for the simplest functions. In addition, in each case it requires the construction of a
mathematical model of the function in the form of a term from the calculated operations on the basic functions. Basic
functions, as we know [1,2], are called the simplest functions

o(x) = 0, s(x) = x + 1 and selector functions (x1, … , xn) = xm,

where n  m  1. The main computational operations will be superposition operations Sn+1, primitive recursion R and
minimization M.

For example, a superposition operation Sn+1 allows from function g(x1, …, xn) and functions g1(x1, … , xm), ... ,
gn(x1, … , xm), create a function

f(x1, … , xm) = g(g1(x1, … , xm), … , gn(x1, … , xm)),

which is denoted by the term Sn+1(g, g1, … , gn).
A natural question about the possibility of using concrete algorithms to prove the fundamental results of the

theory of recursive functions without constructing appropriate computational terms arises. Or, in other words, to tell in a
language understandable to programmers about the main results of the theory of algorithms (recursive functions), in
particular about the problems of computability and solvability. Therefore, the purpose of the work is to offer approaches
and means to solve the problem. To do this, it is proposed to accurately describe the basic constructions of the algorithm
and reformulate (concretize) Chorch's thesis for narrower classes of algorithmically calculated functions.

Concretization of the concept of algorithm
Next, the algorithms will be defined as syntactically correct constructions in the PseudoPascal language, which is

a simplified dialect of the Pascal language. The operators of this language will be the following:
< identifier > = = < word >
< operator > = = < identifier > = < arithmetic expression >
< operator > = = if < relation > then < operator > else < operator >
< operator > = = while < relation > do {< operator >, … , < operator >}
< operator > = = for < relation > to < relation > {< operator >, … , < operator >}

We concretize Church's thesis for classes of primitively recursive, recursive and partially recursive functions,
respectively.

1. A class of functions calculated by the algorithms defined everywhere without using the while … do operator.
This class is described as follows:

n
mI

199

1) We assume that the simplest functions

 o(x) = 0,
s(x) = x + 1 та функції-селектори

 (x
1
, … , x

n
) = x

m
, де n  m  1

are calculated by the algorithms defined everywhere without using the operator while … do, and therefore belong
to this class..

2) All functions that are calculated by the algorithms defined everywhere without using an operator while … do
and in their calculation auxiliary functions use, which are calculated by the algorithms defined everywhere without
using of the operator while … do also belong to this class. Thus, the following thesis is true.

Thesis 1. A class of functions which are calculated by algorithms defined everywhere without using of an
operator while … do coincides with the class of primitive recursive functions.

2. A class of functions which are calculated by algorithms defined everywhere. This class is described as
follows:

1) All primitively recursive functions belong to this class.
2) All functions which are calculated by algorithms defined everywhere and at their calculation the functions

which are calculated by algorithms defined everywhere are used also belong to this class.. Thus, the following thesis is
true.

Thesis 2. The class of functions which are calculated by algorithms defined everywhere coincides with the class

of recursive functions.
3. A class of functions which are calculated by arbitrary algorithms. This class is described as follows:
1) All recursive functions belong to this class.
2) All functions which are calculated by arbitrary algorithms and at their calculation the functions which are

calculated by arbitrary algorithms are used also belong to this class. Thus, the following thesis is true.

 Thesis 3. The class of functions calculated by arbitrary algorithms coincides with the class of partially recursive
functions.

Computability
We show how to prove the algorithmic computability of functions using the above theses. Suppose we need to

prove that function









0,

0],/[
),(

yx

yyx
yxf

is primitive recursive function.
Consider the sequence

1y � x, 2y � x, … , [x/y] � x, … , xy � x.

Since the fraction [x/y] means how many times the number y is "placed" in the number x, then [x/y] is equal to the
number of zeros in this sequence. Really, if, for example, y is twice "placed" in the number x, then

1y � x = 0, 2y � x = 0, а 3y � x  0.

Therefore, the algorithm for calculating the function is as follows:

 function f(x, y)
 begin
 s = 0
 if y = 0 then f = x
 else {for i = 1 to x
 if iy � x = 0 then s = s + 1
 f = s}
 end.

n
mI

200

Hence the function f(x, y) is primitive recursive function.
If all pairs of natural numbers are arranged in sequence

<0, 0>, <0, 1>, <1, 0>, <0, 2>, <1, 1>, <2, 0>, <0, 3>, … ,

that is, arrange all the pairs so that the pair <x, y> goes earlier than a pair <u, v> if

x + y < u + v,

or if

x + y = u + v and x < u,

then the relation

<x, y>  n,

where n is the pair number in this sequence, specifies the bijection between the set of pairs and the set of natural
numbers,.

This bijection is called the Cantor numbering of pairs of numbers and is denoted c(x, y), that is c(x, y) is the
number of pair <x, y> in the Cantor sequence. The left and right elements of the pair <x, y> with number n define the
functions l(n) and r(n), which are called the left and right coordinate functions.

We show that the functions с(x, y), l(n), r(n) are primitive recursive function. Really, the function с(x, y) is
calculated by the following algorithm:

 function с(x, y)
 begin

 s = 0
 for i = 0 to (x + y)
 s = s + i
 for i = 0 to (x + y)
 {j = (x + y) � i
 if x = i  y = j then k = i}
 с = s + k
 end.

Given that l(n)  n, r(n)  n function l(n) is calculated by the algorithm:

 function l(n)
 begin
 for i = 0 to n
 for j = 0 to n
 if с(i, j) = n then l = i
 end,

and the function r(n) is calculated by an algorithm:

 function r(n)
 begin
 for i = 0 to n
 for j = 0 to n
 if с(i, j) = n then r = j
 end.

So, с(x, y), l(n) and r(n) are primitive recursive functions.
We show that the function

f(x) = [ex]

is primitive recursive functions.

Really, inequality holds

201

xS
n
 < ex < x(S

n
 + 1/n!n),

where

e = 1 + 1/1! + 1/2! + … + 1/n! + /n!n, 0 <  <1,
S

n
 = 1 + 1/1! + 1/2! + … + 1/n!.

Since

0))!/1((lim 


nn
n

SxnnSx , then

0)][)]!/1([ nn SxnnSx for some n, that is

)][)]!/1([nn SxnnSx  for some n.

So, in order to find the value of [ex], it is necessary to find the minimum n for which the previous equality is fulfilled
and to put

[ex] = [хSn].

The graph of the function F(x1, …, xn) [1-3] is the set <x1, …, xn, F(x1, … , xn)>. We show that if the graph Gf of
the everywhere defined function f(x1, … , xn) is a recursively enumerable set [1-3], then the function f is recursive

Really, the graph Gf is a set of the form:

<f1(t), … , fn (t), g(t)>,

where fi, g are primitive recursive functions. Then the value of the function f at any point can be calculated using the
following algorithm:

function f(x1, … , xn)
 begin
 i = 0

while f1(i)  x1  …  fn(i)  xn

 do i = i +1
 f = g(i)

 end,

hence, the function f is recursive.

Fundamental results of the theory of algorithms
Let  be a system of partial functions of one argument. A partial function F(x, y) of two variables is called

universal for the family  if the following conditions are satisfied:
1. For each fixed i the function F(i, y) belongs to ;
2. For each function f(y) from  there exists a number i such that for all y equality F(i, y) = f(y) is fulfilled.
It is known [1] that for the class of partially recursive functions of one argument there is a universal partially

recursive function Kleene K(n, x).
If we mapp every natural number into the set of partially recursive functions K(n, x) then we get the numbering

of the Kleene of partially recursive functions. The number n is called the Kleene number of the function K(n, x), which
is also denoted by Kn.

Rice's theorem is true: the set A of Kleene numbers of functions belonging to a nonempty family of partially
recursive functions of one argument which are differed from the set of all such functions, cannot be recursive. This
theorem is used to substantiate the results on the algorithmic computability of functions.

For example, show that function

1, (,) 1
0 , in other cases() x xf x
 


 K

is not algorithmically computational.

202

For this purpose the set M = {n0, n1, … } of Kleene numbers of partially recursive functions K(n0, x), K(n1, x),
… such that K(n0, n0) = 1, K(n1, n1) = 1, … is considered. By Rice's theorem, the set M is nonrecursive. Suppose that
there exists an algorithm

function f(x)
 begin

 f = . . .
 end,

which calculates the function f(x). Then the set M will be recursive. We receive a contradiction.
Algorithmic solvability. Consider problems for which there are no algorithms. Such problems will be called

algorithmically unsolvable.
One of such algorithmically unsolvable problems is the stopping problem [1,3,5] which consists in the following:

it is necessary to answer the question of whether there is an algorithm whose output for an arbitrary pair x, y of input
natural numbers is 0, if K(x, y) is defined and 1 if K(x, y) is undefined. The existence of such an algorithm is equivalent
to the existence of an algorithm whose output for an arbitrary pair x, y of input natural numbers is 0, if the algorithm for
calculating partially recursive function f with Kleene number x stops at input y and 1, if the algorithm for calculating
partially recursive function f with Kleene number x at input y works indefinitely. That is why this problem is called the
stop problem.

Theorem 1. The stopping problem is algorithmically unsolvable.
Proof. It follows that the domain of the function K(x, y) is a nonrecursive recursively enumerable set.
Another algorithmically unsolvable problem is the belonging problem, which is as follows: it is necessary to

answer the question about existence of an algorithm whose output for an arbitrary pair x, y of input natural numbers is 0
if x  y and 1 if x  y.

Theorem 2. The belonging problem is algorithmically unsolvable.
Proof. Really, the solvability of the affiliation problem means the recursiveness of the set of pairs <x, y> for

which the equation K(x, t) = y has a solution. But it is not so.
Universal numerical sets. The set U of pairs of numbers (i, x) such that K(i, x) = 1 will be called the universal

numerical set [4], that is

U = {(i, x), K(i, x) = 1}.

Theorem 3. The problem of belonging to the universal numerical set is algorithmically unsolvable.
Proof. Really, the solvability of this problem means that the characteristic function

U(i, x) =







1),(,0

1),(,1

xi

xi

K

K

is recursive. Let's show that this is not so. Really, if this function is recursive, then the function f (x), which is calculated
by the algorithm

function f(x)
 begin

 i := 0
 while U(x, x) = 1 do
 i := i + 1
 f := 1
 end,

is partially recursive functions, and, therefore, f(x) = K(n, x), for some n. Calculate this function for x equal to n.
If U(n, n) = 1, then it means, on the one hand, that K(n, n) is not defined (f(n) = K(n, n)). On the other hand,

since U(n, n) = 1  K(n, n) = 1, then K(n, n) is defined. If U(n, n)  1, then it means, on the one hand, that K(n, n) is
defined and K(n, n) = 1. On the other hand K(n, n)  1.

Universal set.of words. Let  = {a1, …, an} be an alphabet. Each grammar above the alphabet  can be
represented by a word in the alphabet   N, where N = { S, , , *}. For example, grammar G with rules {S 
aABb|Bbb, Bb  C, AC  aac} can be represented by a word

A1A2 … A4,

where A1 = S  a SSb, A2 = S  Sbb, A3 = Sb  S, A4 = SS  aac.
The set of all such words will be called the base.

203

Universal set.of words [4] we will be called the set V of words A1A2 … Anw such that the word w is infered
in the grammar G with rules A1, A2, … , An, that is

V = {A1A2 … Anw, S G w}.

It is clear that each grammar G generates recursively enumerable set (the set of all words that are infered in the
grammar).

 Therefore, a universal set.of words is a set of words A1A2 … Anw such that w belongs to the recursively
enumerable set, which is generated by the grammar with rules A1, A2, … , An, that is

V = {A1A2 … Anw, w  recursively enumerable set, which is generated G}.

We can show that the theorem 4 holds.
Theorem 4. The problem of belonging to a universal set of words is algorithmically unsolvable.

The Post correspondence problem. Let's look at another example of an algorithmically unsolvable problem. It
is called the Post correspondence problem [4].

Let

P = {(v1, w1), (v2, w2), … , (vn, wn)}

is a set of pairs of words in the alphabet . It is said that a set of pairs of words have a solution if there exist such a
sequence

),(,...),,(),,(
2211 kk iiiiii wvwvwv

of pairs of words that

kk iiiii wwwvvvi
2121

 ,

that is, the word formed by the left coordinates of the sequence of pairs coincides with the word formed by the right
coordinates of the sequence of pairs.

Post correspondence problem is to answer the question of the existence of an algorithm whose output for an
arbitrary input set P of word pairs is 0 if P has a solution and 1 if P has no solution.

Theorem 5. Post correspondence problem is algorithmically unsolvable.
Proof. By an arbitrary word A1A2 … Anw of universal set.of words we build Post correspondence problem

according to the following rules:
– a pair (FS, F), where F is a special symbol, is added to the set of pairs of words;
– for each symbol a of the alphabet  we add pairs (a, a) to the set of pairs of words;
– for each nonterminal symbol S, S, …, S… we add pairs (S, S), (S, S), …, (S…, S…) to the set of pairs of

words;
– for the word w we add a pair (E, wE) to the set of pairs of words, where E is a special symbol;
– for each rule Ai = u  v we add a pair (v, u) to the set of pairs of words;
– we add a pair (, ) to the set of pairs of words.
It can be shown that

A1A2 … Anw  V  the set of pairs has a solution.

Therefore, if the Post correspondences problem is algorithmically solvable, then the problem of belonging to a
universal set.of words will also be algorithmically solvable. And this is not so.

Unsolvability in the class of context-free grammars (problem of ambiguity). This problem is to answer the
question of the existence of an algorithm whose output for an arbitrary input context-free grammar G is 0 if G is
ambiguous and 1 otherwise.

Let

Q = {(v1, w1), (v2, w2), … , (vn, wn)}

is a set of pairs of words in the alphabet . For the set A = {v1, v2, … , vn} of the left components of the elements from Q
we construct the context-free grammar GA with one nonterminal A and a set of terminal symbols   I, where I = {a1,
a2, … , an} and   I = . Alphabet I is called the alphabet of index symbols. The rules of grammar GA have the
following form:

204

A  v1Aa1 v2Aa2 …  vnAan v1a1 v2a2 …  vnan.

This grammar generates language

}...,,1,......{)(111
niiaaGL miiiiA mm

  .

Similarly for the set B = {w1, w2, … , wn} of right components from Q we build a context-free grammar GB with one
nonterminal B and a set of rules

B  w1Ba1 w2Ba2 …  wnBan w1a1 w2a2 …  wnan.

This grammar generates language

}...,,1,......{)(111
niiaawwGL miiiiB mm

 .

Let's form a grammar

GAB = ({S, A, B},   {a1, a2, … , an}, P(GA)  P(GB), S).

The following theorem holds.
Theorem 6. Grammar GAB is ambiguous  Q has a solution.
Proof. Let i1, …, im is a solution of a set of pairs of words Q. Consider two inferences in grammar GAB:

1221122111
......... iiiiiiiiiiii aaaaAaAaAS

mm
  ,

1221122111
......... iiiiiiiiiiii aaawwwaBawwBawBS

mm
 .

Since i1, …, im is a solution, then

mm iiiiii www
2121

 ,

that is, these two inferences generate the same word. Because these inferences are different, the grammar GAB is
ambiguous.

On the other hand, for a given terminal word, there is no more than one inference in the grammar GA and no
more than one inference in the grammar GB. Therefore, a terminal word can have two different inference only if one of
them begins with S  A and continues with the inference in the grammar GA, and the other begins with S  B and
continues with the inference in the grammar GB.

This word ends with symbols
1

... ii aa
m

 for some m  1. Since

mm iiiiii www
2121

 ,

then i1, …, im is a solution.
Theorem 7. The problem of ambiguity of context-free grammar is algorithmically unsolvable.
Proof. If the problem of ambiguity is solvable, then Post correspondence problem would be solvable. And this is

not so.
Theorem 8. Problem

L(G1)  L(G2) = 

is algorithmically unsolvable.
Proof. Consider an arbitrary Post correspondence problem in the alphabet  and construct context-free grammars

GA and GB. Since L(GA)  L(GB) is a set of solutions of the Post correspondence problem, then

L(GA)  L(GB) =   Post correspondence problem has no solution.

Therefore, if this problem is solvable for arbitrary G1 and G2, then Post correspondence problem will also be solvable.
But this is not so.

Theorem 9. Problem

L(G1) = L(G2)

205

is algorithmically unsolvable.

Proof. Let's show that)(AGL is a context-free grammar. Really, there exists an algorithm which for any input

word in the alphabet   I gives an answer to the question of the word's belonging to the language)(AGL . It is based

on the fact that such a word must end by index symbols ,...
1ii aa

m
nd the prefix of this word must be a word

1 mii 

If this is not so, then the input word does not belong to)(AGL . Therefore, there exists an algorithm which for an

arbitrary input word in the alphabet   I gives an answer to the question about belonging this word to the language

)(AGL . Thus, this language is recursively enumerable set, that is, generated by context-free grammar.

Consider an arbitrary Post correspondence problem in the alphabet  and construct context-free grammars G1

and G2, which generate languages BA LL  and *)(IΣ  , respectively, where I is still the alphabet of index symbols.

The equality

BABA LLLL 

is holds
Therefore, in L(G1) there are no words which are solutions of Post correspondence problem. Language L(G2)

contains all words from *)(IΣ  . So,

L(G1) and L(G2) coincide  when the Post correspondence problem has no solution.

It follows that if the equivalence problem for context-free languages is algorithmically solvable, then Post
correspondence problem will be solvable. And this is not so.

Theorem 10. Problem L(G1)  L(G2) is algorithmically unsolvable.
Proof. Let G1 be a context-free grammar, which generates language (  I)* and G2 be a context-free grammar,

which generates language BA LL  , where I is an alphabet of index symbols. Then

L(G1)  L(G2)  BA LL  = (  I)*.

That is, L(G1)  L(G2)  when the Post correspondence problem has no solution. It follows that if the inclusion
problem for context-free languages is algorithmically solvable then the Post correspondence problem will be solvable.
But this is not so.

Conclusions. Thus, an approach whith help of which the belonging of functions to classes of
algorithmically calculated can be argued by constructing appropriate algorithms, unlike to algebraic terms,
are proposed. It can be useful for programmers of different ages who want to learn the basics of
computational theory and the theory of algorithms, as well as students of relevant specialties. It should also be
noted that the proposed approach based on the concretization of Church's thesis allows to achieve a clearer formulation
of various problems and processes for their solution. This is achieved primarily through the so-called PseudoPascal
macro operators for the implementation of the simplest mechanical operations.

References

1. A.I. Maltsev. Algorithms and recursive functions. – Science: Moscow, 1965. – 390 p.

2. V.А. Uspenskij, А.Л. Semenov. Algorithm theory: basic diyscoveries and applications - Science: Moscow, 1987. – 288 p.
3. О.І. Provotar. Concret algoritmics. - Naukova Dumka: Kyiv. 2017. – 168 p.
4. D. Hopcroft, R. Motwani, D. Ullman. Introduction to the theory of automata, languages and calculations. - M: Williams, 2002. – 528 p.
5. M.S. Nikitchenko, S.S Shkilniak. Mathematical logic and theory of algorithms. - K: VPC "Kyiv University", 2008. – 528 p.

About the authors:

Provotar Oleksandr Ivanovych Doctor of Physical and Mathematical Sciences, Professor, Professor of Taras
Shevchenko National University of Kyiv, number of publications in domestic publications – 120, in foreign –
30, h index 4, ORCID number 0000-0002-6556-3264, t. +38-050-444-17-35, email: aprowata1@bigmir.net.

206

Provotar Olga Oleksandrivna, junior researcher at the V.M. Glushkov Cybernetics Institute NAS of Ukraine,
number of publications in domestic publications – 10, in foreign – 2, ORCID number 0000-0002-6591-3615,
email: provotar@huspi.com.

Place of work of the authors:

Taras Shevchenko National University of Kyiv, 03187, Kyiv -187, Academician Glushkov Avenue, 2, b. 6. T.:
(044) 259 0511. Fax: (044) 259 7044. E-mail: aprowata1@bigmir.net.

V.M. GlushkovI Cybernetics Institute NAS of Ukraine, 03680, МСП, Kyiv -187, Academician Glushkov
Avenue, 40. Т.: (044) 259 0511. Fax: (044) 259 7044. E-mail: provotar@huspi.com.

+38-050-444-17-35, email: aprowata1@bigmir.net.

