
International Conference on
Logic Programming ICLP 2007

Porto, Portugal

8-13 September 2007

ICLP’07 Workshop

ALPSWS2007:
Applications of Logic Programming to the Web,

Semantic Web and Semantic Web Services
September 13th, 2006

Proceedings

Editors:

S. Heymans, D. Pearce, A. Polleres, E. Ruckhaus, and G. Gupta

c©Copyright 2007 for the individual papers by the individual authors. Copying

permitted for private and scientific purposes. Re-publication of material in this volume

requires permission of the copyright owners.

ii

Preface

The advent of the Semantic Web promises machine readable semantics and a
machine-processable next Generation of the Web. The first step in this direction
is the annotation of static data on the Web by machine processable information
about knowledge and its structure by means of Ontologies. The next step in this
direction is the annotation of dynamic applications and services invocable over
the Web in order to facilitate automation of discovery, selection and composition
of semantically described services and data sources on the Web by intelligent
methods, which is called Semantic Web Services.

This volume contains the papers presented at the second international work-
shop on Applications of Logic Programming to the Web, Semantic Web and
Semantic Web Services (ALPSWS2007) held on September 13th, 2007 in Porto,
Portugal as part of the 23nd International Conference on Logic Programming
(ICLP07).

Many previous workshops and conferences were dedicated to these promising
areas mostly with generic topics. With the ALPSWS2007 workshop we have a
slighlty different goal. Rather that bringing together people from a widespread
variety of research fields with different understandings of the topic we wanted
to focus on the various applications areas and approaches in this area from
declarative logic programming (LP).

The idea was to get a snapshot of the state of the work related to applications
of LP to Semantic Web and Semantic Web Services with the following main
objective major benefits:

– Bringing together people from different sub-disciplines of LP and focus on
technological solutions and applications from LP to the problems of the Web.

– Promoting further research in this interesting application field.

The ALPSWS 2007 edition focused around Query Languages on the Web,
Integrating Ontologies and Rules, and the more general Logic Programming on
the Semantic Web, thus conforming what is currently seen as challenges in Web
reasoning in general.

September 2007.
Gopal Gupta, Stijn Heymans, Axel Polleres, David Pearce and Edna Ruckhaus

iii

Workshop Organization

Organizing Committee

Stijn Heymans
David Pearce
Axel Polleres
Edna Ruckhaus

Programme Chairs

Gopal Gupta

Programme Committee

Stefan Decker
Pascal Hitzler
Giovambattista Ianni
Zoe Lacroix
Gergely LukÃcsy
Enrico Pontelli
Roman Schindlauer
Hans Tompits
Alejandro Vaisman
Maria-Esther Vidal
Gerd Wagner
Jos de Bruijn

External Reviewers

Francesco Ricca

iv

Table of Contents

ASP-PROLOG: Composition and Interoperation of Rules (invited talk) . . 1
Enrico Pontelli

dlvhex-sparql: A SPARQL complaint query engine based on DLVHEX . . . 3
Axel Polleres, Roman Schindlauer

OnEQL: An Ontology Efficient Query Language Engine for the
Semantic Web . 13

Edna Ruckhaus, Maria-Esther Vidal, Eduardo Ruiz

Contextual Logic Programming for Ontology Representation and Querying 27
Nuno Lopes, ClÃudio Fernandes, Salvador Abreu

Ontology based information integration using Logic Programming 43
Gergely LukÃcsy, Peter Szeredi

Combining OWL with F-Logic Rules and Defaults . 60
Heiko Kattenstroth, Wolfgang May, Franz Schenk

HD-rules: a hybrid system interfacing Prolog with DL-reasoners 76
Wlodek Drabent, Jakob Henriksson, Jan Maluszynski

Using Prolog as the fundament for applications on the semantic web 91
Jan Wielemaker, Michiel Hildebrand, Jacco van Ossenbruggen

v

1

ASP − PROLOG: Composition and Interoperation of
Rules

C. Baral1, E. Pontelli2, and T.C. Son2

1 Arizona State University

Department of Computer Science

chitta@asu.edu
2 New Mexico State University

Department of Computer Science

{epontell,tson}@cs.nmsu.edu

1 Introduction

One of the main goals of the Semantic Web initiative [3] is to extend the current Web

technology to allow for the development of intelligent agents, which can automatically

and unambiguously process the information available on millions of web pages. It has

been recognized very early in the development of the Semantic Web that rules are es-

sential for the Web3 and for Semantic Web applications—e.g., description of semantic

web services, rules interchange for e-business applications.

The RuleML initiative is a response to the need of a shared rule markup language

using XML markup, which has a precisely defined semantics and efficient implementa-

tions. In recent years, a significant amount of work has been devoted to develop knowl-

edge representation languages suitable for the task and a variety of languages for rule

markup has been proposed. The initial design [4] included a distinction (in terms of dis-

tinct DTDs) between reaction rules and derivation rules. The first type of rules is used

for the encoding of event-condition-action (ECA) rules while the second is meant for

the encoding of implicational/inference rules. Despite the fact that many different pro-

posals for ECA rules encoding have appeared the work on ECA rules is still very vague.

The most recent modularized description of RuleML [6] reports this area (indicated as

PR RuleML in that document) as work in progress.

The derivation rules component of the RuleML initiative has originated a fam-

ily of languages.4, Datalog plays the role of a core language, with simplified ver-

sions (unary and binary Datalog) developed for combining RuleML with OWL (as in

SWRL). Various sublanguages have been created to include features like explicit equal-

ity (e.g., fologeq), negation as failure (e.g., naffolog), and Hilog layers (e.g.,

hohornlog). Various authors [7] have argued that any realistic architecture for the

Semantic Web must be based on various independent but interoperable languages, in-

cluding logic programming languages with and without negation-as-failure. The need

for these languages and their interaction have been discussed (e.g., [8, 7]). It is also of

3 http://www.w3.org/DesignIssues/Rules.html
4 www.ruleml.org/modularization/ruleml_m12n_089_uml_05-06-01.

png.

2

note that many of the sublanguages of RuleML have been implemented either through

translators (e.g., GEDCOM, which translates to XSB and JESS) or engines (e.g., j-

DREW, a top-down engine for RuleML, DR-Device, an engine supporting defeasible

logic and both strong and default negation, and CommonRules, a bottom-up engine for

the Datalog sublanguage).

In this work, we propose a general framework to address the problem of (i) inter-

operation between knowledge bases encoded using different RuleML languages, and

(ii) development and integration of different components that reason about RuleML

knowledge bases. The approach adopted in this work relies on using a core logic pro-

gramming framework to address the issues of integration and inter-operation. In partic-

ular, the spirit of our approach relies on the following beliefs:

• the natural semantics of various levels of the RuleML deduction rules hierarchy can
be captured by different flavors of logic programming;

• modern logic programming systems are provided with foreign interfaces that allow
declarative interfacing to other paradigms.

The idea is to combine the ASP-Prolog framework of [5] with the notations for modu-

larization of answer set programming of [2]. The result is a logic programming frame-

work, where modules responding to different logic programming semantics (e.g., Her-

brand minimal model, well-founded semantics, answer set semantics) can co-exist and

interoperate.

The framework provides a natural answer to the problems of use and inter-operation

of RuleML knowledge. Most of the emphasis is on using answer set programming to

handle some of the sublanguages (e.g., datalog, ur-datalog, nafdatalog and negdatalog),

though the core framework will naturally support most of the languages (e.g., hornlog,

hohornlog).

A thorough presentation of the framework can be found in [1].

References

[1] C. Baral et al. A Framework for Composition and Interoperation of Rules in the Semantic

Web. RuleML, Springer Verlag, pp. 39-50, 2006.

[2] C. Baral et al. Macros, macro calls, and use of ensembles in modular answer set program-

ming. ICLP, Springer, 2006.

[3] T. Berners-Lee et al. The semantic web. In Scientific American, May 2001.

[4] H. Boley et al. RuleML Design, Version 0.8. 2002-09-03, 2002.

[5] O. Elkhatib et al. A Tool for Knowledge Base Integration and Querying. AAAI Spring

Symp., AAAI Press, 2006.

[6] D. Hirtle, H. Boley. The Modularization of RuleML. 2005-12-15, 2005.

[7] M. Kifer et al. A Realistic Architecture for the Semantic Web. RuleML, Springer Verlag,

pp. 17–29, 2005.

[8] W. May et al. Active Rules in the Semantic Web: Dealing with Language Heterogeneity.

RuleML, Springer, 2005.

3

dlvhex-sparql:
A SPARQL-compliant Query Engine based on dlvhex !

Axel Polleres1 and Roman Schindlauer2

1 DERI Galway, National University of Ireland, Galway
axel@polleres.net

2 Univ. della Calabria, Rende, Italy and Vienna Univ. of Technology, Austria
roman@kr.tuwien.ac.at

Abstract. This paper describes the dlvhex SPARQL plugin, a query processor
for the upcoming Semantic Web query language standard by W3C. We report on
the implementation of this languages using dlvhex, a flexible plugin system on
top of the DLV solver. This work advances our earlier translation based on the se-
mantics by Perez et al. towards an engine which is fully compliant to the official
SPARQL specification. As it turns out, the differences between these two defini-
tions of SPARQL, which might seem moderate at first glance, need some extra
machinery. We also briefly report the status of implementation, and extensions
currently being implemented, such as handling of aggregates, nested CONSTRUCT
queries in the spirit of networked RDF graphs, or partially support of RDFS en-
tailment. For such extensions a tight integration of SPARQL query processing
and Answer-Set Programming, the underlying logic programming formalism of
our engine, turns out to be particularly useful, as the resulting programs can ac-
tually involve unstratified negation.

1 Introduction
SPARQL, the upcoming Semantic Web query language, is short before being standard-
ized by the W3C, and has just reached Candidate Recommendation Status [8]. As op-
posed to earlier versions of this specification, the formal underpinnings of the language
have been seriously improved, influenced by results from academia such as Perez et
al.’s work [6]. In [7] we presented a translation from SPARQL to Datalog following
Perez et al. and showed how we can cover even corner-cases such as non-well-designed
query patterns, where UNION and OPTIONAL patterns turned out to be particularly
tricky. In the present work we aim at bridging the gap between the formal translation
from [7] towards an actual implementation of the official W3C candidate recommen-
dation. Compared with the semantics presented in [6, 7], the recent specification shows
some differences which require additional machinery, such as the treatment of filters in
optional graph patterns, multiset semantics, and the handling of blank nodes in CON-
STRUCT queries which have an impact for practical implementations. This paper is to
! This work has been supported by the European FP6 projects inContext (IST-034718) and

REWERSE (IST 506779), by the Austrian Science Fund (FWF) project P17212-N04, by the
AECI Programa de Cooperación Interuniversitaria e Investigación Cientı́fica entre España y
los pases de Iberoamérica (PCI), by the Consejerı́a de Educación de la Comunidad de Madrid
and Universidad Rey Juan Carlos under the project URJC-CM-2006-CET-0300, as well as by
Science Foundation Ireland under the Lion project (SFI/02/CE1/I131).

4

be conceived as a system description: Rather by use of practical examples than repeat-
ing formal details from our earlier works, we will show how our earlier translation can
be lifted to a more spec-compliant one. Moreover, we report on implementation details
of our prototypical engine dlvhex-sparql.

We will review the basics of dlvhex and main ideas of our translation by means of
simple examples in Section 2. In Subsection 2.3 we will discuss the main differences
between our original semantics from [7] and the current SPARQL specification [8]
along with patches for our translation. Next, we will present some details about our
prototype implementation in Section 3. Finally, in Section 4 we will motivate further
why a tight integration of SPARQL query processing and answer-set programming, the
underlying logic programming of our engine, turns out to be particularly useful and will
give an outlook to future work.

2 From SPARQL to dlvhex
As shown in [7] the semantics of SPARQL SELECT queries can, to a large extent, be
translated to Datalog programs with minimal support of built-in predicates. Hence, any
logic programming engine which supports Datalog (i.e., function-free) with negation
as failure, as well as built-in functions to import triples from given RDF graphs, could
in principle serve as a SPARQL engine. We will focus here particularly on our imple-
mentation of this translation using the dlvhex engine, a flexible and extensible plugin
framework on top of the DLV system to support a wide range of external predicates.

2.1 dlvhex Basics
dlvhex 3 is a reasoner for so-called HEX-programs [11], a relatively new logic pro-
gramming language, which provides an interface to external sources of knowledge. The
definition of this interface is very general, allowing for the implementation of a wide
range of specialized tasks, such as the import of RDF data, basic string manipulation
routines, or even aggregate functions.

The crucial feature of HEX-programs are external atoms, which are of the form

&g [Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn is a list of predicates and terms and X1, . . . , Xm is a list of terms
(called input list and output list, respectively), and g and output arities n and m fixed
for g. Intuitively, an external atom provides a way for deciding the truth value of an
output tuple depending on the extension of a set of input predicates and terms. Note
that this means that external predicates, unlike usual definitions of built-ins in logic
programming, can not only take constant parameters but also (extensions of) predicates
as input.

A rule is of the form

h :- b1, . . . , bm,not bm+1, . . .not bn (1)

where h and bi (1 ≤ i ≤ n) are atoms, bk (1 ≤ k ≤ m) are either atoms or external
atoms, and ‘not’ is the symbol for negation as failure.

The semantics of dlvhex generalizes the well-known answer-set semantics [4] by
extending it to external atoms. One distinguished feature of the answer-set semantics is

3 Available on http://www.kr.tuwien.ac.at/research/dlvhex/.

5

its ability to generate multiple minimal models for a single problem specification. Its
treatment of negation as failure qualifies it as an intuitive way to deal with unstratified
negation in logic programming. Answer-set programming is particularly suitable for
combinatorial search problems and their applications.

In our implementation we translate SPARQL queries to HEX-programs with a set of
dedicated external atoms, only two of which we mention here explicitly. Further exter-
nal atoms and built-in functions are necessary to deal with complex FILTER expressions
as defined in [8, Sec. 11.3], where we refer to [7, 9] for further details.

RDF Import The access on RDF knowledge is realized through the &rdf predicate. It
is of the form &rdf [i](s, p, o), where both the input term i as well as the output terms
s, p, o are constants The external atom &rdf [i](s, p, o) is true if (s, p, o) is an RDF triple
entailed by the RDF graph which is accessibly at IRI i. Here, we consider simple RDF
entailment [5] only.

Skolemizing Blank Nodes In order to properly deal with blank nodes in CONSTRUCTs
(see Subsection 2.3), we need to be able to generate fresh blank node identifiers. The
idea here is similar to Skolemization. The external predicate &sk[id , v1, . . . , vn](skn+1)
computes a unique, new “Skolem”-like term id(v1, . . . , vn), from its input parameters.

As widely known for programs without external predicates, safety [12] guarantees
that the number of entailed ground atoms is finite. Though, by external atoms in rule
bodies, new, possibly infinitely many, ground atoms could be generated, even if all
atoms themselves are safe. In order to avoid this, the notion of strong safety [11] for
HEX-programs, constrains the use of external atoms in cyclic rules and guarantees finite-
ness of models as well as finite computability of external atoms.

2.2 From SPARQL to dlvhex by Example
In this section, we exemplify our translation by means of some illustrating sample
SPARQL queries. We assume basic familiarity of the reader with RDF and SPARQL,
and will only briefly intoduce some basics here: We define a SPARQL query as a tuple
Q = (R,P,DS) where R is a result form, P a graph pattern, and DS a dataset.4 For a
SELECT query, a result form R is simply a set of variables, whereas for a CONSTRUCT
query, the result form R is a set of triple patterns.

We assume the pairwise disjoint, infinite sets I , B, L and Var , which denote IRIs,
blank node identifiers, RDF literals,5 and variables respectively.
Graph patterns are recursively defined as follows:

– s p o. is a graph pattern where s, o ∈ I ∪B ∪ L ∪Var and p ∈ I ∪Var .
– A set of graph patterns is a graph pattern.
– Let P, P1, P2 be graph patterns, R a filter expression, and i ∈ I ∪ V ar, then

P1 OPTIONAL P2,P1 UNION P2,GRAPH i P , and P FILTER R are graph patterns.

For any pattern P , we denote by vars(P) the set of all variables occurring in P and
by vars(P) the tuple obtained by the lexicographic ordering of all variables in P . As
atomic filter expression, we allow here the unary predicates BOUND (possibly with

4 We will ignore solution modifiers for the purpose of this paper, since they can be added by
post-processing results of our translation.

5 For sake of brevity, we only cover plain (i.e., untyped, not language tagged) literals here.

6

variables as arguments), isBLANK, isIRI, isLITERAL, and binary comparison predicates
‘=’, ‘<’, ‘>’ with arbitrary safe built-in terms as arguments. Complex filter expressions
can be built using the connectives ‘¬’, ‘∧’, and ‘∨’.

The dataset DS = (G, {(g1, G1), . . . , (gk, Gk)}) of a SPARQL query is defined
by a default graph G plus a set of named graphs, i.e., pairs of IRIs and corresponding
graphs. Without loss of generality (there are other ways to define the dataset such as in
a SPARQL protocol query), we assume G given as the merge of the graphs denoted by
the IRIs explicitly given in a set of FROM clauses and the named graphs g1, . . . , gk are
specified in the form of FROM NAMED clauses.

For the following example queries, we assume the datasets consisting of two RDF
graphs with the URIs http://alice.org and http://ex.org/bob which contain
some information about Alice and Bob encoded in the commonly used FOAF6 vocab-
ulary. For instance, the following SELECT query Q = (R,P,DS) selects all persons
who know somebody, and the names of these persons.7

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . ?X foaf:knows _:x . }

Here, P is a simple set of triple patterns, also called basic graph pattern in SPARQL. R
is the set of variables {?X, ?Y }, DS = ({ex.org/bob, alice.org}, ∅), i.e., the default
graph being the merge of the two graphs and an empty set of named graphs, since no
FROM NAMED clause is given. Using the RDF-plugin of dlvhex such queries can be
translated to a simple HEX-program:8

(1) tripleQ(S,P,O,def) :- &rdf["http://ex.org/bob"](S,P,O).
(2) tripleQ(S,P,O,def) :- &rdf["http://alice.org"](S,P,O).
(3) answerP (X,Y,BLANK x,DS) :- triple(X,rdf:type,foaf:Person,DS),

triple(X,foaf:name,Y,DS),
triple(X,foaf:knows,BLANK x,DS).

(4) answerQ(X,Y) :- answerP (X,Y,BLANK x,def).

Here, rules (1)+(2) “collect” the dataset by merging the two source graphs in the pred-
icate tripleQ, where the constant def in last parameter denotes the triples of the de-
fault graph. Disambiguation of possible overlapping blank node ids in the source graphs
is taken care of by the RDF plugin, i.e., during import the &rdf predicate gives a fresh
id to any blank node. As we can see in rule (3), basic graph patterns basically boil
down to simple conjunctive queries over the predicate tripleQ of which the results
are collected in the predicate answerP(vars(P),DS). The variable DS denotes the part
of the dataset the pattern refers to (see the next example for more details). Blank nodes
in P are simply treated as special variables, which is a quite standard procedure (see
e.g., [3].9 The projection to the variables in R and restriction to results from the default
graph takes place in rule (4), which finally collects all solution tuples for the query in
the dedicated predicate answerQ.

6 http://xmlns.com/foaf/spec/
7 As usual in SPARQL or Turtle [2], the predicate ‘rdf:type’ is abbreviated with ‘a’.
8 dlvhex uses the common PROLOG style notation where unquoted uppercase terms denote

variables and all other terms denote constants. We simplify here from the notation used in the
actual implementation, where some encoding is necessary in order to distinguish RDF literals,
IRIs, blank nodes, etc.

9 For the treatment of blank nodes in R, i.e., in CONSTRUCTs, we refer to Section 2.3 below.

7

More complex, possibly nested patterns are handled by introducing, for each sub-
pattern of P , new auxiliary predicates answer1P , answer2P , answer3P , etc. We ex-
emplify this by the following GRAPH query which selects creators of graphs and the
persons they know.

SELECT ?X ?Y
FROM <http://alice.org>
FROM NAMED <http://alice.org>
FROM NAMED <http://ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y . ?Y a foaf:Person . } }

This query is translated to a HEX-program as follows:

(1) tripleQ(S,P,O,def) :- &rdf["http://alice.org"](S,P,O).
(2) tripleQ(S,P,O,"http://alice.org") :- &rdf["http://alice.org"](S,P,O).
(3) tripleQ(S,P,O,"http://ex.org/bob") :- &rdf["http://ex.org/bob"](S,P,O).
(4) answer1P (X,Y,DS) :- tripleQ(G,foaf:maker,X,DS), answer2(X,Y,G), G != def.
(5) answer2P (X,Y,DS) :- tripleQ(X,foaf:knows,Y,DS),

tripleQ(X,rdf:type,foaf:Person,DS).
(6) answerQ(X,Y) :- answer1P (X,Y,def).

Here, again the first rules (1)-(3) import the dataset, now also involving named graphs.
The GRAPH subpattern is computed by predicate answer2P , and we see that the last
parameter in the triple predicate carries over bindings to particular named graphs or
via the constant def to the default graph. Note that the inequality atom G != def in
rule (4) serves to restrict answers for the GRAPH subpattern to only refer to named
graphs, according to SPARQL’s semantics.

Next, let us turn to a query that involves a UNION pattern, asking for persons and
their names or nicknames.

SELECT ?X ?Y ?Z FROM ...
WHERE { ?X a foaf:Person { { ?X foaf:name ?Y. } UNION { ?X foaf:nick ?Z. } } }

Alternatives can be modeled by splitting off the branches in a UNION pattern into sev-
eral rules with the same answer head predicate:

(1) tripleQ(S,P,O,def) :- ...
(2) answer1P (X,Y,Z,DS) :- tripleQ(X,rdf:type,foaf:Person,DS), answer2P (X,Y,Z,DS).
(3) answer2P (X,Y,null,DS) :- tripleQ(X,foaf:name,Y,DS).
(4) answer2P (X,null,Z,DS) :- tripleQ(X,foaf:nick,Z,DS).
(6) answerQ(X,Y,Z) :- answer1P (X,Y,Z,def).

Since we bind names and nicknames to different variables Y and Z here, the answers for
the non-occurring variable will be unbound in the respective branch of the UNION. We
emulate such unboundedness in our translation by null values [7] in the rules (3)+(4).

Let us turn to OPTIONAL patterns by the following example query which selects all
persons and optionally their names:

SELECT * WHERE { ?X a foaf:Person. OPTIONAL { ?X foaf:name ?N } }

OPTIONALs can be emulated again by null values and using negation as failure.

(1) tripleQ(S,P,O,def) :- ...
(2) answer1P (N,X,DS) :- tripleQ(X,rdf:type,foaf:Person,DS), answer2P (N,X,DS).
(3) answer1P (null,X,DS) :- tripleQ(X,rdf:type,foaf:Person,DS),

not answer2’P (X,DS).
(4) answer2P (N,X,DS) :- tripleQ(X,foaf:name,N,DS).
(5) answer2’P (X,DS) :- answer2P (N,X,DS).
(6) answerQ(N,X) :- answer1P (N,X,def).

8

In rules (3)+(5) we cover the case where the optional part has no solutions for X by a
rule with head predicate answer2’P which projects away all variables only occurring
in the optional part (answer2P) and which we negate in rule (3).

As for the treatment of FILTER expressions, we made the restricting assumption
in [7] that each variable appearing in a FILTER expression needs to be bound in a triple
pattern in the same scope as the FILTER expression, since otherwise our recursive trans-
lation given in [7] would construct possible unsafe rules. Take for instance the pattern
P = { ?X foaf:mbox ?M . FILTER(?Age > 30) }. In our translation without
further modification, such a pattern this would yield a rule like:

answerP (Age,M,X,DS) :- tripleQ(X,foaf:mbox,M,DS), Age > 30.

where Age is an unsafe variable occurring in a built-in atom. however, it turns out that
the safety restriction for variables in FILTERs is unnecessary, since we could remedy
the situation by replacing all unsafe variables in a FILTER simply by the constant null
again, which yields for our example pattern P :

answerP (null,M,X,DS) :- tripleQ(X,foaf:mbox,M,DS), null > 30.

As expected, this rule can never fire, since the built-in atom null > 30 is always false.
Finally, let us turn our attention to CONSTRUCT queries. We suggested in [7] that

we can allow CONSTRUCT queries of the form Q = (R,P, DS) where R consists of
bNode-free triple patterns. We can model these by adding a rule

tripleQ(s, p, o,res) :- answerQ(vars(P)).

for each triple pattern s p o. in R10 to the translated program. The result graph res is
then naturally represented in the answer set of the extended program, namely by those
tuples in the extension of the predicate tripleQ having res as the last parameter and
representing valid RDF triples.

Apart from some extra-machinery, which is needed in the case of non-well-designed
graph patterns [6], the examples in this section should cover the basic ideas behind our
translation which had been described in [7], and we refer the interested reader to this
work for further details. The present paper is rather focused on implementation specific
aspects concerning the latest official specification of SPARQL and some difficulties
which arise from particular decisions taken by the W3C Data Access working group.
We will cover these issues in the next subsection.

2.3 Full SPARQL Compliance
In order to arrive at a SPARQL compliant translation, we face the following difficulties:

1. How to deal with solution modifiers.
2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to variables

bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries.

10 Analogously to the FILTER example, we can replace variables unbound in P but occurring in
R by null again in order to ensure safety.

9

As for 1, we do not yet treat solution modifiers such as ORDER BY and OFFSET in our
current prototype, but these can be easily added by post-processing the results obtained
from our translation fed into dlvhex. Issue 2 is somewhat harder to solve. Note that
our current translation, as well as the SPARQL semantics defined by Perez et al. [6]
creates sets of solutions, i.e., each query is treated as if it was a DISTINCT query. Take
for instance a variation of our UNION example from above:

SELECT ?N FROM ... WHERE { { ?X foaf:name ?N. } UNION { ?X foaf:nick ?N. } }

and assume the source graph

:bob foaf:name "Bob" ; foaf:nick "Bobby" .
:alice foaf:knows _:a .
_:a foaf:name "Bob"; foaf:nick "Bob"; foaf:nick "Bobby" .

The naive translation of the above query to a HEX-program is as follows:

(1) tripleQ(S,P,O,def) :- ...
(2) answer1P (N,X,DS) :- tripleQ(X,foaf:name,N,DS).
(3) answer1P (N,X,DS) :- tripleQ(X,foaf:nick,N,DS).
(4) answerQ(N) :- answer1P (N,X,def).

This program (in a bottom-up evaluation such as the one underlying the dlvhex system)
would result in two answers answerQ("Bob") and answerQ("Bobby"). According
to the official SPARQL semantics, however, the above query has four solutions bind-
ing variable ?N three times to "Bob" and twice to "Bobby". If we observe where
the duplicates get “lost” in our translation, we can see that only (i) the final projection
in predicate answerQ and (ii) duplicates due to UNION patterns cause us to lose du-
plicates. We can remedy this easily by (i) always carrying over all the variables in all
subpatterns to the answerQ predicate and only projecting out the non-selected vari-
ables during postprocessing, and (ii) adding an extra variable for each UNION pattern
which models possible branches a solution stems from. The such modified version of
our translated program looks as follows:

(1) tripleQ(S,P,O,def) :- ...
(2’) answer1P (N,X,1,DS) :- tripleQ(X,foaf:name,N,DS).
(3’) answer1P (N,X,2,DS) :- tripleQ(X,foaf:nick,N,DS).
(4’) answerQ(N,X,Union1) :- answer1P (X,N,Union1,def).

Here, the constants 1 and 2 mark the branches of the union in rules (2’)+(3’), and
are carried over to the end result in rule (4’) by the extra variable Union1. Indeed, this
modified program has four answers answerQ("Bob",:bob,1), answerQ("Bobby",
:bob,2), answerQ("Bobby", :a,2), and answerQ("Bob", :a,2).

Regarding issue 3, let us consider a query involving the above mentioned FILTER
condition:

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .
OPTIONAL { ?X foaf:mbox ?M . FILTER(?Age > 30) } }

Here, we want to select names of persons and only output email addresses (foaf:mbox)
of those ones older than 30. The possibility of FILTERs within OPTIONALs to refer to
variables bound outside the enclosing OPTIONAL pattern is an interesting feature of
SPARQL for such queries, however, our original translation would treat filters strictly
local to their pattern:

10

(1) tripleQ(S,P,O,def) :- ...
(2) answer1P (Age,N,M,X,DS) :- tripleQ(X,foaf:name,N,DS), tripleQ(X,:age,Age,DS),

answer2P (Age,M,X,DS).
(3) answer1P (Age,N,null,X,DS) :- tripleQ(X,foaf:name,N,DS),

tripleQ(X,:age,Age,DS),
not answer2’P (Age,X,DS).

(4) answer2P (null,M,X,DS) :- tripleQ(X,foaf:mbox,M,DS), null > 30.
(5) answer2’P (Age,X,DS) :- answer2P (Age,M,X,DS).
(6) answerQ(N,M) :- answer1P (Age,N,M,X,def).

Since the use of variable Age in rule (4) would be unsafe, our original translation re-
places it by null, thus not returning any email addresses (i.e., bindings for N) for the
overall query. The solution is now to modify the translation in order to draw FILTERs in
the scope of OPTIONALs upwards in the pattern tree, yielding a modified translation:

(1) tripleQ(S,P,O,def) :- ...
(2’) answer1P (Age,N,M,X,DS) :- tripleQ(X,foaf:name,N,DS), tripleQ(X,:age,Age,DS),

answer2P (M,X,DS), Age > 30.
(3a’) answer1P (Age,N,null,X,DS) :- tripleQ(X,foaf:name,N,DS),

tripleQ(X,:age,Age,DS),
answer2P (M,X,DS), not Age > 30.

(3b’) answer1P (Age,N,null,X,DS) :- tripleQ(X,foaf:name,N,DS),
tripleQ(X,:age,Age,DS), not answer2’P (X,DS).

(4’) answer2P (M,X,DS) :- tripleQ(X,foaf:mbox,M,DS).
(5’) answer2’P (X,DS) :- answer2P (M,X,DS).
(6’) answerQ(N,M) :- answer1P (Age,N,M,X,def).

Rules (2’)-(3b’) now exactly reflect the case distinction for OPTIONALs by the def-
inition of the LeftJoin operator in [8, Section 12.4]. As an interesting side-note, we
remark that the non-local behavior of filter expressions only applies to FILTERs on the
top level of OPTIONALs: The reader might easily convince herself by the definitions in
the current SPARQL specification that a slightly modified query

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .
OPTIONAL {?X foaf:name ?N { ?X foaf:mbox ?M . FILTER(?Age > 30) } } }

is not semantically equivalent to the original query although the triple ?X foaf:name
?N inside the OPTIONAL seems to be redundant at first glance. In fact, the difference
here is that FILTERs which are nested within a group graph pattern will be evaluated
local to this pattern, not taking bindings from outside the OPTIONAL into account.

Finally, let us turn to issue 4, namely the translation of CONSTRUCT queries in-
volving blank nodes in the result form. We consider an example query which constructs
foaf:maker relations for people authoring a document, expressed by the Dublin Core
property dc:creator. We assume that in the source graph all values for dc:creator
are literals denoting the authors’ names. Thus, we want to create bNodes for each au-
thor, since the foaf:maker of a document should be a foaf:Agent:

CONSTRUCT { _:b a foaf:Agent. _:b foaf:name ?N. ?Doc foaf:maker _:b. } FROM ...
WHERE { ?Doc dc:creator ?N. }

The idea to implement the SPARQL semantics properly here is to use the external
predicate &sk mentioned in Subsection 2.1 to generate new blank node identifiers for
each solution binding for var(P) similar in spirit to Skolemization . We simply use the
original bNode identifier b in R as “Skolem function”:

11

(1) tripleRes(S,P,O,def) :- ...
(2) answer1P (Doc,N,DS) :- tripleQ(Doc,dc:creator,N,DS).
(3) tripleRes(BLANK b,rdf:type,foaf:Agent,res) :- answer1P (Doc,N,def),

&sk[b,Doc,N](BLANK b).
(4) tripleRes(BLANK b,foaf:name,N,res) :- answer1P (Doc,N,def),

&sk[b,Doc,N](BLANK b).
(5) tripleRes(Doc,foaf:maker,BLANK b,res) :- answer1P (Doc,N,def),

&sk[b,Doc,N](BLANK b).

Note that, since we use different predicates tripleRes and tripleQfor the result
triples and dataset triples here, the resulting program stays in principle non-recursive
and thus strong safety as discussed in Subsection 2.1 is guaranteed, despite the genera-
tion of new values by means of the external predicate &sk.

3 Prototype Implementation
We implemented a prototype of a SPARQL engine based on the dlvhex solver, called
dlvhex-sparql. The external atoms in HEX-programs are provided by so-called plugins,
which are dynamically loaded at run-time by the evaluation framework of dlvhex. A
plugin may also supply a rewriting module, which is executed prior to the model gener-
ation algorithm and allows for a conversion of the input data into a valid HEX-program.
The prototype exploits the rewriting mechanism of the dlvhex framework, taking care
of the translation of a SPARQL query into the appropriate HEX-program, as laid out in
Subsection 2.2. The system implements external atoms used in the translation, namely
(i) the &rdf-atom for data import aggregate atoms, and (ii) a string manipulation atom
implementing the &sk-atom for blank node handling. The default syntax of a dlvhex
results corresponds to the usual answer format of logic programming engines, i.e., sets
of facts, from which we generate an XML representation that can subsequently be trans-
formed easily to a valid RDF syntax by an XSLT to export solution graphs.

Note that the support of complex FILTER expressions is only rudimentary at the
moment and subject to ongoing work. As mentioned before, we will need a dedicated
set of additional external atoms in order to support the full extent of FILTER expressions
as described in [8, Sec. 11.3].

We also implemented a rudimentary Web service interface making our engine acces-
sible as a general purpose SPARQL endpoint. This was realized by XSL transforming
the XML output of dlvhex into the result format prescribed by the SPARQL protocol11

and is accessible via a SOAP interface at http://apolleres.escet.urjc.es:
8080/axis/services/SparqlEvaluator?wsdl.

4 Extensions and Next Steps
While the current implementation efforts around dlvhex-sparql described here were fo-
cused on conceptually proving the feasibility of a fully SPARQL compliant query en-
gine on top of dlvhex, our intentions behind go well beyond this sheer exercise. We are
currently working on extensions such as allowing aggregate and built-in functions in
the result form of queries, which allows computations of new values. Such an exten-
sion is crucial for instance for mapping between different, overlapping RDF vocabular-
ies [1]. In this context, we plan to support the use of CONSTRUCT queries as part of
the dataset which allows to express such mappings12 or interlinked, implicit RDF meta-
data13. The embedding of such extensions into our translation comes mostly without
11 http://www.w3.org/TR/2006/CR-rdf-sparql-protocol-20060406/
12 www.rdfweb.org/topic/ExpertFinder_2fmappings
13 www.w3.org/2005/rules/wg/wiki/UCR/Publishing_Rules_for_Interlinked_Metadata

12

additional costs, since the respective query translations for both the actual query as well
as mapping rules and views in the form of CONSTRUCTs can be translated into a single
dlvhex program and evaluated at once. Here is where the power of answer-set program-
ming comes into play, since such combined programs may involve unstratified recur-
sion which can be dealt with flexibly under brave or cautions reasoning, respectively.
We should mention here related approaches such as [10], which alternatively suggest
the use of the well-founded semantics for such scenarios, but with a similar intention to
create networks of RDF graphs (possibly recursively) linked by CONSTRUCT queries.
Moreover, we did not yet conduct extensive performance evaluations, but we would
not expect to be necessarily competitive with special-purpose SPARQL engines. How-
ever, the power of our approach lies in its natural combination of RDF with the rules
world, which for instance allows us to plug-in on the fly Datalog rulesets which emulate
RDF(S) entailment (see for instance[3]).

References
1. B. Aleman-Meza, U. Bojars, H. Boley, J. G. Breslin, M. Mochol, L. J. Nixon, A. Polleres,

and A. V. Zhdanova. Combining RDF vocabularies for expert finding. In Proceedings of
the 4th European Semantic Web Conference (ESWC2007), number 4519 in Lecture Notes in
Computer Science, pages 235–250, Innsbruck, Austria, June 2007. Springer.

2. D. Beckett. Turtle - Terse RDF Triple Language, Apr. 2006. Available at http://www.
dajobe.org/2004/01/turtle/.

3. J. de Bruijn and S. Heymans. RDF and logic: Reasoning and extension. In Proceedings
of the 6th International Workshop on Web Semantics (WebS 2007), in conjunction with the
18th International Conference on Database and Expert Systems Applications (DEXA 2007),
Regensburg, Germany, September 3–7 2007. IEEE Computer Society Press.

4. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

5. P. Hayes. RDF semantics. Technical report, W3C, February 2004. W3C Recommendation.
6. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. In International

Semantic Web Conference (ISWC 2006), pages 30–43, 2006.
7. A. Polleres. From SPARQL to rules (and back). In Proceedings of the 16th World Wide Web

Conference (WWW2007), Banff, Canada, May 2007.
8. E. Prud’hommeaux and A. Seaborne (eds.). SPARQL Query Language for RDF, June

2007. W3C Candidate Recommendation, available at http://www.w3.org/TR/
2007/CR-rdf-sparql-query-20070614/.

9. S. Schenk. A SPARQL Semantics Based on Datalog. In KI2007, Osnabrck, Germany, 2007.
10. S. Schenk and S. Staab. Networked RDF Graphs. Tech. rep., Univ. Koblenz, 2007. http:

//www.uni-koblenz.de/˜sschenk/publications/2006/ngtr.pdf.
11. R. Schindlauer. Answer-Set Programming for the Semantic Web. PhD thesis, Vienna Uni-

versity of Technology, Dec. 2006.
12. J. Ullman. Principles of Database & Knowledge Base Systems. Comp. Science Press, 1989.

13

OnEQL: An Ontology Efficient Query Language
Engine for the Semantic Web

Edna Ruckhaus and Eduardo Ruiz and Maŕıa Esther Vidal

Universidad Simón Boĺıvar
Caracas, Venezuela

{ruckhaus,eruiz, mvidal}@ldc.usb.ve

Abstract. In this paper we describe the OnEQL system, a query en-
gine that implements optimization techniques and evaluation strategies
to speed up the evaluation time of querying and reasoning services in
the Semantic Web. To identify execution plans that reduce the cost of
evaluating a query, we developed a twofold optimization strategy that
combines cost-based optimization and Magic Sets techniques. In the first
stage, a dynamic programming-based algorithm is used to identify an or-
dering of predicates in the query that minimizes its estimated evaluation
cost. In the second stage, Magic Sets techniques are used to push down
query selections into the OnEQL ontology representation, in order to re-
duce the number of facts inferred during query evaluation. Additionally,
we developed three physical operators that execute the sideways passing
of bindings during the evaluation of the execution plan. To illustrate the
advantages of this approach, we report the results of an experimental
study over the most popular health ontologies.

1 Introduction

Ontologies play an important role in the Semantic Web, and provide the basics
for the definition of concepts and relationships that make global interoperability
possible. Knowledge represented in ontologies can be used to annotate data,
distinguish similar concepts, and generalize and specialize concepts.

A great number of ontologies have become available under the umbrella of
the Semantic Web. In particular, for the health domain, large ontologies have
been defined, for example, MeSH [15], Disease [4], Galen [6], and EHR RM [5],
which are commonly used by the health and bioinformatics community to find
solutions for a variety of problems. These ontologies are specified in different
standard languages such as XMLSchema [25], OWL [14] or RDFS [2]; and re-
gular requirements are expressed using query languages such as SPARQL [17]
or RQL [12]. OWL is a markup language that extends the graph-based model
used by RDF and provides complex structures and different levels of comple-
xity on top of XML. OWL is commonly used to share and publish information
encoded in an ontology. On the other hand, SPARQL is an RDF-based query
language that enables users to select portions of an ontology that satisfy certain
patterns or conditions. In the Semantic Web, OWL and SPARQL have become

14

standards to publish and query data, respectively. In this paper, we propose the
OnEQL system which interoperates between different ontology representations
and query languages. In the current version of OnEQL, we consider OWL Lite
ontologies, and a subset of SPARQL that includes basic patterns; we do not
consider optional patters, union of patterns and filters.

In OnEQL, an ontology is represented in a canonical form which is inde-
pendent of the specific language used to define it. Accordingly, each ontology
is modeled as a deductive database called a Deductive Ontology Base (DOB)
composed by an extensional base EOB and an intensional base IOB. Knowledge
explicitly described in the ontology is represented in the EOB, while knowledge
implicitly encoded is modeled by a set of deductive rules that comprise the IOB.
Additionally, to diminish the impact of large sets of explicit and implicit onto-
logy facts in the performance of reasoning and querying tasks, OnEQL provides
query optimization and evaluation techniques.

The OnEQL query optimization technique is a twofold strategy that combines
cost-based optimization and Magic Sets approaches. The idea of this technique
is to first identify an ordering which corresponds to an optimal top-down eval-
uation of the query, and then apply Magic Sets to transform the DOB into a
program specific for the query. The evaluation of the rewritten DOB imitates
a top-down computation using a bottom-up strategy [18]. During a bottom-up
computation, each fact is computed once. Therefore, if intermediate facts in a
query are inferred several times, the bottom-up computation of the rewritten
DOB w.r.t. the optimal ordering, can be more efficient than the top-down com-
putation of this ordering.

To identify an optimal ordering of a query, the cost-based optimization tech-
nique is defined in terms of a dynamic programming algorithm. To traverse the
space of the plans of a query, the algorithm uses a cost model that estimates the
cost of evaluating a plan. The cost is defined as an estimate of the number of
facts inferred during the execution of the corresponding plan [21].

On the other hand, the Magic Sets approach transforms the DOB into a
program where the selections in the query are pushed down into the program,
and the number of intermediate facts required to answer the query is minimized.

In this paper we explain the mechanisms implemented in OnEQL, and report
their behavior for the ontologies Galen and EHR RM. The paper is composed of
four additional sections. In Section 2, OnEQL is described. Section 3 reports our
experimental results for query and reasoning tasks in synthetic and real-world
ontologies. In Section 4, we compare existing approaches. Finally, we give our
conclusions in Section 5.

2 The OnEQL System

The OnEQL system develops evaluation strategies, and cost-based and heuristic-
based optimization techniques for Web ontologies. Its main features are the fol-
lowing:

15

– Ontologies may be loaded and browsed. The interface is based on the SWOOP
Mindswap Project [11].

– Ontologies are translated to the DOB canonical form according to the lan-
guage in which the ontology is defined. Currently we work the OWL Lite
[14] ontology language.

– It offers two modes for queries: SPARQL queries written by the user, or
queries expressed in the canonical form. With SPARQL, a user can query
RDF triples that encode ontologies written in OWL Lite. The query en-
gine does inference during query evaluation when it encounters the (trans-
lated) intensional IOB meta-predicates. To test the OnEQL optimization
techniques, the system presents fifty randomly-generated DOB queries which
the user may execute. The original and optimized queries are presented, and
also their evaluation cost. Additionally, the number of results is indicated
and the first fifty results are displayed.

In Figure 1, we present the OnEQL architecture. The techniques implemented
in this system have been previously reported in [21].

The OnEQL architecture is comprised of two main components: a query
engine and an ontology manager. The query engine evaluates user queries against
a specific OWL ontology, and outputs the set of facts that satisfy the query in
the input ontology. It is composed of a query parser, a query optimizer and an
execution engine. On the other hand, the ontology manager translates OWL
ontologies into the OnEQL canonical representation and extracts the statistics
that describe the ontologies.

In OnEQL, an OWL ontology is modeled as a deductive database of meta-
level predicates called a Deductive Ontology Base (DOB). The extensional data-
base comprises all the ontology statements that represent the explicit ontology
knowledge. The intensional database corresponds to the set of deductive rules
that define the semantics of the ontology language. Specifically, we represent an
OWL Lite ontology as a DOB knowledge base, and a SPARQL query as a DOB
query. It should be noted that our current version of OnEQL only considers
SPARQL basic patterns.

Table 1 illustrates the EOB and IOB built-in predicates for an OWL Lite
subset1. Note that some predicates refer to domain concepts (e.g., isClass,

areClasses), and some to instances (e.g., isIndividual, areIndividuals).
There are two catalogs: one stores the DOB, and the other maintains statis-

tics that describe the facts encoded in the DOB. Among the statistics we can
mention: cost of inferring implicit facts, cardinality of explicit and implicit facts,
and number of different values of each attribute. The Analyzer extracts these
statistics from the ontology for explicit and implicit facts, and stores them into
the catalog.

A hybrid cost model is used to estimate the cardinality and evaluation cost of
the DOB predicates that represent the ontology’s explicit and implicit facts [21].
Explicit fact estimates are computed using traditional relational database cost
1 We assume that the class owl:Thing is the default value for the domain and range

of a property.

16

Optimizer

Cost-Based
Magic-Sets

Execution
Engine

Evaluation
Strategies
Nested-Loop

Block Nested-Loop

Hash

Ontologies

Statistics

Efficient query
evaluation plan

Query
Query answer

Query Engine

Hybrid Cost
Model

:

System R

Adaptive

Sampling

Parser

DOB query

Domain

 Ontology

Individuals

Analyzer

Explicit

Knowledge

System R

Implicit

Knowledge

Adaptive

Sampling

Ontology Manager

Ontology
Translator

Fig. 1. The OnEQL Architecture

17

EOB PREDICATE DESCRIPTION
isOntology(O) An ontology has an Uri O
isImpOntology(O1,O2) Ontology O1 imports ontology O2
isClass(C,O) C is a class in ontology O
isOProperty(P,D,R) P is an object property with domain D and range R
isDProperty(P,D) P is a datatype property with domain D
isTransitive(P) P is a transitive property
subClassOf(C1,C2) C1 is a subclass of C2
AllValuesFrom(C,P,D) C has property P with all values in D
isIndividual(I,C) I is an individual belonging to class C
isStatement(I,P,J) I is an individual that has property P with value J
IOB PREDICATE DESCRIPTION
areSubClasses(C1,C2) C1 are the direct and indirect subclasses of C2
areImpOntologies(O1,O2) O1 import the ontologies O2 directly and indirectly
areClasses(C,O) C are all the classes of an ontology and its imported ontologies O
areIndividuals(I,C) I are the individuals of a class and all of its direct and indirect

superclasses C; or
I are the individuals that participate in a property and belong to
its domain or range C, or are values of a property with all values in C

Table 1. Some built-in EOB and IOB Predicates for a subset of OWL Lite

models. Conversely, to estimate the cost and cardinality of data that do not
exist a priori, which is the case of the implicit facts, sampling techniques are
applied. In our cost model, evaluation cost is measured in terms of the number
of intermediate inferred predicates, and the cardinality corresponds to the num-
ber of valid instantiations of the predicate. This model estimates the cost and
cardinality of explicit and implicit facts, as follows :

– To estimate the cardinality and cost of the intensional predicates that re-
present implicit facts, we have applied the Adaptive Sampling Technique [13].
This method does not need to extract, store or maintain information about
the data that satisfy a particular predicate, and does not make any as-
sumptions about statistical characteristics of the data, such as distribution.
Sampling stop conditions are defined to ensure that the estimates are within
an appropriate confidence level.

– To estimate the cardinality and cost of the extensional predicates, and the
cost of a query plan, we use a cost model à la System R [23]. Similarly
to System R, we store information about the number of ground facts cor-
responding to an extensional predicate, and the number of different values
(constants) of each predicate variable. Regarding queries, the formulas for
computing the cost and cardinality are similar to the different physical join
formulas in relational queries.

Once a query is received by OnEQL, the parser checks if it is correct. If
so, the query is translated into the OnEQL canonical form: the patterns in
the WHERE clause of a SPARQL query are translated to a conjunctive query,
where each pattern corresponds to an EOB or IOB predicate, and the join or
conjunction between two predicates represents the ’.’ (AND) SPARQL operator.

The DOB query is then passed to the optimizer. The optimizer implements
a twofold optimization technique and uses the statistics stored in the catalog to
identify an efficient query execution plan. Next, the plan is given to the query

18

engine which evaluates it against the ontology. Facts that satisfy the conditions
expressed in the query are returned to the user.

The twofold optimization technique combines cost-based optimization and
Magic Sets techniques. In the first stage, the cost-based optimization technique
extends the System R dynamic-programming algorithm by identifying orderings
of the EOB and IOB predicates in a query. During each iteration of the algorithm,
the best intermediate sub-plans are chosen based on the cost and the cardinality
that were estimated using our hybrid cost model. In the last iteration of the
algorithm, final plans are constructed and the best plan is selected in terms
of the estimated cost. This optimal ordering reflects the minimization of the
number of intermediate inferred facts using a top-down evaluation strategy. For
more details refer to [21].

In the second stage, OnEQL applies Magic Set optimization techniques [19]
to the execution plan obtained in the first stage. Magic Sets combines the be-
nefits of both, top-down and bottom-up evaluation strategies and tries to avoid
repeated computations of the same subgoals, and unnecessary inferences. The
DOB program is rewritten w.r.t. the optimal execution plan, and then evaluated
with a bottom-up strategy. ”Magic predicates” are inserted into the program
to represent bounded arguments in the query, and ”Supplementary predicates”
are included to represent sideways information-passing in rules. It should be
noted that we implemented the general Magic Sets technique for Datalog with
the two improvements suggested by [1] to eliminate the first and last redundant
supplementary predicates, and to merge consecutive sequences of EOB predicates
in rule bodies.

Finally, three different physical operators or evaluation strategies can be
used by OnEQL to implement the sideways passing of bindings between two
predicates in an execution plan: nested-loop join, block nested-loop join and hash
join [18]. The nested-loop join corresponds to a top-down Datalog evaluation
strategy where the join variables in the second predicate are instantiated through
the sideways passing of information. In the worst case, all of the predicate will
be searched; however, more efficient search options may index the predicates
by one or more of their arguments. The hash join strategy takes into account
the availability of a hash function; it limits the number of pairs of predicate
instantiations that need to be compared; nevertheless, it is restricted by the
amount of main memory available. These algorithms were developed in the same
spirit of relational join operator algorithms; accordingly, relational cost formulas
have been modified to reflect the behavior of our operators and to measure the
number of intermediate inferred facts; also, implementation details like the use
of main memory and pipelining, and the availability of physical structures were
represented in these formulas [21]:

– Nested-Loop Join
For each valid instantiation in the first predicate, we retrieve the matching
instantiations in the second predicate, i.e., the join arguments2 are instanti-
ated in the second predicate through the sideways passing of bindings.

2 The join arguments are the common variables in the two predicates.

19

– Block Nested-Loop Join
The first predicate is evaluated into blocks of fixed size, and then each block
is joined with the second predicate.

– Hash Join
A direct access table is built for the first predicate according to its join
argument values. The valid instantiations of both predicates with the same
key are joined.

We illustrate the functionality of OnEQL with the following example. In Fig.
2, we present a portion of the Galen ontology expressed in OWL and visualized
using the OnEQL interface. A portion of the Galen translated DOB ontology
can be seen in Table 2.

DOB predicate
isClass(’factkb:Abdomen’,’Ontologies:galen.owl’)
isClass(’factkb:AbdominalAorta’,’Ontologies:galen.owl’)
isFunctional(’factkb:hasAbnormalityStatus’)
isProperty(’factkb:actsOn’,’Ontologies:galen.owl’)
isTransitive(’factkb:hasCause’)
someValuesFrom(’factkb:AdhesivePericarditis’,’factkb:hasOutcome’,’factkb:Adhesion’)
subClassOf(’factkb:AdductorMagnus’,’factkb:NAMEDMuscle’)
subClassOf(’factkb:AdductorTubercle’,’factkb:Eminence’)
subPropertyOf(’factkb:hasLayer’,’factkb:StructuralPartitiveAttribute’)
subPropertyOf(’factkb:hasLeftRightSelector’,’factkb:hasPositionalSelector’)

Table 2. Portion of Galen DOB Ontology

Consider the simple query: ”Name all the drugs that act on the pathologies
caused by the Helicobacter Pylori bacteria”. The SPARQL representation of this
query is as follows:

PREFIX rdfs:<http://www.rdf.org/0.1/>
PREFIX galen:<http://example.org/factkb#>
SELECT ?y
WHERE {galen:actsOn rdfs:domain ?y.

galen:actsOn rdfs:range ?x.
galen:isCauseOf rdfs:domain galen:HelicobacterPylori.
galen:isCauseOf rdfs:range ?x}

This example can be expressed as the following DOB query:
q(Y)← isDomProperty(′actsOn′, Y), isRanProperty(′actsOn′, X),

isDomProperty(′isCauseOf ′,′ HelycobacterPylori′),

isRanProperty(′isCauseOf ′, X).

The WHERE clause is comprised of four triple patterns: the first and second pat-
terns denote the relationship between a drug and a pathology, and the third and
the fourth patterns represent the relationship between the pathologies caused by
the Helicobacter Pylori bacteria. The result of the query evaluation is a set of
solutions, i.e., the matchings of the query patterns and the RDF data.

Considering the triples encoded in Galen, and without taking into account
any optimization technique, the evaluation of this simple query will require

20

Fig. 2. Galen in OnEQL

727,547 intermediate inferred facts. In this naive plan, first all the combina-
tions of drugs and pathologies are considered, and then the pathologies caused
by the Helicobacter Pylori are selected. To reduce the number of intermediate
computed facts, a cost-based optimization technique estimates the cost of the
different orderings of the evaluation of the query, and recognizes a better way to
evaluate the query. Therefore, it produces an execution plan where first, the dif-
ferent pathologies caused by the Helicobacter Pylori are selected; following this,
the drugs that act on these pathologies are projected out. On the one hand, there
are seventeen instances of the relationship between drugs and pathologies that
require 726,980 inferences to be produced; on the other hand, the Helicobacter
Pylori is only related to five pathologies and 72,743 inferences are needed to
project out these pathologies. Thus, this new execution plan is less expensive in
time and in the number of intermediate inferred facts, 291,371.

The optimal DOB query ordering follows:
q(Y)← isDomProperty(′isCauseOf ′,′ HelycobacterPylori′),

isRanProperty(′isCauseOf ′, X),

isDomProperty(′actsOn′, Y), isRanProperty(′actsOn′, X).

Once an optimal query ordering has been selected, query bindings can be
used to rewrite the canonical representation of the ontology and simulate the
pushing of selections that occurs in a top-down evaluation strategy. In this ex-
ample, the query has nine bindings, e.g., ”rdfs:domain” and ”galen:actsOn” in

21

the first pattern. Besides rewriting the program with supplementary and Magic
predicates, the query is also rewritten to include the ”seed” that represents the
variable bindings. The rewritten program and query are then evaluated using a
semi-naive bottom-up evaluation strategy. The Magic Sets rewritten DOB of the
optimal ordering required 111,071 intermediate inferred facts during the bottom-
up evaluation, while the top-down evaluation of this ordering required 291,371
inferred facts.

3 Experimental Results

In this section we report the behavior of the OnEQL query techniques in ontolo-
gies commonly used in the health domain. We consider the ontologies Galen [6]
and EHR RM [5].

The Galen ontology is a repository of medical terms and procedures. It pro-
vides a set of modeling conventions and patterns that have proved sufficiently
robust to be applied in practical developments such as surgical terminologies,
drug information and data entry systems. Particularly, it has been used for the
development of the French national classification of surgical procedures CCAM
[20] and for the development of the drugs ontology in the UK [24].

The EHR RM ontology is a controlled vocabulary for electronic health records
that maintains all the information required to facilitate the flow needed for pa-
tient care. EHR RM is comprised of two levels: level one corresponds to a set
of classes and relationships that represent properties in the whole world; level
two is composed of a set of clinical concepts which are related to the general
concepts in level one.

In Table 3, these ontologies are described in terms of the number of classes,
the average properties associated with a class, the maximal fan out, the height
of the ontology, and the number of parents. We can observe that Galen is a
hierarchy of concepts where each class can have a large number of sub-classes;
almost no relationships or properties are associated with each class. EHR RM is
simpler and there are some relationships and properties related to a class. These
characteristics impact on the evaluation cost of queries that require recursive
traversals of the data.

Ontology #Classes Fan out Height # Parents
Galen 2749 18 2 13

EHR RM 187 2 2 7

Table 3. Ontology descriptions

We conducted an experimental study to analyze the behavior of our query
techniques on synthetic ontologies and the above-mentioned real-world ontolo-
gies. A synthetic ontology document was generated with ten related ontologies
and a total of 4350 basic facts. Each ontology has between twenty to thirty

22

classes, around twenty relationships, three to five attributes for each class, and
around sixty sub-class relationships. All the numbers described above were ran-
domly chosen following a uniform distribution. Additionally, we randomly gen-
erated sixteen chain queries3 for each ontology. Experiments were executed on a
Sun Fire V440 equipped with two UltraSPARC IIIi processors running at 1.593
GHZ with 16 GB RAM. The OnEQL system was implemented in Java 1.4 and
SWI-Prolog 5.6.1. In this paper we report the predictive capability of the cost
model, and cost improvements from using the twofold optimization strategy.

First, we report the correlation between the estimated cost of the top-down
evaluation of 3844 orderings, and the actual cost of evaluating the Magic Sets
rewritings w.r.t. these orderings using a bottom-up strategy. The idea is to mea-
sure if the estimated cost of the top-down ordering is correlated to the actual
cost of applying Magic Sets to this ordering, i.e., Magic Sets emulates a top-
down evaluation strategy but tries to avoid repeated computations of the same
subgoals. The correlation for the real-world ontology Galen is 0.53, while for
EHR RM it is 0.43.

Additionally, we studied the benefits of the twofold optimization strategy.
For each query we applied Magic Sets to all its orderings, and we compared:

– The percentile of the Magic Sets optimal ordering actual cost, i.e., the cost
of applying Magic Sets to the optimal ordering. For the three ontologies we
can observe that the cost of the Magic Sets optimal ordering falls in at least
the 74th percentile, indicating that three quarters of all the orderings are
worse than this cost (Table 4).

– The average ratio of the cost of the Magic Sets optimal ordering to the worst
cost (resp. median cost), i.e., the number of times the worst cost (resp. me-
dian cost) contains the optimal cost; it is expressed as a percentage (Figures
3 and 4).

Ontology Percentile
Synthetic 74th

Galen 77th
EHR RM 75th

Table 4. Percentile of the cost of the optimal ordering

For the synthetic ontologies, the average of the ratio of the optimal cost with
respect to the worst-case is 45%; Galen and EHR RM have averages of 15%
and 32%, respectively. The averages of the ratio of the optimal cost with re-
spect to the median are 74%, 63% and 81% for synthetic, Galen and EHR RM
ontologies respectively. From these results we can conclude that the cost of an
optimal ordering is always better than the median cost, while the optimal cost
3 Queries where bindings are propagated from left to right in a chain-like fashion
4 Each of the sixteen queries has four sub-goals, 16× 4! = 384

23

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Synthetic EHR_RM Galen

A
v
g

(
C

o
s
t

O
p

ti
m

a
l
M

a
g

ic
 S

e
t

O
r
d

./
C

o
s
t

W
o

r
s
t

M
a
g

ic
 S

e
t

O
r
d

.)

Fig. 3. Average ratio of the cost of the Magic Sets optimal ordering to the worst cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Synthetic EHR_RM Galen

A
v
g

(
C

o
s
t

O
p

ti
m

a
l
M

a
g

ic
 S

e
t

O
r
d

./
C

o
s
t

M
e
d

ia
n

 M
a
g

ic
 S

e
t

O
r
d

.)

Fig. 4. Average ratio of the cost of the Magic Sets optimal ordering to the median cost

24

corresponds to a small fraction of the worst cost. To explain these results, recall
that classes in Galen are more connected than classes in EHR RM and, in con-
sequence, the same fact may be generated several times during the computation
of the transitive closure of Galen’s subsumption relationship. Therefore, our pro-
posed optimization techniques may have a better chance of causing an impact on
queries against Galen (by minimizing the number of intermediate and duplicated
inferred facts), than on queries against simpler ontologies like EHR RM.

4 Related Work

Efficient query evaluation techniques against ontologies have been proposed in
[3, 7–10, 16, 21, 22]. In [3, 8, 9], relational query techniques and Description Logics
reasoning services have been combined to efficiently solve querying and reasoning
tasks over individuals of an ontology stored in a database. These systems are
built upon relational DBMS and they do not develop optimization techniques
that use the semantics encoded in the ontology to identify good evaluation plans.

In [22], ontology segmentation techniques are proposed to approach the prob-
lem of querying large ontologies such as Galen. These techniques exploit the
semantic connections between ontology terms to enable users to create new sub-
ontologies with the portion of the original ontology that is relevant to the appli-
cation or query. On the other hand, the projects described in [10, 16] developed
Magic Sets query rewriting techniques to generate new programs that evaluate
the input query more efficiently. In none of these two techniques cost or cardi-
nality estimations are considered, and the new portion of the ontology or the
evaluation strategy may be inefficient depending on the shape of the ontology.

5 Conclusions and Future Work

In this paper we have described OnEQL, a tool that evaluates SPARQL queries
against OWL Lite ontologies. We implemented these two standards because they
achieve good trade-offs between expressiveness and computational tractability.

To enhance the performance of the reasoning and querying tasks, we propose
a twofold optimizer which combines the benefits of cost-based and Magic Sets
approaches. Additionally, a hybrid cost model is implemented. This cost model
integrates estimation techniques used in traditional relational DBMSs [18, 23]
with adaptive sampling to estimate the cost or cardinality of explicit and implicit
classes [13]; the cost model allows the precise estimation of these metrics.

In our experiments we observed that correlations between estimated and
actual values are not greater than 0.53. From these values, we can conclude that
our cost model overestimates the cost if the top-down evaluation produces a
large number of repeated inferences, because the actual cost of applying Magic
Sets emulates a top-down evaluation without repeated inferences.

Also, the implemented optimization techniques allow the identification of
optimal query plans whose cost is less than 45% of the cost of the worst plan.

25

In the future, we plan to conduct experiments on other large ontologies, and
to define cost metrics that provide a better estimate of the behavior of the Magic
Sets technique.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley
Publishing Company, 1995.

2. D. Brickley and R. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/, 2004.

3. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tailoring
OWL for data intensive ontologies. In Proc. of the Workshop on OWL: Experiences
and Directions, 2005.

4. Disease Ontology. http://diseaseontology.sourceforge.net.
5. EHRRM Ontology. http://trajano.us.es./ isabel/EHR/EHRRM.owl.
6. GALEN Common Reference Model. http://www.openclinical.org/dld galenCRM.html.
7. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Com-

bining Logic Programs with Description Logic. In Proc. of the WWW2003: World
Wide Web Conference, 2003.

8. I. Haarslev and R. Moller. Optimization techniques for retrieving resources de-
scribed in OWL/RDF documents, First results. In Proc. of KR2004: International
Conference on the Principles of Knowledge Representation and Reasoning, 2004.

9. I. Horrocks and D. Turi. The OWL Instance Store: System description. In Proc.
of CADE2005: International Conference on Automated Deduction, 2005.

10. U. Hustadt and B. Motik. Description Logics and Disjunctive Datalog The Story
so Far. In Proc. of DL 2005 - International Workshop on Description Logics, 2005.

11. A. Kalyanpur and E. Sirin. SWOOP - A Hypermedia-based Featherweight OWL
Ontology Editor. http://www.mindswap.org/2004/SWOOP/, 2004.

12. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. In Proc. of the WWW2002: World
Wide Web Conference, 2002.

13. R. Lipton and J. Naughton. Query size estimation by adaptive sampling (extended
abstract). In Proc of SIGMOD1990: Special Interest Group on Management of
Data Conference, 1990.

14. D. McGuinness and F. van Harmelen. OWL Web Ontology language overview.
W3C Recommendation, 2004.

15. Medical Subject Heading (MeSH). http://www.nlm.nih/gov/mesh.
16. B. Motik, R. Volz, and A. Maedche. Optimizing Query Answering in Descrip-

tion Logics using Disjunctive Deductive Databases. In Proc. of the KRDB2003:
International Workshop on Knowledge Representation meets Databases, 2003.

17. E. Prudhommeaux and A. Seaborne. SPARQL Query Language for RDF. In
http://www.w3.org/TR/rdf-sparql-query, 2006.

18. R. Ramakrishnan and J. Gehrke. Database Management Systems. Mc Graw Hill,
2003.

19. R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive Database
Systems. Journal of Logic Programming, 23(2):125–149, 1993.

20. J. Rodrigues, B. Trombert-Paviot, R. Baud, J. Wagner, P. Rusch, and F. Meusnier.
Galen-In-Use: an EU Project applied to the development of a new national coding
system for surgical procedures: NCAM. In Medical Informatics Europe, 1997.

26

21. E. Ruckhaus, E. Ruiz, and M. Vidal. Query Evaluation and Optimization in the
Semantic Web. In Proc. of ALPSWS2006: International Workshop on Applications
of Logic Programming to the Semantic Web and Semantic Web Services, 2006.

22. J. Seidenberg and A. Rector. Web Ontology Segmentation Analysis, Classification
and Use. In Proc. of WWW2006: World Wide Web Conference, 2006.

23. P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path
Selection in a Relational Database Management System. Proc. of SIGMOD1979:
Special Interest Group on Management of Data Conference, 1979.

24. M. Stearns. SNOMED clinical terms: overview of the development process and
project status. In Proc. of AMIA2001: American Medical Informatics Association
(AMIA) Symposium, 2001.

25. XML Schema. http://www.www.w3.org/XMLSchema.

27

Contextual Logic Programming for Ontology
Representation and Querying

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

Universidade de Évora

Abstract. The system presented in this paper aims at using Contex-
tual Logic Programming as a computational hub for knowledge modeled
by web ontologies and enable querying that representation. The compo-
nents required to behave as a SPARQL query engine are explained and
examples of semantic integration of different sources are shown.

1 Introduction

The Semantic Web [6] topic currently represents one of the most active and
exciting research areas in computer science. The standard web page provides
data oriented for human comprehension, which means a computer agent cannot
easily reason about that information. The Semantic Web is a natural evolution
of the Internet and, hopefully, will provide the foundations for intelligent systems
and agent layers over the World Wide Web.

One important step towards the fulfilling of this vision is the emergence of
systems that cannot only understand and reason over Semantic Web documents
but also retrieve and process knowledge of multiple information sources. This
represents the motivation and purpose of our work which is to use contextual
constraint logic programming [2] as a framework for Semantic Web agents, in
which knowledge representation and reasoning for ontology documents can be
carried out. As such, we adopted the framework Prolog/CX partly described
in [3] which makes use of persistence and program structuring through the use
of contexts [2]. Throughout this paper, we describe a prototype implementation
of a Semantic Web system with three main components:

– A core that is capable of representing web ontologies,
– A SPARQL agent which can answer SPARQL queries about ontologies,
– A back-end capable of mapping Prolog/CX to SPARQL queries, thereby able

to query external Semantic Web agents, returning the results as bindings for
logic variables present in a Prolog/CX program.

Web Ontology Languages: The Semantic Web is based on existing standard
technologies such as XML, RDF and RDF-Schema [14]. Although RDF Schema
provides additional modeling primitives, like classes and properties, that enable
the hierarchical organization of Web documents, a richer ontology modeling lan-
guage was necessary. DAML-OIL [8] was then taken as the starting point for

28

the W3C Web Ontology Working Group in defining OWL [15], the language
that is aimed to be the standardized and broadly accepted ontology language
for the Semantic Web [4]. OWL is defined as an extension of a sub set of the
RDF vocabulary and is divided into three species [9]: OWL Lite, OWL DL and
OWL Full.

Query Languages: An open research issue has been the specification of a stan-
dard query language that can access this kind of data. There are a variety wide of
Semantic Web query languages [11], ranging from pure selection languages with
limited expressivity to general purpose languages supporting different data rep-
resentation formats and complex queries. Among all the possibilities, we chose
to follow the W3C working groups proposed standard: SPARQL [17], an RDF
query language and protocol.

The work presented herein is an extension of what was described in [7], we
explain some of the implementation choices and introduce some real world ex-
amples. The remainder of this article is structured as follows: Contextual Logic
Programming is briefly approached in Section 2 and, in Section 3 we discuss the
knowledge representation and ontology querying using Contextual Logic Pro-
gramming. Section 4 describes a possible approach to implementing a SPARQL
agent using the CxLP framework and the issue of querying remote SPARQL
agents from within the CxLP framework is discussed in Section 5. Section 6
presents examples of use for the implemented system. Finally, Section 7 pro-
vides initial conclusions and possible directions for future research.

2 Contextual Logic Programming

Contextual Logic Programming (CxLP) is a simple yet powerful extension to the
Prolog logic programming language which provides a mechanism for modularity.
In CxLP a finite set of Horn clauses with a given name is designated by unit.
Abreu and Diaz [2] provide a revised specification for CxLP, which emphasizes
the OOP aspects by means of a stateful model, allowed by the introduction
of unit arguments. We now informally focus on some aspects of CxLP, namely
parametric units; a more complete specification can be found in [2].

A unit is a parametric module, constituting the program’s static definition
block. Unit descriptor terms can be instantiated and collected into a list to form
a context, which can be thought of as a dynamic property of computations. A
context specifies the actual program (or theory) against which the current goal
is to be resolved. In short, it specifies the set of predicates which is applicable.
These predicates have definitions which depend on the specific units which make
up the context. A more extensive description of CxLP may be found in [2, 3].

GNU Prolog/CX introduces a set of language operators called the context
operators which modulate the context part of a computation.

In a nutshell, when executing a goal G in a context C, a CxLP Engine will
traverse C looking for the first unit u that contains a definition for G’s predicate.

29

G is then executed as if it were regular Prolog, in a new context that is the
suffix of the C which starts with unit u. Some of the most used operations and
operators in GNU Prolog/CX are:1

Context extension: U :> G, this operation extends the current context with
unit U and then reduces goal G;

Context switch: C :< G, attempts to evaluate goal G in context C, ignoring
the current context;

Supercontext: :^ G, evaluates goal G in the context resulting of removing the
top unit from the current context;

Current context: :< C, unifies C with the current context;
Calling context: :> C, unifies C with the calling context

3 System architecture

The implemented system is divided in three parts: the core, a front-end (FE)
SPARQL agent and a back-end (BE) that maps Prolog/CX to SPARQL queries.
The core system is responsible for representing the ontology, the FE enables the
resolution of queries expressed in SPARQL and the BE allows the core (and the
FE) to query other SPARQL web services. This architecture is represented in
Figure 1. By integrating the core, FE, BE and other Logic Programming frame-
works namely ISCO [3], the system will be able to access several heterogeneous
sources of information: the ontology, other SPARQL agents or web services and
relational databases.

The main objective of the core system is to represent web ontologies with
CxLP tools. After an ontology is transformed into Prolog/CX units, the capa-
bilities of that representation are that of pure Prolog with modular program
structuring. For instance, we can build a front end that acts as a SPARQL web
agent which can receive a SPARQL query over a known ontology, process it
against the internal representation and respond with the solution. This repre-
sentation can also be used to map Prolog goals to SPARQL queries and collect
the results as logic variable bindings. These approaches are further discussed in
Sections 4 and 5.

3.1 Ontology representation

Ontologies are represented using units: there will be one unit that indicates the
elements (classes and properties) of the ontologies, another unit for individuals
and one for each OWL class and property. This is illustrated in Figure 2.

The individuals and their property values are represented in the unit individuals.
This unit stores, for each individual, the class it belongs to and, for each of the
individual properties, its value.

Each class and property is defined in a unit named after the class or property.
Further information about each of this objects, such as hierarchy and restrictions,
can be found in its unit.
1 For a more detailed and formal description, the reader is referred to [2].

30

Fig. 1. System architecture

The set of known ontologies are represented in a unit named ontologies
which lists the classes and properties of each loaded ontology. Each property
and class listed in this unit can then be accessed in a uniform manner using the
operator />. This operator is defined as a context extension operation, i.e., based
on the unit name it constructs a new context in which to evaluate the goal.

Fig. 2. Ontology representation schema

Ontology Unit This unit represents the ontology information: namespaces, head-
ers, classes and properties. This is done by defining predicates for each case: ns/3,
header/3, class/2 and prop/2. Each predicate contains, in the case of headers
and namespaces, an entry with the ontology name, the respective “abbreviation”
and its value and, for classes and properties, simply the ontology name and the
class or property name.

The information in this unit may be used to query which units belong to the
ontology, thereby providing access to all the individuals in the ontology.

31

Property Units Each property unit contains the information relative to a specific
property. The type of the property (datatype or object) and, if specified any
other information such as domain and range, property inheritance and property
relations.

These properties also define the method to access its value, given the indi-
vidual name that shall be retrieved previously from the context.

Class Units These units will represent the classes of the ontology and all in-
formation relevant to that class. The information includes restrictions on the
individual properties and class inheritance.

It also includes a predicate class name/1 that provides the name of the
current class. This predicate is used in by the query engine to determine the
class that the query refers to.

Individuals Unit This unit is the unit that contains all the individuals, its prop-
erties and the information about individual relations. The individuals properties
are stored as triples, much in the manner of RDF. These properties are defined
in the predicate property/3. The first argument of this predicate indicates the
name of the individual, the second indicates the property and the third argu-
ment contains the value of the property for that individual. All the individuals,
along with their class, are listed in the predicate individual class/2. Individ-
uals from unnamed classes are not included in this listing: they are only present
in the unit that represents the class. This is done to avoid unwanted repetitions
when querying the individuals that would be generated if the individuals of the
unnamed classes were listed as the other individuals. These individuals are only
available in the predicate individual/1 present in each unnamed class.

There may also be present predicates for defining individual relations, such
as differentFrom/2 and sameAs/2, each with individual names as their argu-
ments. These indicate, respectively, that the individuals referred are different
or the same [15]. The constructor owl:AllDifferent is represented as several
differentFrom statements, each individual present in the constructor will gen-
erate one differentFrom statement relating it to every other individual in the
list.

3.2 Querying an ontology

The most direct way of retrieving the class individuals is to use the goal item/1
as shown in Figure 3. There is also a goal item/0 that has the exact behaviour of
item/1 but has no direct arguments, this predicate, when used with the predicate
units in the query will allow to access the property values ignoring the name of
the individual.

The item/1 goal binds, by backtrack, its argument to each individual of the
class. There is also the possibility of querying all the individuals in the ontology
by omitting a class in the query.

The value of the properties can be accessed by including the unit that rep-
resents the property in the context query. This enables selecting only a subset

32

1 | ?- ’IceWine’ /> item(A).
2 A = ’SelaksIceWine’

Fig. 3. Accessing an individual of a class

of the properties. The argument of the property unit will be bound to the value
of the property for the corresponding individual, as shown in Figure 4.

1 | ?- ’IceWine’ /> hasFlavor(F) :> hasBody(B) :> item(I).
2 B = ’Medium’
3 F = ’Moderate’
4 I = ’SelaksIceWine’ ?

Fig. 4. Accessing individuals and properties

3.3 Units for refining ontology queries

We propose a number of units which may be used to form queries. We proceed
to briefly describe them.

individual/1 Including this unit in the context unifies its argument with the
individual name in the same manner as item/1. Using this unit provides a
more explicit query, by indicating we want the individual name and calling
the goal item/0 instead of item/1. Use of this unit is shown in Figure 5.

1 | ?- /> individual(I) :> item.
2 I = ’WhitehallLanePrimavera’ ?

Fig. 5. individual example

class/1 If this unit is included in the context it will unify its argument with the
class of the matching individual. This is useful to determine the class of the
individual when querying the entire ontology, as shown in Figure 6.

property/2 This unit allows to access the properties of the individual without
prior knowledge of its name or to query for the property name based on the
property value. The first argument is the property name and the second the
property value (Figure 7).

33

1 | ?- /> class(C) :> item(I).
2

3 C = ’DessertWine’
4 I = ’WhitehallLanePrimavera’ ?

Fig. 6. class example

1 | ?- ’IceWine’ /> individual(I) :> property(P,V) :> item.
2

3 I = ’SelaksIceWine’
4 P = locatedIn
5 V = ’NewZealandRegion’ ?

Fig. 7. property example

all/2 Including this unit in the execution context is analogous to using a findall
in Prolog. The first argument is the element and the second will be the list of
the elements in the specified form. This allows to retrieve the set of solutions
for the variables present in the query, as exemplified in Figure 8.

1 | ?- ’Chardonnay’ /> individual(I):> all(I, L) :> item.
2

3 L = [’BancroftChardonnay’,
4 ’FormanChardonnay’,
5 ’MountEdenVineyardEdnaValleyChardonnay’,
6 ’MountadamChardonnay’,
7 ’PeterMccoyChardonnay’]

Fig. 8. all example

optional/1 This unit receives as its argument another unit such as property/2
or a property unit and will succeed with the results if the unit specified in
its argument succeeds. Otherwise it will succeed leaving any variables in its
argument unbound. This is similar to the SPARQL optional statement [17].

3.4 Native Prolog query representation

To make simple queries easier for Prolog programmes, we created custom predi-
cates that encapsulate the contextual queries. The arguments to these predicates
must be defined explicitly after loading the ontology and are follow the conven-
tions:

34

– Predicate functor is the name of the class
– The first argument is the name of the individual.

The arguments that are present in the predicate after the individual name are
specified when defining the predicates. This specification requires indicating the
class for which to generate the predicate (that will be the functor of the predi-
cate) and a list of properties that corresponds to the sequence of arguments after
the individual. This allows the user to choose which properties will be present
in the generated predicate.

The generated Prolog representation is listed in Figure 9.

1 ’IceWine’(A, B, C) :-
2 ’IceWine’ /> optional(hasMaker(B)) :>
3 optional(hasColor(C)) :>
4 item(A).

Fig. 9. generated predicate

This approach is limited because of the fixed arity of the predicates. Some
individuals may not have a value for all the properties (an unbound variable
for that property will be returned in this case) and other individuals may have
properties that are not present in the predicate and thus the user is unable to
retrieve its value with these predicates, using this method.

4 A SPARQL agent in CxLP

SPARQL is a Candidate Recommendation for a RDF query language [17]. It
is under continued development towards becoming the standard query language
for the semantic web [11] and although it is mainly used to query RDF graphs,
it can also be used to query an RDF Schema or OWL ontology on the individual
and properties level [13, 16, 17].

SPARQL has no inference engine inherent to the language, it merely specifies
a syntax for the query and a means for returning the intended information.

The developed system is using SPARQL to query an ontology, allowing access
to properties and resulting in individuals and property values.

The implemented SPARQL parser follows the specifications of the language
defined in [17] and the results are returned in XML, the format of which is
specified in [5]. The parser constructs a Prolog/CX context representing the
query; this context is then activated by sending a message to calculate the output
and display the resulting XML form. This specification allows our system to be
easily made available trough a web service.

SPARQL has 4 types of queries: select, ask, construct and describe. The
select query is used to retrieve the values of the properties and individuals. Ask

35

simply returns a boolean answer depending on the veracity of the query. The
construct and describe are not currently implemented as they would return
data as RDF graphs.

The following sections briefly describe the SPARQL query language, the res-
olution of queries and the XML output of the system.

4.1 SPARQL and mapping examples

The mapping process (SPARQL parser) transforms a SPARQL query into a
Prolog/CX context. The execution of this context will bind the variables present
in the query with the results.

The context has a similar structure to the SPARQL query, consisting of the
following parts, each of which being a parametrized unit:

prefix indicates the default prefix;
from specifies the RDF dataset to query;
select lists the variables that should be present in the output;
where restriction conditions;
Modifiers if present, these modifiers will change the number of results (limit

and offset) and/or their order (order by).

The parser receives as input a SPARQL query, shown in Figure 10, and
returns the context to be executed (Figure 11).

1 SELECT
2 ?flavor ?body
3 WHERE {
4 ?t :hasFlavor ?flavor .
5 ?t :hasBody ?body .
6 }

Fig. 10. Query example (simple select)

4.2 Query resolution system

The query resolution is triggered by evaluating the goal item in the context
returned by the mapping process. This is akin to sending the message item to an
object. The core unit in this process is the unit triple/1 which is responsible for
instantiating the variables in the query by accessing the internal representation
of the ontology.

The Modifiers will alter the query results, their order or number. If no modi-
fiers are present in the query the unit all will be included in the context meaning
that all the possible bindings will be returned.

36

1 [all,
2 where([set([
3 triple(A,hasFlavor,B),
4 triple(A,hasBody,C)])
5]),
6 select([flavor=B,body=C]),
7 vars([flavor=B,body=C,t=A]),
8 defs]

Fig. 11. Results of the query example

Also, currently, the from clause has no effect since the instantiation is done
with an already loaded ontology.

triple/3 The core unit in this process is the unit triple/3 which is responsible
for instantiating the variables in the query by accessing the internal represen-
tation of the ontology. The implementation of this unit is shown in Figure 12.
It generates one query to the system core for each property that appears in the
SPARQL query. The pattern in line 3 of Figure 11 will generate the following
query:

/> property(hasFlavor,F) :> item(I).

The argument of the item/1 goal will be instantiated with the name of the
individual (in this case the variable I). The arguments of the unit property are
the name of the property being queried and the value of that property for the
returned individual. Using the property unit to query the internal representa-
tion has the advantage of being able to perform the query using a variable in
the position of the property name (instead of “hasFlavor” in the example).

The results of this query will be bound to the representation of the variables
present in the SPARQL query.

1 :- unit(triple(S, P, O)).
2

3 item :-
4 /> property(P,O) :> item(S).

Fig. 12. Unit triple

Also, currently, the from clause has no effect since the instantiation is done
with an already loaded ontology.

37

“A pattern solution can then be defined as follows: to match a basic graph
pattern under simple entailment, it is possible to proceed by finding a map-
ping from blank nodes and variables in the basic graph pattern to terms in the
graph being matched; a pattern solution is then a mapping restricted to just the
variables, possibly with blank nodes renamed. Moreover, a uniqueness property
guarantees the interoperability between SPARQL systems: given a graph and a
basic graph pattern, the set of all the pattern solutions is unique up to blank
node renaming.” in [17].

Each basic operation is represented as a unit.
All the units that are present in the context generated by the SPARQL parser

will answer to the goal item/0 or item/1 (in case of the unit returning a bound
solution). Each unit will then perform the operation it represents based on its
arguments and on the result of the parent context.

The units that alter the query results (the Solution Modifiers), such as order
by, limit and distinct fetch all the bound variables from the parent context
collecting them in a list. They them perform its operation on over the elements
of the list thus achieving a new list with the results. This will be the final list to
be presented as XML.

5 Mapping Prolog to SPARQL Queries

The purpose of having web ontologies represented in a logic contextual form is
to create a mechanism to access and work over those ontologies. So far, an ontol-
ogy mapping engine for local reasoning was introduced. However, for increased
flexibility and functionality, one could consider of merging the reasoning of the
system internal knowledge base with external ontologies provided by external
Semantic Web services. To achieve this goal, a back end was developed that is
capable of communicating with SPARQL web agents. This enables writing Pro-
log/CX programs to reason simultaneously over local and external ontologies.

5.1 Architecture

The back end engine provides additional means to query external Semantic Web
services in SPARQL. Although it can be viewed as a single independent com-
ponent, the objective is to integrate it with the system in a manner that allows
a programmer to reason over external and internal ontologies using the same
query syntax and declarative context mechanics as the internal system reason-
ing. This will allow the system using programmer to query transparently internal
and external ontologies and merge their results in the same program.

To achieve this level of functionality, a Prolog/CX to SPARQL engine was
developed that has the following level of execution capability:

– Translates a Prolog/CX goal into SPARQL;
– Sends the SPARQL query to the indicated Semantic Web SPARQL service;
– Fetch the XML result file, parse it and return the solutions as Prolog variable

bindings using the Prolog/CX backtrack mechanism.

38

It is necessary to provide additional information in order to query the ex-
ternal agent if the SPARQL protocol [18] is to be used. This includes, among
others, the url of the service, the data format of the response and, possibly, an
ontology URI. The latter means that external agents may have capabilities for
querying ontologies from any given Internet location, such as the XML Armyknife
Semantic Web service [10] that is used throughout this section to illustrate the
back end functionality. The response format can vary from different types like
simple HTML for Internet browsing purposes, or the SPARQL Query Results
XML Format [5] for agents like ours.

5.2 Querying an external SPARQL agent

Accessing different Semantic Web external agents rises the problem of imple-
menting a unique interface that can communicate with all of them. The core
of this problem has been addressed by the W3C group, which is working on a
SPARQL protocol for web agents communication [18]. This W3C Candidate Rec-
ommendation describes means of conveying SPARQL queries from query clients
to a SPARQL query processing service and returning the query results to the
requesting entity. Therefore, and after finding some SPARQL agents that rely on
this protocol [10, 1], we decided that at this point, for demonstration and proof
of concept purposes, the back-end would also rely on the interface communica-
tion described on this document.

Communication and query solutions The execution of a back-end query
can be described as a three step process. The first is the process of mapping a
Prolog/CX query to a SPARQL. The query illustrated in Figure 10 originates
the following SPARQL query (Figure 13):

1 SELECT ?id ?hasMaker ?hasColor
2 WHERE { ?id :hasMaker ?hasMaker. ?id :hasColor ?hasColor.}

Fig. 13. generated SPARQL code

After the Prolog/CX translation to SPARQL constructs a query, a communi-
cation process must be carried out between the back end and the Semantic Web
sparql service that is to be used. The back end implements a simple connection
model divided into the following steps:

1. Establish connection
2. Send query

39

3. Receive the response
4. Close connection

After correctly encoding the SPARQL query, the back end will start the
communication process with the external agent. This represents the Establish
connection item in the above list and includes the validation of the the Web
service:

– Open the communications via C sockets;
– Verify if the external host is up and ready for communication.

After the connection is established, the query is then sent through the socket.
If everything went well, the external agent response is then received and flushed
into a XML file. Then the connection is closed. This represents the remain items
in the back end query execution list.

After receiving the response and closing the connection, the response is saved
locally in a XML file and the process returns to the Prolog side, where the file
is parsed and processed. The XML format that represents the solutions to the
query follows the specification described in the SPARQL Query Results XML
Format [5]. This file, which contains all the existing solutions for the query, is
then parsed and converted into a Prolog List. Finally, the back end will provide
each logic solution to the query present in the response file, one at a time if more
than one are available, via the backtracking mechanism.

6 Examples

6.1 Using SPARQL to query a relational database

By using ISCO framework we enable to use SPARQL to query any database. The
database used as test in the query example shown in Figure 15 is the database
of Universidade de Evora’s Information System (SIIUE) [12]. The database con-
tains data relative to the implementation of Academic services. The relation
used to query in Figure 15 is represented in Figure 14. It is necessary to define
that each field name is prefixed by the name of the relation and an forming:
RelationName FieldName in order to be able to represent fields with the same
name from different relations. This way, the :student number query in line 2 of
Figure 15 represents the field number of table student. The name of the individ-
ual, that will be mapped to each tuple in the relation, is the Postgresql internal
OID2 of the tuple.

This feature is implemented as an example and there are several improve-
ments to be made in order to make it reasonably efficient. Some are, for instance:
2 The OID is a unique number across the entire installation automatically

assigned to a row and that identifies it. PostgreSQL uses OIDs to link
its internal system tables together. Further information can be found in
http://www.postgresql.org/docs/8.2/static/datatype-oid.html

40

1 mutable class student.
2 id: individual.id. unique.
3 number: int. unique.
4 institution: institution.id.

Fig. 14. ISCO definition of the relation aluno

1 select * where {
2 ?a :student_number ?c .
3 ?a :student_institution ?b .
4 FILTER (?c > 300 && ?c < 500)
5 }

Fig. 15. using SPARQL to query a relational database

– allow to query more than one relation field. As the query is being translated
to the ISCO language it is performing one query to the database for each
field present in the SPARQL query. This could be improved by detecting
patterns in the query and rewriting it to minimize the number of queries to
the database;

– enable filtering the elements before they are retrieved from the relation. In
its current stage all the elements are gathered from the relation being queried
and filtered later in the filter statement.

6.2 SPARQL Web service

As another example of the developed system an example web interface was built
in order to allow answering of SPARQL queries over the web.

This has a simple user interface in which users can specify the queries and
retrieve the results.

There is also available a version in which the query is specified as part of the
URL and the results are then returned to the browser or agent. This form of
input is mostly aimed for automatic use by a SPARQL agent.

This form of query method has some shortcomings:

– the core system has to load the ontology for each query it is made (which
takes some time);

– the ontology over which the query will be performed is already integrated
with the system but, in this case, there is only the possibility of querying
the loaded ontology.

The implemented example works under the second assumption. The ontology
is integrated with the system and the SPARQL query will be performed over
that ontology.

41

7 Conclusion

The system we described and implemented provides a representation abstraction
layer for web ontologies that can be accessed by logic programs.

The selected web languages, SPARQL and OWL, have been shown to be
appropriate for the scope of our work: to build a working proof-of-concept system
which allows us to experiment with Contextual Logic Programming to represent
and query ontologies in a way which draws on Prolog’s expressiveness as well as
the powerful composition mechanisms of CxLP.

We illustrated how this representation can be used to develop Semantic Web
agents by describing two components: a front-end and a CxLP back-end. There
are aspects of other, existing systems that will benefit from the ability to query
SPARQL sources: for instance, we are working on integrating the SPARQL back-
end into the ISCO [3] system.

Future Work Supporting a well-defined OWL sublanguage is necessary in order
to provide reliable, trusted semantic web agents which will be usable in wider
application sceneries. We are working towards providing provably correct OWL
DL compatibility at the reasoning level, over the internal representation. This
issue is orthogonal to the rest of the work described herein but it is essential if
we expect the system to gain acceptance in the design of SW agents.

The implemented SPARQL agent currently does not cover the full language
specification. Although full SPARQL language support is not our immediate
intended purpose, we are working towards providing complete support for it.

Another important goal is to provide the core with capabilities to work with
several ontologies at a time. Although it is not relevant for the purpose of this
work, it is an essential feature for any Semantic Web application software and
we purport to use CxLP’s versatile modularity mechanisms to effectively deal
with this issue. This aspect will be the goal of upcoming work.

References

1. SPARQler. http://sparql.org/sparql.html, 10 October 2006.
2. Salvador Abreu and Daniel Diaz. Objective: in Minimum Context. In Catus-

cia Palamidessi, editor, Logic Programming, 19th International Conference, ICLP
2003, Mumbai, India, December 9-13, 2003, Proceedings, volume 2916 of Lecture
Notes in Computer Science, pages 128–147. Springer-Verlag, 2003. ISBN 3-540-
20642-6.

3. Salvador Abreu and Vı́tor Nogueira. Using a Logic Programming Language with
Persistence and Contexts. In Masanobu Umeda and Armin Wolf, editors, Declar-
ative Programming for Knowledge Management, volume 4369 of LNCS, Fukuoka,
Japan, 2006. Springer.

4. Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT
Press, 2004.

5. D. Beckett and J. Broekstra. SPARQL Query Results XML Format. W3C recom-
mendation, W3C, April 2006. http://www.w3.org/TR/rdf-sparql-XMLres/.

42

6. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American,
284(5), 2001.

7. Nuno Lopes Cláudio Fernandes and Salvador Abreu. On querying ontologies with
contextual logic programming. OWL: Experiences and Directions Third Interna-
tional Workshop, June 2007.

8. DARPA. http://www.daml.org/. DAML+OIL, 3 February 2007.
9. M. Dean, G. Schreiber, S. Bechhofer, Frank van Harmelen, J. Hendler, I. Hor-

rocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference. W3C recommendation, W3C, Feb 2004.
http://www.w3.org/TR/owl-ref/.

10. Leigh Dodds. XML Army Knife. http://xmlarmyknife.org/api/rdf/sparql/query,
5 December 2006.

11. Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis, and Georg Got-
tlob. Rdf querying: Language constructs and evaluation methods compared. In
Pedro Barahona, François Bry, Enrico Franconi, Nicola Henze, and Ulrike Sattler,
editors, Reasoning Web, volume 4126 of Lecture Notes in Computer Science, pages
1–52. Springer, 2006.

12. Joaquim Godinho, Luis Quintano, and Salvador Abreu. Universidade de Évora’s
Integrated Information System: An Application. In Hans Dijkman, Petra Smulders,
Bas Cordewener, and Kurt de Belder, editors, The 9th International Conference of
European University Information Systems, pages 469–473. Universiteit van Ams-
terdam, July 2003. ISBN 90-9017079-0.

13. Jena. A Semantic Web Framework for Java. http://jena.sourceforge.net/, 30
November 2006.

14. Frank Manola and Eric Miller. Rdf primer. W3C Recommendation, World Wide
Web Consortium, February 2004.

15. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation, World Wide Web Consortium, February 2004.

16. Protégé. Free, open source ontology editor and knowledge-based framework.
http://protege.stanford.edu/, 30 November 2006.

17. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
Technical report, W3C, 2006.

18. W3C. SPARQL Protocol For RDF. http://www.w3.org/TR/rdf-sparql-protocol/,
6 October 2006.

43

44

45

46

n

n

n n

1900

1900

47

48

→

→

→

49

50

51

≡ "

ALCN (D)

A

52

A

R

!

⊥

¬C

C # D

C $ D

∀R.C

∃R.C

!" nR

≡ " (! 5)

53

≡

≡

54

!

C C ! "
"

55

ΦC

C

C D C D

¬C

C

R

RD RR

R

56

ΦA = A

ΦC!D = ΦC , ΦD , ! ,

!

ΦC"D = ΦC ΦD

Φ¬C = \ ΦC

Φ∃R.C = R RD RR

ΦC

Φ∀R.C = RD ,

\ R RD RR

\ ΦC

Φ!"nR =

R RD RR

!"

∃R.C

R C

∀R.C R

R C

(!" nR)
R

R

A O

ΦA ΨO

ΨO O

57

!

! ∃

58

59

SHIQ

60

Combining OWL with F-Logic Rules and

Defaults

Heiko Kattenstroth, Wolfgang May, and Franz Schenk

Institut für Informatik, Universität Göttingen,
{hkattens|may|schenk}@informatik.uni-goettingen.de

Abstract. We describe the combination of OWL and F-Logic for the
architecture of Semantic Web application nodes. The approach has been
implemented by combining an existing Jena-based architecture with an
external Florid instance. The approach provides a tight language cou-
pling, i.e., the same notions can be defined both by OWL definitions
and by F-Logic rules. F-Logic rules are used for e.g., role-value-maps,
closed-world-reasoning, (stratified) negation, aggregation, and definition
of answer views; additionally the default inheritance of F-Logic can be
exploited.

1 Introduction

Description Logics [BCM+03] provide the underlying base for the dominat-
ing data model and languages for the Semantic Web, RDF, RDFS, and OWL
[OWL04]. It is based on the notion of classes, auch as Person, Country, City, and
properties, auch as hasName, hasChild, livesIn, hasCapital. This corresponds to
unary and binary relations in First-Order-Logic and relational databases, such
as Person(john), hasName(john,“John”), and livesIn(john,berlin). Description Log-
ics additionally allow for further specifications of classes (and properties) that
have no direct equivalent in relational databases, e.g. that a parent is a person
who has at least one child: Parent ≡ Person " ∃hasChild.$ or the assertion that
children are persons, Parent % ∀hasChild.Person. Such things can be expressed
by rules in FOL, but are not inherent concepts of FOL semantics.

Thus, the “built-ins” are more advanced than in FOL, but on the other
hand, DL formulas are much restricted to concept expressions. The application
of conjunction, and even more disjunction and negation, is only allowed in terms
of these built-ins. The Description Logic SHOIQ(D) [HS05] that forms the base
for OWL-DL is decidable, but there are “simple” concepts that are still out of
reach in this fragment, e.g., composite properties such as “uncle” as “brother of
parent” cannot be expressed.

The combination of Description Logics with rules is thus a prominent research
topic, e.g., investigated early in AL-log [DLNS91,DLNS98], CARIN [LR96], or
more recently in numerous approaches, e.g., DLP [GHVD03], SWRL (earlier:
ORL) [HPS04,HPSB+04], DLV/DLVhex [ELST04,EIST06], DL+log [Ros06], OWL-
Flight [dBLPF05], DL-safe rules [MSS05], [Luk07] or [DM07] (see Section 5 for
a more detailed analysis).

61

The goal of our approach is primarily pragmatic: to provide an architecture
for an application service node in the Semantic Web (e.g., hosting the infor-
mation system of an airline service or a university) and providing appropriate
interfaces to the outside. For that, we combine Description Logic with (full)
F-Logic, which also brings default inheritance into play.

DL+Florid provides a tight coupling in the sense that the symbols of the DL
part and the rule part are not required to be disjoint. Thus, the rules can be
used (and are intended) to derive concept memberships and role instances.

The semantics of DL+Florid is defined in a bottom-up way (that is also
realized by the implementation that combines the Jena [Jen] Framework with
a plugged-in Pellet reasoner [Pel] and Florid 4.0 [FHK+97,FLO06]). The Jena-
based DL system provides the core of the architecture that employs Florid as
a “slave” for rules and default inheritance. After reviewing the basic notions
in Section 2, we describe the architecture and analyze the semantics of our
pragmatic approach in Section 3. Inheritance based on defaults is then discussed
in Section 4. Section 5 gives a comparison with related work, and Section 6
concludes the paper.

2 Basics

2.1 Overview of Description Logics and RDF/RDFS/OWL

Description Logics (DLs) [BCM+03] are a family of logics for concept reasoning.
Their main constructs are classes and properties, expressed by (i) class member-
ship atoms, e.g., C(a) (object a is an instance of class C), property atoms p(a, b)
(b is some value of property p of object a), subclass axioms C ! D, and class
equivalence C ≡ D. Different DLs allow or disallow certain constructs for de-
scribing class definitions. The current focus is on decidable DLs where complete
decision procedures exist. DLs are the underlying framework for the Semantic
Web languages RDF, RDFS, and OWL [OWL04] with its variants OWL-Lite,
OWL-DL and OWL-Full. For OWL-DL, currently extensions to OWL-1.1 are un-
der discussion. OWL-DL is based on the decidable Description Logic SHOIQ(D)
[HS05]; the extensions belong to SROIQ which allows additional concepts for
specifying properties [HKS06]. As DLs are a restricted fragment of First-Order
Logic, FOL model theory and semantics applies to them, which means that in
contrast to Logic Programming, open-world semantics applies. Reasoners like
Pellet [Pel] support OWL-1.1.

2.2 Overview of F-Logic

As stated above, the DL+Florid approach extends DL with deductive rules
and default inheritance. Both are features that are natively supported by F-
Logic and its implementation in Florid [FHK+97,FLO06]. F-Logic rules are logic
programming rules over F-Logic atoms. F-Logic atoms are defined as follows
(cf. [KLW95]); we use only properties without parameters (i.e., only the form
o[m→v], not o[m@(a1, . . . , an)→v]).

62

Definition 1 (Syntax of F-Logic). The alphabet of an F-Logic language con-
sists of a set F of function symbols, playing the role of object constructors.
For convention, function symbols start with lowercase letters whereas variables
start with uppercase ones. Id-terms are composed from object constructors and
variables and are interpreted as elements of the universe.

In the sequel, let o, c, d, d1, . . . , dn, p, v, v1, . . . , vn stand for id-terms or
literals. Note that URLs as a subclass of strings can denote objects; e.g.

“foo:bla#john”:“foo:meta#Person”[“foo:meta#name”→“John”;
“foo:meta#livesIn”→→(“geo://de/Berlin”:“geo:meta#City”)].

is a valid F-Logic fragment; see also later examples.

1. An is-a atom is an expression of the form o : c (object o is a member of
class c), or c :: d (class c is a subclass of class d).

2. The following are object atoms:
2a. c[p⇒(d1, . . . , dn)] and c[p⇒⇒(d1, . . . , dn)]: the values of the scalar or multi-

valued, respectively, property p of objects of class c belong (simultaneously)
to all classes d1, . . . , dn,

2b. o[p→v]: the scalar property p of object o has the value v,
2c. o[p→→{v1, . . . , vn}]: {v1, . . . , vn} are amongst the values of the multivalued

property p of object o,
2d. c[p•→v]: for objects of class c, the default value of the scalar property p is v.
2e. c[p•→→{v1, . . . , vn}]: for objects of class c, the default values of the multivalued

property p are {v1, . . . , vn}.

An F-Logic rule is a logic rule h ← b over F-Logic atoms, i.e. is-a assertions
and object atoms. An F-Logic program is a set of rules.

The semantics of F-Logic rules and defaults is defined via Herbrand-style
structures where the universe consists of ground id-terms. An H-structure is a
set of ground F-Logic atoms describing an object world, thus it has to satisfy
several closure axioms related to general object-oriented properties:

Definition 2 (F-Logic Axioms). A (possibly infinite) set H of ground atoms
is an H-structure if the following conditions hold for arbitrary ground id-terms
u, u0, . . . , un, and um occurring in H:

– u :: u ∈ H (subclass reflexivity),
– if u1 :: u2 ∈ H and u2 :: u3 ∈ H then u1 :: u3 ∈ H (subclass transitivity),

analogously, if u1 : u2 ∈ H and u2 :: u3 ∈ H then u1 : u3 ∈ H,
– if u1 :: u2 ∈ H and u2 :: u1 ∈ H then u1 = u2 ∈ H (subclass acyclicity),
– if for ground id-terms u and u′ (u %= u′) such that u0[um!u] ∈ H and

u0[um!u′] ∈ H, then u = u′, where ! stands for → or •→ (uniqueness of
scalar properties).

For a set M of ground atoms, C!(M) denotes the closure of M wrt. the above
axioms.

63

Positive F-Logic programs are evaluated bottom-up by a TP -like operator in-
cluding C!, providing a minimal model semantics:

Definition 3 (Deductive Fixpoint).
For an F-Logic program P and an H-structure H,

TP (H) := H ∪ {h | (h ← b1, . . . , bn) is a ground instance of some rule of P
and bi ∈ H for all i = 1, . . . , n} ,

T 0
P (H) := C!(H) ,

T i+1
P (H) := C!(TP (T i

P (H))) ,

T ω
P (H) :=

{

limi→∞ T i
P (H) if the sequence T 0

P (H), T 1
P (H), . . . converges,

⊥ otherwise.

User-stratified programs are evaluated analogously wrt. Perfect Model semantics.
The above semantics that covers deductive rules does not deal with inheritance;
this will be described in Section 4.

Correspondence with DL and RDF/RDFS/OWL. In an RDF/OWL setting, ob-
jects are identified by URIs and by ids of blank nodes; thus, for theoretical
considerations, the restriction to function-free F-Logic is reasonable. Note that
in F-Logic, id-terms and objects also stand for properties, in the same way as
URIs in RDF. Variables can also occur at arbitrary positions of an atom.

The isa-atoms (1) correspond to DL’s C(o) and C % D (i.e., rdf:type and
rdfs:subclass). The object atoms (2a) correspond to C % ∀p.D (i.e., rdfs:range),
(2b) and (2c) correspond to the DL property assertions p(o, v) (i.e., the RDF
triple (o, p, v)). The inheritance atoms (2d) and (2e) have no equivalent in DL
or RDF/OWL. Together with the rules, the semantics of (2d) and (2e) provide
the additional expressiveness of DL+Florid.

2.3 Why Rules?

Hybrid approaches that combine DL with deductive rules are of interest for
several reasons:

Higher Expressiveness: Positive Rules. Many things that cannot be ex-
pressed in OWL can be defined easily with rules, even with often only positive
rules. These are e.g., composite roles that do not satisfy the tree property (al-
though restricted support comes with OWL 1.1), or annotated and computed
properties. For instance, connection(city1, city2) is transitive and thus can be ex-
pressed in OWL, but as such connections are represented by role instances, they
cannot have properties like distance (except by reification). Even with reification,
it cannot be expressed in OWL that the distance of composite connections is
obtained by adding the individual distances (see Example 3 later). Furthermore,
aggregations like count, sum, max, avg can be expressed in most rule languages
(but these are then actually not just positive rules).

Apart from the above expressiveness issues, logical rules with an operational
flavor are often used for ontology integration and data integration.

64

Higher Expressiveness: Negation under CWA. Another issue is the use
of default negation (often also called “negation as failure” which is actually its
implementation in Prolog): facts that are not explicitly known are assumed not
to hold. This is relevant e.g. when dealing with unmarried or childless people,
countries without big cities etc. While “unmarried” is still a property that is
often explicitly given, concepts like “country without big cities” are usually to
be derived. Default negation also underlies the definition of aggregations, since
these implicitly also assume that no additional facts have to be taken into account
for the aggregation.

Query Answering. Rules allow for a declarative and constructive specifica-
tion how a result can be obtained. For function-free normal and stratified rules,
evaluation of queries (=views) is polynomial.

Example 1 (Rules for Query Answering). Consider the simple geographic ontol-
ogy of the Mondial database [May07], containing (among others) the notions

Classes: Country, Province, City,
Properties: hasProvince, isProvinceOf, hasCity, cityIn, population.

For some countries, no provinces are known and the cities are directly associated
with the countries; for the others, cities are associated with the provinces.

Compute all countries that have at least two cities with more than 1.000.000
inhabitants. In an OWL ontology, a composite relationship between countries
and cities covering the hierarchy has to be defined (using transitivity), and con-
cepts (as restrictions) BigCity and CountryWithTwoBigCities must be defined:

:isProvinceOf rdfs:subpropertyOf :belongsTo.
:cityIn rdfs:subpropertyOf :belongsTo.
:belongsTo a owl:TransitiveProperty;

owl:inverseOf :hasProvOrCity. ## bridge country-prov-city
:Million a owl:DataRange; owl11:onDataRange xsd:int; owl11:minInclusive 1000000.
:HasBigPopulation owl:equivalentClass [a owl:Restriction;

owl:onProperty :population; owl:someValuesFrom :Million].
:BigCity owl:intersectionOf (:City :HasBigPopulation).
:CountryWithTwoBigCities owl:intersectionOf (mon:Country

[a owl:Restriction; owl:onProperty :hasProvOrCity;
owl:minCardinality 2; owl11:onClass :BigCity]).

The actual evaluation by a reasoner takes some minutes. In contrast, with (pos-
itive) rules, the same can be defined:

(note: use c Classname for Classes)
Cty:c BigCity :- Cty:c City, Cty[population→→Pop], Pop > 1000000.
C[hasBigCity→→Cty] :- C[hasCity→→Cty], Cty:c BigCity.
C[hasBigCity→→Cty] :- C[hasProvince→→Prov], Prov[hasCity→→Cty], Cty:c BigCity.
X:c CountryW2BigCities :- X:c Country, X[hasBigCity →→{C1,C2}], not C1 = C2.

65

where evaluation is significantly faster. With stratified negation, also e.g. all
countries that have no big cities can be listed.

The above example shows that already a “decoupled” combination of an OWL
core with rule-based views for computing answers provides certain advantages.
Similarly, rules can be used to define concepts although they could be defined
as owl:Restrictions, not only as answer views, but also for efficiency.

3 Combining DL+Florid

The goal of the approach is to provide an architecture for an application service
node in the Semantic Web (e.g., hosting the information system of an airline
service or a university) and providing appropriate interfaces to the outside. Thus,
we are primarily interested in a pragmatic approach.

The architecture is shown in Figure 1. The node core is based on the Jena
framework [Jen]. It contains a database (e.g. PostgreSQL) as repository for the
ontology (i.e., concepts and properties), the facts, and also for the rules. It can
be queried with SPARQL [SPQ06] as the current mainstream Semantic Web
language. For OWL reasoning, an instance of the Pellet DL reasoner [Pel] is
connected to the node. This basic functionality has been extended with a sim-
ple update language for RDF data and with support for RDF-level database
triggers reacting upon database update actions, e.g. to support actual updates
when deleting an instance p(x, y) of a property that is symmetric and stored as
p(y, x) [MSvL06]. Additionally, a Florid instance is connected as a “slave” for
application of F-Logic rules and default reasoning.

user

Jena-based core module
with triggers

PostgreSQL
Database:
RDF facts

DL Reasoner
(e.g. Pellet) Florid

SPARQL queries answers

materialized
base facts

facts/
queries

model/
answers

facts +
rules

derived
facts

Fig. 1. Architecture of DL+Florid

3.1 Reasoning with DL+Florid

The general idea is to separate concerns into (i) OWL concept (TBox) reason-
ing, (ii) application of rules, and (iii) inheritance. Reasoning about facts can be

66

either done in the OWL portion (ABox; e.g., transitivity, inverse, symmetry), or
by rules, which allow for much more complex derivations. The knowledge base
KB = (L, P, D) is thus partitioned into

– an OWL ontology L,
– a finite set P of rules (in F-Logic or a RuleML-style XML markup), and
– a finite set D of inheritance atoms (defaults).

For things that can alternatively specified by OWL or F-Logic (mostly, class
membership characterizations), the alternating fixpoint evaluation described be-
low guarantees the same outcome under certain conditions.

This means that usually rule bodies contain only domain notions, and no
RDF/RDFS/OWL properties (mainly, to reduce the amount of data to be trans-
ferred – using these properties is the native responsibility of the OWL reasoner).
Rule heads are allowed to contain RDF/RDFS/OWL notions, although this
seems to be an unusual case (e.g., used for concept learning).

The evaluation proceeds as follows, taking the OWL ontology in the Jena-based
node as starting point:

First Step: Compute the OWL model of a given fact base. Due to its open-
world nature, OWL/DL reasoning contains only limited negation. Anything
derived later will be taken into account as “possible”. Doing OWL reasoning
first is thus completely safe.

Second Step: Application of deductive rules. All (relevant) facts are exported
together with the rules to Florid, where bottom-up-evaluation is applied;
the (relevant) resulting facts are sent back to the Jena-based core. In case
of positive rules, it is again completely safe wrt. facts derived in later steps
by OWL reasoning (see below for a discussion).

Iteration: the above steps are iterated until no new facts can be derived.
Inheritance Step: only when both OWL reasoning and application of rules

are not able to derive further facts, default inheritance takes place.
Iteration: As long as new facts have been derived by default inheritance, the

above inner iteration is restarted. Note that this corresponds to the F-Logic
semantics of default inheritance – applying default inheritance only after the
application of rules reached a fixpoint does not derive any new facts, and then
restarting the iteration – that has been shown in [MK01] to be “reasonable”
and compatible with the Default Logic [Rei80,Poo94] semantics.

3.2 Data Exchange and Handling of URLs

Whereas the evaluation of the OWL specification is based on theory reasoning,
the evaluation of rules is based on ground facts (and non-ground rules).

Export of facts to Florid: The Jena model containing the (base and derived)
facts is dumped, and triples are exported as atoms as follows: x rdf:type c where
c is an application class (as xt:ct), c rdfs:subClassOf d (as ct::dt), p rdfs:range

67

c where p is a non-RDF/RDFS/OWL property (as <owl:Thing>t[pt⇒ct] (if p is
known to be functional) or <owl:Thing>t[pt⇒⇒ct] (otherwise)), xt pt yt where p is
a non-RDF/RDFS/OWL property (as xt[pt→yt] (if p is known to be functional)
or xt[pt→→yt] (otherwise)).

Above, the mapping ∗t of the identifiers is as follows: for literals !, i.e., strings
and numbers, !t is the string representation of !, e.g., “bla”, 1, or 3.1415. URIs
(including ids of blank nodes) are exported as elements of the class url::string, e.g.,
“http://www.w3.org/2002/07/owl#Thing”:url (the distinguished class url::string
for URLs has been used for accessing HTML documents in earlier times).

Example 2. For example, the N3 data

<foo:meta#Person> a owl:Class.
<foo:meta#name> a owl:FunctionalProperty; a owl:DatatypeProperty.
<foo:meta#livesIn> a owl:FunctionalProperty; a owl:ObjectProperty.
<foo:bla#john> a <foo:meta#Person>; <foo:meta#name> “John”;

<foo:meta#livesIn> <geo://de/Berlin>.

is translated into F-Logic:

“foo:meta#Person”:url. “foo:meta#name”:url. “foo:meta#livesIn”:url.
“foo:meta#john”:url. “geo://de/Berlin”:url.
(“foo:bla#john”:“foo:meta#Person”)[“foo:meta#name”→“John”;

“foo:meta#livesIn”→→“geo://de/Berlin”].

Export of facts back to Jena: On the way back, the above translation is
inverted. Here, only atoms/triples x:c, c::d, x[p→y], and x[p→→y] are exported
where x, c, d, p are members of the class url; y may be an url or a literal. This
allows to use auxiliary predicates, classes and identifiers in the rule part that are
not exported back to Jena. Note that it is also possible to introduce new classes,
properties, and objects by urls in the rule part.

Back in Jena, the returned data is merged with the before data; if new facts
have been derived, the alternating process is iterated until a fixpoint is reached.

3.3 Positive Rules

If the program P only consists of positive rules, everything is safe. Independent
how many (inner – i.e., between Jena and Rules) iterations are executed until a
fixpoint is reached, the resulting structure is a subset (cf. Section 3.5) of what
would be derived when using e.g. [ELST04,EIST06].

3.4 Rules with Negation

Florid supports user-defined stratification of programs. Concerning the interfer-
ence of iterating OWL reasoning and rule application, the CWA of LP negation
conflicts with the possibility of later derivation of positive facts by OWL rea-
soning in the above fixpoint process. The evaluation of stratified programs in

68

the given alternating combination with OWL reasoning is correct wrt. the strat-
ified/perfect model semantics if the extension of predicates that occur negatively
in a rule is not changed after evaluating it for the first time (i.e., also not in subse-
quent OWL rounds). Operationally, this condition can be verified by combining
syntactical analysis of rules with runtime monitoring:

– Let Σ− denote the set of all predicates occurring negatively in a rule body.
– Let I denote the interpretation after the first iteration of computing the

OWL model and applying the rules once (without applying OWL reasoning
again). Let Ineg := I|Σ− (I restricted to Σ−).

– For each iteration, check if for the current interpretation I ′, I ′|Σ− = Ineg.

This allows e.g. to use the negation of all base facts. Since classes in Σ− often
occur in rdsf:range and rdsf:domain axioms, pure ontology analysis will in most
cases derive that it is possible that they could be extended during reasoning.

An evaluation that is correct in the general case in presence of negation in the
rules is only possible in a tightly coupled evaluation in the DL reasoner (which
then requires to restrict to DL-safe rules).

Rules for Views and Query Answering. The above condition is trivially satisfied
when the predicates in the rule head are disjoint from those used in the OWL
part, but occur only in the rule program.

3.5 Pitfalls: Existential Assertions in OWL

In the investigations of hybrid rules, it turned out that the crucial problem
are anonymous, implicit objects (see Section 5) that affect decidability (note:
these are not the blank nodes, but purely existential objects as in Parent ≡
Person " ∃hasChild.Person, or in Person " ∃hasFather.Person). The constraints
on variables developed over time aimed at restricting variables such that they
cannot be bound to these anonymous objects; or, taken the other way round
[Ros06]: every head variable must occur in an LP atoms in the body (such that
only objects from the explicit active domain can be bound to variables that
occur in the head). Actually, this prevents from deriving anything about these
anonymous objects by rules.

Recall that also in SPARQL, even though reasoning allows to derive that
Joe’s father, jf , is a person, and also jf ∈ ∃hasFather.Person, holds, a query {?X
hasFather ?Y} will not yield an answer with ?X/joe (and also not with ?X/jf).

When considering such an axiom like Person " ∃ hasFather.Person as a rule,
using a function symbol for object invention as usual in F-Logic,

father(X):c Person :- X:c Person.

would create an infinite chain of objects father(father(. . . (joe))).

69

From that, the following strategy is a applied for such objects:

Strategy 1 Don’t derive too much about objects that are not explicitly named.
Don’t use function symbols in rule heads.

If only positive rules are used, missing existential objects can lead to missing
data, but not to wrong derivations. E.g. the rule

X:c Uncle :- X:c Person, X[hasSibling→→Y], Y[hasChild→→Z].

with the facts {Person(joe), hasSibling(joe,mary), Parent(mary)}, the latter equiv-
alent with ∃hasChild.Person(mary), would not be sufficient to derive that Joe is
an uncle.
If negative rules are considered, we have to care for rules like

X:c Childless :- X:c Person, not X[hasChild→→ Y].
X:c Fatherless :- X:c Person, not X[hasFather→→ Y].

The first rule would derive c Childless(X) for all persons, including parents p
for whom no explicit filler for p.hasChild is known, and the second will derive
c Fatherless(X) for all “bordering” persons of the ontology whose father is only
implicitly known.

Strategy 2 Export all relevant implicitly known “border” objects with their de-
rived properties from the existential axiom from Jena to F-Logic. Then, derive
only relevant information about them.

Which such implicitly known “border” objects are relevant? A border object
is relevant, if it is concerned by an atom in some rule. This can be by done
inspecting the graph of each rule body (note that e.g.,

c Grandfatherless(X) :- X:c Person, hasFather(X, Y), not hasFather(Y, Z).

makes even the grandfathers relevant border objects). Such implicit border ob-
jects must/need only be exported if there is no explicit filler for the corresponding
role.

Border objects are marked as such, being members of an internal class bor-
derobject. When they occur in a rule head, only relevant properties are actually
derived (again based on the graphs of the rules).

Note that this idea is similar to the one presented in [Luk07] that is based
on the Herbrand base/model.

3.6 Practical Issues and Additional Functionality for Daily Life

On one hand, the handling of anonymous objects is still “critical”, especially
in the context of negation. On the other hand, a careful design of the ontol-
ogy and the rules allow for a reasonable expressiveness obtained by declarative
formalisms, which otherwise must be implemented procedurally (and then has

70

no logical semantics as all). As one of the aims of the approach is to provide a
working architecture for individual nodes in the Semantic Web, we went for a
pragmatic realization. Some additional functionality that is useful for daily life
comes with the use of Florid:

– built-in predicates and operations on strings and numbers,
– creation of URIs (as they are basically also strings – only the membership

atom s:url distinguishes them from simple strings).

Example 3 (Train Connections). Consider a train database which contains the
“atomic” connections. Assume that for the urls of cities and connections, a glob-
ally agreed structure is used. Consider the following fragment (in N3):

<travel://db/connections/Hannover-Goettingen> a <travel:meta#Connection>;
<travel:meta#from> <geo://de/Hannover>; <travel:meta#to> <geo://de/Goettingen>;
<travel:meta#distance> 120.

<travel://db/connections/Goettingen-Kassel> a <travel:meta#Connection>;
<travel:meta#from> <geo://de/Goettingen>; <travel:meta#to> <geo://de/Kassel>;
<travel:meta#distance> 60.

and a (simplified) rule that computes composite connections (in F-Logic syntax,
where URLs are treated by strings s:url):

(U:“travel://meta#Connection”)[“travel:meta#from”→X; “travel:meta#to”→Z;
“ travel:meta#distance”→D], U:url

:- (C1:“travel://meta#Connection”)[“travel:meta#from”→X; “travel:meta#to”→Y;
“ travel:meta#distance”→D1],

(C2:“travel://meta#Connection”)[“travel:meta#from”→Y; “travel:meta#to”→Z;
“travel:meta#distance”→D2],

U = “travel://db/connections/” + X.name + “-” + Y.name, D = D1 + D2.

which will generate (already mapped back to N3)

<travel://db/connections/Hannover-Kassel> a <travel:meta#connection>;
<travel:meta#from> <geo://de/Hannover>; <travel:meta#to> <geo://de/Kassel>;
<travel:meta#distance> 180.

Additionally, Florid allows for parsing of HTML and XML data, which can then
be transformed by F-Logic rules into RDF to be added to the ontology.

4 Defaults

4.1 Inheritance in F-Logic

Inheritance atoms in F-logic have the form c[p•→v]: the class c provides the in-
heritable scalar property p with default value v. For a member o : c without any
intermediate class, inheritance results in o[p→v]; for a subclass d :: c, inheritance

71

results in d[m•→v]; analogously for multivalued c[p•→→v]. Inheritance of defaults
is intended to take place, if “nothing else is known”.

In [KLW95], inheritance-canonic models are defined, based on inheritance
triggers which extend the above fixpoint semantics: default inheritance is ap-
plied after the minimal/stratified model is computed and the rules do not derive
any more facts. Objects where for an inheritable property, no value has been
derived so far inherit the default, and the minimal/perfect model computation
is applied again. Although this definition is formulated in a rather procedural
way, we have shown in [MK01] that this semantics is “reasonable” and in most
cases compatible with the Default Logic [Rei80,Poo94] semantics. Only when
application of rules after applying a default results in an inconsistency, or “at-
tacks” the applicability of the default, a non-supported (wrt. the Default Logic
semantics) model results. Below, we show that even this effect is avoided by the
DL+Florid architecture where F-Logic reasoning is applied as a “slave” whose
results can further be controlled.

4.2 Nonmonotonic Inheritance by Default Logic

In Default Logic [Rei80,Poo94], defeasible reasoning is expressed by defaults :

a default d =
α : β

w
consists of a precondition α, a justification β and a

consequence w. Given α, if β can be assumed consistently, one can conclude w.
A default theory is a pair ∆ = (D, F) where D is a set of defaults and F is a set
of formulas.

In an inheritance framework, the superclass condition belongs to α; whereas
the checks that inheritance is not preempted by an intermediate class and that
the inherited value must be consistent with the knowledge (wrt. the logical rules
of the program) fall under β. For characterizing inheritance, only a specialized
form of defaults is needed, called semi-normal defaults where the precondition
α(x̄) is a conjunction of atoms, the consequence w(x̄) is also an atomic formula,
and ∀x̄ : β(x̄) → w(x̄) holds. Translating the path-based concept of inheritance
networks, including avoidance of decoupling inheritance in F-Logic syntax can
be specified by defaults of the form (cf. [MK01])

Dinh =
O : C , C[M•→V] :

∀C′((O : C′ ∧ C′ :: C) → C′[M•→V]) , O[M→V]
O[M→V]

.

The semantics of a default theory is defined in terms of extensions. A theory T is
an extension of ∆ = (D, F) if it satisfies certain requirements [Rei80,Poo94,Mak94];
the definitions are non-constructive (where a quasi-inductive definition at least
gives a guess-and-check characterization).

In our case, the consequent of a default is always a single ground fact. Thus,
it is again sufficient to define and analyze the semantics only with the underlying
Herbrand Structures, not with theory reasoning.

72

4.3 Handling Nonmonotonic Inheritance

In the same way as negation, the default reasoning conflicts with the OWA. Here,
the conflict is intended: the main reason behind default inheritance is to be able
to find a reasonable set of beliefs in a situation of incomplete knowledge when any
“safe” reasoning –both OWL OWA reasoning and rule-based CWA reasoning–
does not lead to additional knowledge. Thus, default inheritance atoms are eval-
uated in an outer iteration. When an alternating fixpoint of OWL and rules is
reached, apply one applicable default, and restart the alternating fixpoint.

In our setting, this is accomplished by saving the current model, applying
the default, applying OWL and rules reasoning up to the next fixpoint, and if
this structure is consistent, continue with it. If a theory has extensions, then this
process leads to an extension; otherwise it at least results in a non-extensible
structure that is consistent, but contains “non-fired” default instances. Note
that the possibility to put the intermediate model aside during the computation
controlled by the Jena module allows to accomplish this guarantee in contrast
to the F-Logic/Florid-only semantics discussed in [MK01].

In [BH95], it is shown that even for the simple DL ALCF , Reiter’s semantics
for open defaults leads to undecidability. When considering only individuals
that are mentioned explicitly in the ABox, the task becomes decidable. In our
approach, the ontology is restricted to explicit facts before submitting it to Florid
– thus, the above obviously applies. Note that implicit border objects have to
be ignored when checking for applicable defaults.

5 Comparison

While both OWL-DL and function-free Horn rules are decidable fragments of
first-order logic, however, the combination leads to undecidability in general.
DLP [GHVD03] is the, not very expressive, but decidable, intersection of DL
and LP. The other end of the spectrum is SWRL (earlier: ORL) [HPS04] which
is the union of DL and LP, which is in general undecidable.

AL-log [DLNS91] proposes hybrid rules in a constraint LP style, where the
LP Datalog clauses in the body are extended with DL class membership con-
straints; the heads of the rules may only contain the LP predicates. CARIN
[LR96] extends this to allow also DL roles in the Datalog bodies. Role-safeness,
i.e., in every DL role atom, at least one variable also occurs in a base predicate
(i.e., an LP predicate which does not occur in any rule head), guarantees decid-
ability (wrt. ALCNR). A similar strategy is followed in DL-safe rules [MSS05],
where it is shown that it is sufficient to require each variable in the rule to occur
in a non-DL-atom in the rule body (wrt. the more expressive SHOIN (D)/OWL-
DL); but here DL atoms are also allowed to occur in rule heads. DL-safety also
makes sure that each variable is bound only to individuals that are explicitly
known in the ABox.

The DL+log [Ros06] approach provides a tighter integration and shows that
a “weak safeness” condition, i.e., every head variable must occur in an LP atom

73

in the body, guarantees decidability. Thus, in contrast to previous approaches,
it is allowed to have variables in the body that only appear in DL atoms (thus,
the language now covers conjunctive queries over DL). Again, the focus is that
the individuals for which something is derived are explicitly known (while im-
plicit objects can be significant in the body). Decidability is obtained for all
DLs where CQ/UCQ containment is decidable; this includes the logic DLR
[CGL+98], which is weaker than e.g. OWL-DL.

In [MR07], the MKNF (Minimal Knowledge and Negation as Failure) [Lif91]
idea is applied to DL & LP to obtain a unifying framework which covers e.g.
DL+log, SWRL, LP under stable models semantics, and Default Logic with
fixed universe. The resulting logic is based on the modal logic S5 and prefer-
ential models. Again, DL-safety guarantees decidability. The special interaction
of open- and closed-world reasoning (DL predicates can also occur under CWA
negation) allows to express things that cannot be expressed in other approaches.

There are also some “loose integration” approaches, in the sense that the rules
part contains queries to the ontology, again in the style of constraint LP. These do
not derive ontology predicates in the head: In DLV/DLVhex (DLV with higher-
order and external atoms) [ELST04,EIST06], the DL atoms are “external” to
the DLV framework (disjunctive LP) that is based on Answer Set Programming.
In a similar way, [DM07] integrates DL atoms into an LP framework (normal
logic programs under well-founded semantics).

In contrast, OWL Flight [dBLPF05], reduces the OWL part to what can be
expressed with (F-Logic) rules, under CWA, and adds constraints.

In [Luk07], the perspective is changed: the above approaches consider the
DL, theory reasoning, perspective. When changing to the perspective of rule-
based systems, considering Herbrand structures as a base yields decidability
without any syntactic restrictions. The paper proposes a guess-and-check algo-
rithm which is in general in NExpNP, and has polynomial data complexity for
normal or stratified programs in combination with DL-Lite. The approach is the
most similar to ours amongst the above ones.

Considering implementations, there is the DLVhex system [ELST04,EIST06],
the prototype of [DM07], the upcoming SWRL [HPS04,HPSB+04] support in
Pellet [Pel], and KAON2 [KA] which encodes OWL into disjunctive Datalog and
allows for DL-safe rules.

6 Conclusion

We have described the combination of (i) OWL-DL, (ii) F-Logic rules, and (iii)
default inheritance, consisting of a Jena-based OWL node that employs Florid
as a “slave” for evaluating rules. In case that one of the components is empty,
the semantics coincides with the usual semantics of the respective formalism:

– If the OWL-DL part of the ontology is empty (or a simple schema+data style
database which does not contribute to the reasoning), the resulting system
just applies the F-Logic rules and default inheritance in a controlled way,
resulting in a safe semantics wrt. the investigations in [MK01].

74

– If the F-Logic rule part is empty, the system just implements OWL-DL
with default inheritance. Again, inheritance is controlled in such a way that
it inherits only when the application is consistent, exactly mirroring the
semantics from Default Logic given in [Rei80].

– If the predicates that occur in rule heads are disjoint from those of the OWL
ontology (i.e., the rule part only queries the ontology, as in [ELST04,EIST06]
and [DM07]), the semantics is correct and complete for stratified negation.

– If the predicates that occur in rule bodies are disjoint from those of the
OWL ontology (i.e., the rule part serves for populating the ontology, e.g., by
information extraction from Web pages), the semantics is also correct and
complete for stratified negation.

The approach is under implementation in the DL+Florid prototype1. It pro-
vides a feasible integration of OWL ontologies and rules that is to be seen as a
declarative alternative to approaches that implement the same by pure (Java)
programming. Its advantages are the declarative specification of the rules that
allow for rapid prototyping and flexible adaptation of the rules.

Ongoing and future work is concerned with implementing the inheritance
semantics completely and investigating the possibilities to enhance the handling
of existential anonymous objects. We expect that syntactical analysis of the
rules and the dependency graph in many cases allows for identifying a finite
set of anonymous objects and their properties that is sufficient for guaranteeing
correctness and completeness for all derived facts about explicitly known objects.

Acknowledgements. This research has been funded by the European Commission
within the 6th Framework Programme project REWERSE, no. 506779.

References

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[BH95] F. Baader and B. Hollunder. Embedding Defaults into Terminological Knowl-
edge Representation Formalisms. J. of Automated Reasoning, 14:149–180, 1995.

[CGL+98] D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. De-
scription Logic Framework for Information Integration. In Principles of Knowledge
Representation and Reasoning (KR), pp. 2–13, 1998.

[dBLPF05] J. de Bruijn, R. Lara, A. Polleres, D. Fensel. OWL DL vs. OWL Flight:
conceptual modeling and reasoning for the semantic Web. In WWW Conf., 2005.

[DLNS91] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. A Hybrid System
with Datalog and Concept Languages. In Trends in Artificial Intelligence; AI*IA’91,
Springer LNCS 549, pp. 88–97, 1991.

[DLNS98] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating
Datalog and Description Logics. J. Intell. Inf. Syst., 10(3):227–252, 1998.

[DM07] W. Drabent and J. Ma!luszyński. Well-Founded Semantics for Hybrid Rules.
In Web Reasoning and Rule Systems (RR), Springer LNCS 4524, pp. 1–15, 2007.

1 http://www.semwebtech.org/DLFlorid

75

[EIST06] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective Integration
of Declarative Rules with External Evaluations for Semantic-Web Reasoning. In
Europ. Semantic Web Conf. (ESWC), pp. 273–287, 2006.

[ELST04] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining An-
swer Set Programming with Description Logics for the Semantic Web. In Principles
of Knowledge Representation and Reasoning (KR), pp. 141–151, 2004.

[FHK+97] J. Frohn, R. Himmeröder, P.-T. Kandzia, G. Lausen, and C. Schlepphorst.
FLORID: A Prototype for F–Logic. Intl. Conf. on Data Engineering (ICDE), 1997.

[FLO06] Florid Homepage. http://www.informatik.uni-freiburg.de/~dbis/florid/, 2006.
[GHR94] D. M. Gabbay, C. J. Hogger, and J. A. Robinson. Handbook of Logic in

Artificial Intelligence and Logic Programming. Oxford Science Publications, 1994.
[GHVD03] B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:

combining logic programs with description logic. In WWW Conf., pp. 48–57, 2003.
[HKS06] I. Horrocks, O. Kutz, and U. Sattler. The Even More Irresistible SROIQ. In

Principles of Knowledge Representation and Reasoning (KR), pp. 57–67, 2006.
[HPS04] I. Horrocks and P. Patel-Schneider. A Proposal for an OWL Rules Language.

In WWW Conf., pp. 723–732, 2004.
[HPSB+04] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and

M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/, 2004.

[HS05] I. Horrocks and U. Sattler. A Tableau Decision Procedure for SHOIQ(D). In
Intl. Joint Conf. on Artificial Intelligence (IJCAI), 2005.

[Jen] Jena: A Java Framework for Semantic Web Appl’s. http://jena.sourceforge.net.
[KA] KAON2 – Ontology Management for the Semantic Web. http://kaon2.

semanticweb.org/.
[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented

and Frame-Based Languages. Journal of the ACM, 42(4):741–843, 1995.
[Lif91] V. Lifschitz. Nonmonotonic Databases and Epistemic Queries. In IJCAI, 1991.
[LR96] A. Y. Levy and M.-C. Rousset. CARIN: A Representation Language Combin-

ing Horn Rules and Description Logics. In ECAI, pp. 328–334, 1996.
[Luk07] T. Lukasiewicz. A Novel Combination of Answer Set Programming with De-

scription Logics for the Semantic Web. In ESWC, 2007.
[Mak94] D. Makinson. General Patterns in Nonmonotonic Reasoning. In [GHR94].
[May07] W. May. The Mondial Database, 1999–2007. http://dbis.informatik.uni-

goettingen.de/Mondial/.
[MK01] W. May and P.-T. Kandzia. Nonmonotonic Inheritance in Object-Oriented

Deductive Database Languages. J. of Logic and Computation, 11(4), 2001.
[MR07] B. Motik and R. Rosati. A Faithful Integration of Description Logics with

Logic Programming. In Intl. Joint Conf. on Artificial Intelligence (IJCAI), 2007.
[MSS05] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with

rules. J. of Web Semantics, 3(1):41–60, 2005.
[MSvL06] W. May, F. Schenk, and E. von Lienen. Extending an OWL Web Node

with Reactive Behavior. In Principles and Practice of Semantic Web Reasoning
(PPSWR), Springer LNCS 4187, pp. 134–148, 2006.

[OWL04] OWL Web Ontology Language. http://www.w3.org/TR/owl-features/, 2004.
[Pel] Pellet: An OWL DL Reasoner. http://pellet.owldl.com.
[Poo94] D. Poole. Default Logic. In [GHR94].
[Rei80] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 12(1,2), 1980.
[Ros06] R. Rosati. DL+log: Tight Integration of Description Logics and Disjunctive

Datalog. In Principles of Knowledge Representation and Reasoning (KR), 2006.
[SPQ06] SPARQL Query Language for RDF. www.w3.org/TR/rdf-sparql-query/, 2006.

76

HD-rules: a hybrid system interfacing Prolog with

DL-reasoners

W!odzimierz Drabent1,3, Jakob Henriksson2, and Jan Ma!uszyński3

1 Institute of Computer Science, Polish Academy of Sciences,

ul. Ordona 21, Pl – 01-237 Warszawa, Poland

drabent@ipipan.waw.pl
2 Fakultät für Informatik, Technische Universität Dresden

jakob.henriksson@tu-dresden.de
3 Department of Computer and Information Science,

Linköping University, S 581 83 Linköping, Sweden

janma@ida.liu.se

Abstract. The paper presents a prototype system HD-Rules (Hybrid integration

of Description Logic and Rules) that integrates normal clauses under the well-

founded semantics with ontologies specified in Description Logics. The system

is hybrid: it re-uses XSB Prolog for rule reasoning and existing OWL reason-

ers for ontology reasoning. This makes it possible to use some Prolog built-ins

(like arithmetic) in the rules. The system itself is written in XSB Prolog; its inter-

face to OWL employs Java. The paper outlines the principles of the integration,

illustrates the use of the system on examples, and discusses in detail the main

implementation techniques.

1 Introduction

This paper presents a prototype system integrating Description Logic reasoners com-

patible with the DIG-standard with normal clauses as used in logic programming. The

work is based on the well-founded semantics of logic programs and on the ideas of con-

structive negation in logic programming, as discussed in [6]. The prototype implements

a language of hybrid rules that extends normal clauses. The hybrid rules allow queries

to OWL ontologies in their bodies. Prolog arithmetic and some other Prolog built-ins

can also be used.

Integration of rules and ontologies is presently addressed by many researchers as a

necessary step in extending Semantic Web technology. The Web Ontology Language

OWL, standardized by W3C is supported by several reasoners, while there is yet no

common agreement about the rule level. While the main variant of OWL is based on

DL (Description Logics), hence on FOL (first order logic), it is often claimed that rules

should allow non-monotonic reasoning. Non-monotonic reasoning has been investi-

gated within logic programming. The two main kinds of the semantics proposed are

the Answer Set Semantics (Stable Model Semantics) and the well-founded semantics.

The well-known proposals for integration of rules and ontologies [7, 13] are based on

Answer Set Semantics. The well-founded semantics is used in [8] but in a way different

from our approach (for more detailed discussion see [6]).

77

Important aspects of the work presented in this paper are

– Our approach is based on the well-founded semantics of normal programs, and is

compatible with FOL: if the non-monotonic negation is not used in the rules, the

answers to queries are logical consequences of the set of FOL axioms consisting of

the rules and of the ontology.

– We allow the use of term constructors and some Prolog built-in predicates (e.g.

arithmetic) in the hybrid rules.

– The approach makes it possible to re-use existing reasoners (for DL, and for Prolog

with the well-founded semantics). This substantially simplifies its implementation.

– We explain in detail the principles of implementation.

This paper extends the short paper [5] in the following ways. The hybrid rule lan-

guage of [5] is extended by allowing term constructors (e.g. Prolog list constructors)

and some Prolog built-in predicates. The main implementation issues are discussed in

more detail. In particular we describe how hybrid rules are compiled into Prolog, and

how the ontology queries in the rules are processed.

A declarative semantics of hybrid programs was defined in our previous work [6]

and is briefly summarized in Section 2. Its main idea is that a Herbrand model of a

hybrid program is constructed for every model of the underlying ontology. This is sim-

ilar to the notion of NM-model in [13]. The latter is however based on on the notion

of stable model, while our construction uses the notion of well-founded model. Our

implementation is based on the operational semantics of [6], which answers queries by

combining a constructive negation approach to SLS-resolution [4] with ontological rea-

soning. The operational semantics is sound wrt. the declarative one and complete for a

restricted class of hybrid programs (see [6] for details).

2 Hybrid Programs

In this section we first introduce the syntax of hybrid programs and provide an example

program. We then briefly discuss the declarative semantics of hybrid programs and its

operational semantics. We conclude with some more examples.

The Syntax. The syntax of hybrid programs is derived from the syntax of the compo-

nent languages. The component languages considered here are the language of normal

logic programs, and some DL-based ontology language. We assume that the alphabets

of predicate letters of logic programs and of the ontology language are disjoint, but both

languages have common variables and constants. (The alphabet of logic programs also

includes function symbols of non zero arity.) Literals, atoms and predicate symbols of

logic programming will be called, respectively rule literals, rule atoms, etc. A standard

logic programming syntax is extended by allowing ontological constraints to appear in

the rule bodies. Thus, a hybrid rule looks as follows:

R0 :− R1, . . . ,Rk,neg(Rk+1), . . . ,neg(Rn),dl(C1), . . . ,dl(Cm).

78

where R0,R1, . . . ,Rn are rule literals and C1, . . . ,Cm are constraints. At the moment we
only allow here constraints of the form C(x) or ¬C(x) where C is a concept of the on-
tology and x is a variable or a constant. A hybrid program is a pair (T,P) where T is
an ontology (a finite set of axioms of a DL) and P is a finite set of hybrid rules with

constraints over the alphabet of T . In practice T will be provided by a declaration asso-

ciating a short name (prefix) with the URI of the ontology. This is here done by using

the syntax use ’ontology uri’ as ’pre f ix’. Any predicate symbol p from the ontology

is represented in the hybrid rules as prefix#p.

Example 1. Consider a program consisting of the set of hybrid rules P shown in Listing

1.1, and an ontology

Finland ! Europe.

(A T-box of one axiom and an empty A-box).

use ’ h t t p : / / dev . me t a j ung l e . i n f o / owl / geography . owl ’ a s ’ g ’ .

win (X) :− move (X,Y) , neg (win (Y)) .

move (e , f) :− d l (g#Europe (f)) .

move (c , f) :− d l (neg (g# F i n l a nd (f))) .

move (b , a) . move (a , b) . move (a , c) . move (c , d) . move (d , e) .

Listing 1.1. An example hybrid program describing a two-person game.

The hybrid program in Listing 1.1 describes a two-person game, where each of the

players, in order, moves a token from a node of a directed graph

d → e

↑ ⇓
b ↔ a → c ⇒ f

over an edge of the graph. The nodes correspond to geographical objects specified in

an ontology (e.g. cities) and are represented by constants. Some edges of a graph (rep-

resented in the example by the move facts) are labelled by constraints (added as con-

straints to the respective facts). The constraints refer to the ontology. A move from a

position x to a position y is enabled if there is an edge from x to y and the constraint

is satisfied. The predicate win/1 characterizes the winning positions of the game, as
described below.

A position is winning if a move is enabled to a position which is not winning (call

it losing). Obviously a position where no moves are enabled is losing. Thus, position

f is losing. The move from e to f is enabled only if f is in Europe. This cannot be

concluded from the ontology. Consequently we cannot conclude that e is a winning

position. Similarly, we cannot conclude that f is not in Finland which is required for

the move from c to f . However, it follows from the ontology that if f is not in Europe

it is also not in Finland. Hence one of the conditions holds for f . Consequently c is a

winning position: if f is in Europe, e is winning, d is losing and c is winning. Otherwise

f is not in Finland and c is winning.

79

The positions a and b cannot be classified as winning or losing, since from a one

can always move to b where the only enabled move is back to a. The third logical value

undefined is assigned to win(a) and win(b). The status of d and e is also not clear, but
for different reasons discussed above. In some, but not all models of the ontology e is

winning and d is losing and in the remaining ones the opposite holds.

The Declarative Semantics. In [6] we define a formal semantics of hybrid programs,

extending the well-founded semantics of normal programs. Here we survey informally

the main ideas. The well-founded semantics of normal programs is three-valued and

gives a fixpoint formalization of the way of reasoning illustrated by the game example,

when the constraints are neglected. It assigns to every element of the Herbrand base one

of the logical values true (e.g. win(c)), false (e.g. win(f)) or undefined (e.g. win(a)).
The constraints added to the rule bodies refer to the ontology. As illustrated by the

example, a ground instance of a constraint may have different truth values in different

models of the ontology. Consider a hybrid program (T,P) (where T is a set of first
order axioms, and P a set of hybrid rules), a model M of T , and the set ground(P) of
all ground instances of the rules in P. Each of the ground constraints is either true or

false in M. Denote by P/M the set obtained from ground(P) by removing each rule
including a constraint false in M and by removing all constraints (which are thus true)

from the remaining rules. As P/M is a normal program it has a standard well-founded

model. A ground literal p (or neg(p)) is said to follow from the program iff p is true
(respectively p is false) in the well-foundedmodel of P/M for everyM. The declarative

semantics of P is defined as the set of all ground literals which follow from the program.

Notice that there may be cases where neither p nor neg(p) follows from the program.
This happens if there exist modelsM1 and M2 of T such that the logical values of p in

the well-founded models of P/M1 and P/M2 are different, or if the logical value of p

in the well-founded model of P/M is undefined for every modelM of T .

Notice that the semantics involves two kinds of negation: the monotonic negation of

the ontology (¬) and the non-monotonic negation (neg) of the well-founded semantics.
The former is applicable only to ontology predicates, the latter only to rule predicates.

Thus in our implementation we can denote both by the same symbol (neg).

The Operational Semantics. The implementation discussed below focuses on answer-

ing atomic queries and ground negated literal queries. We now informally sketch the

principles of computing answers underlying our implementation. They are based on the

operational semantics of hybrid programs presented in [6] by abstract notions of two

kinds of derivation trees, called t-tree and tu-tree, which are defined by a mutually re-

cursive definition. These notions extend the well-known concept of SLD-trees to the

case of hybrid programs, to handle negation and constraints. In the presentation below

the term derivation tree (d-tree) is used whenever the statement applies to both kinds of

trees.

The nodes of d-trees are labelled by goals, consisting of rule literals and constraints.

The conjunction of all constraints of a node will be called the constraint of the node.

The label of the root is called the initial goal of the tree. A leaf of a d-tree is called

successful if it does not include rule literals and if its constraint is satisfiable. The other

80

leaf nodes are called failed leaves. In every node containing rule literals, one of them

is distinguished as the selected literal of the node. As usual, we assume existence of a

selection function that determines the selected literals of the nodes.

In the case when the initial goal g of a d-tree is ground the tree has the following

property. Let C1, . . . ,Ck be the constraints of all successful leaves of a d-tree t. Then:

– If t is a t-tree then (∃(C1∨ . . .∨Ck)) → g. Thus g follows from the program if

∃(C1∨ . . .∨Ck) is a logical consequence of the ontology.
– If t is a tu-tree then (¬∃(C1∨ . . .∨Ck)) → ¬g. Thus the negation of g follows from
the program if ¬∃(C1 ∨ . . .∨Ck) (or equivalently ¬∃C1 ∧ . . .∧¬∃Ck) is a logical
consequence of the ontology.

Thus to answer a ground query g our prototype constructs a t-tree with g as its

initial goal and checks if the respective disjunctive constraint, existentially quantified, is

a logical consequence of the ontology. If it is then g is true (in the declarative semantics

of the program).

If g is not ground andCi is (the constraint of) a successful leaf of a t-tree for g then

∃Ci → g! follows from the program, where ! is the composition of the mgu’s along the

branch from g toCi, and the quantification is over those variables that do not occur free

in g!. Again, if ∃Ci is a logical consequence of the ontology then g! follows from the
program.

We now explain how d-trees are constructed for a given initial goal g . This is similar

to construction of an SLD-tree. Every step is an attempt to extend a tree which initially

has only one node labelled by g. At every step one node n, not marked as failed, is

considered. Let q be the goal of the node, let s be its selected literal and let C be the

conjunction of its constraints. The following cases are considered separately:

1. s is positive. For each rule of the program, for which there exists a variant h :- B,Q
of the rule such that

– s and h are unifiable with a most general unifier !, and

– the constraint (C∧Q)! is satisfiable,
a child is added to n with the label obtained from q! by replacing s by (B,Q)!. If
no such rule exists then n is marked as a failed node.

2. s is negative, i.e. of the form neg(l). Two sub-cases are:
(a) If l is non-ground, or recursion through negation has been discovered (see be-

low) then:

– If the d-tree is a t-tree then the node n is marked as a failed node and won’t

be considered in the next steps of the derivation.

– If the d-tree is a tu-tree then a child is added to n with the label obtained

be removing s from q.

(b) Otherwise l is ground; the step is completed after construction of a separate

d-tree t for l. The kind of the separately constructed tree is different from the

kind of the current tree, thus it is a tu-tree if the latter is a t-tree, and t-tree if the

latter is a tu-tree. Let C1, . . . ,Ck be the constraints of the successful leaves of t.
If the constraintC′ =C∧¬∃C1∧ . . .∧¬∃Ck is satisfiable then a child is added
to node n with the label obtained from q by removing s and replacingC byC′.

81

Otherwise the node is marked as failed. In particular, if k = 0 (no successful

leaf)C′ is equivalent toC. On the other hand, if someCi(1≤ i≤ k) is true, the
constraintC′ is equivalent to false and is not satisfiable.

For more details, see [6]. In general the construction of a d-tree may not termi-

nate for recursive rules. Recursion not involving negative literals may produce infinite

branches of the constructed d-tree. Recursion through negation may require construc-

tion of infinite number of d-trees. In our implementation tabling is used; it allows to cut

the loops in the case when the same goal re-appears in the process.

Example 2. When a goal win(c) is given to the program from Example 1 then a t-tree
for win(c), tu-trees for win(f) and win(d), and a t-tree for win(e) are constructed:

win(c)
|

move(c,Y),neg(win(Y))
/ \

neg(g#Finland(f)),neg(win(f))
|

neg(g#Finland(f))

neg(win(d))
|

g#Europe(f)

win(d)
|

move(d,Y),neg(win(Y))
|

neg(win(e))
|

neg(g#Europe(f))

win(e)
|

move(e,Y),neg(win(Y))
|

g#Europe(f),neg(win(f))
|

g#Europe(f)

win(f)
|

move(f ,Y),neg(win(Y))

Notice that the leaf of the tu-tree forwin(f) is failed (and the leaves of the other trees are
successful). The disjunction ¬g#Finland(f)∨g#Europe(f) of the successful leaves of
the t-tree for win(c) is found to be a logical consequence of the ontology. Hence the
answer for win(c) is Yes.

Notice that for the goals above there is no difference between t- and tu-trees, as the

case 2a is not involved.

Let us now consider a t-tree for win(X). The root win(X) has one child

move(X ,Y),neg(win(Y)), which in turn has 7 children, one per each clause for move.
Three of the children are failed leaves: neg(win(a)), neg(win(b)), neg(win(c)); the
corresponding substitutions bind X to b,a,a respectively. The first two nodes are
failed due to infinite recursion through negation; neg(win(c)) is failed as the constraint
¬¬g#Finland(f)∧¬g#Europe(f) obtained from a tu-tree for win(c) is unsatisfiable.

The remaining four children lead to success leaves. (The corresponding subtrees

occur in the trees above.) The leaves and the corresponding substitutions for X are:

g#Europe(f) ¬g#Finland(f) g#Europe(f) neg(g#Europe(f))
{X/e} {X/c} {X/c} {X/d}

82

The answers for query win(X) are: X = e provided that g#Europe(f) (obtained from
the first leaf), X = d provided that ¬g#Europe(f) (obtained from the last leaf), and

X = c (as the disjunction of the leaves with substitution {X/c} is a logical consequence
of the ontology).

In our presentation above, we imposed certain restrictions on the operational se-

mantics from [6]. 1)We deal only with ground negated goals; for non ground ones

only a crude, but sound, approximation is used (case 2a). This is to avoid (in)equational

constraints in the goals of d-trees; dealing with such constraints would be rather com-

plicated. 2)We construct all the successful leaves of a tu-tree, while in general the con-

straints of any cross-section of the tree could be taken instead. Choosing the successful

leaves as the selected cross-section produces a most general result. (Formally, the con-

straintC′ from case 2b is the most general among those that could be obtained from the

given tu-tree for l.) On the other hand, this approach fails if the set of the leaves is infi-

nite. (More precisely, if the set of the constraints of the leaves, up to variable renaming,

is infinite.) In such a case, choosing some finite cross-section can provide useful results.

In the current work we prefer the simplicity of the restricted solution to the power of

the general one. 3)A simplification of the operational semantics from [6] is that when

a literal neg(l) is selected in a goal q (case 2b above), the root for a new d-tree is l.
(The constraint of q is not passed to the new tree.) This usually results in smaller con-

straints of the goals in d-trees, and in simpler and more powerful tabulation of infinite

sequences of d-trees.

In practice it may be too expensive to check satisfiability of the constraint of each

goal. Thus the trees constructed by an actual implementation may contain more nodes

and have some additional success leaves, however with unsatisfiable constraints. Clearly

this does not violate the soundness of the operational semantics.

Further examples.

Example 3 (A non Datalog program).Here an additional requirement to the game from

the previous example is added. Each node can be visited at most once. The list of for-

bidden nodes is kept in the second argument of predicate win/2.

use ’ h t t p : / / dev . me t a j ung l e . i n f o / owl / geography . owl ’ a s ’ g ’ .

win (X) :− win (X , []) .

win (X, H i s t o r y) :− move (X,Y, H i s t o r y) , neg (win (Y, [X | H i s t o r y])) .

move (A, B , H i s t o r y) :− edge (A,B) , neg (member (B , H i s t o r y)) .

edge (e , f) :− d l (g#Europe (f)) .

edge (c , f) :− d l (neg (g# F i n l a nd (f))) .

edge (b , a) . edge (a , b) . edge (a , c) .

edge (c , d) . edge (d , e) .

member (X , [X |T]) .
member (X , [H |T]) :− member (X, T) .

Prolog built-in predicates can be used in hybrid rules. In principle, any built-in pred-

icates without side-effects (like modifying the program itself, referring to files, etc) can

83

be used. The semantics of built-in predicates is the same as in Prolog. In particular, in-

vocations of arithmetic predicates have to satisfy the relevant groundness requirements.

As the implementation employs the Prolog selection rule, the programmer’s reasoning

about the form of predicate invocation arguments is the same as for Prolog programs.

As many built-ins, like var/1 do not have any declarative semantics, we suggest that
only such built-in predicates are used, for which if an atom A fails (succeeds instantiated

to A!) then each instance of A fails (respectively succeeds instantiated to an instance of

A!).

Example 4 (Using Prolog built-ins). Here the additional condition is changed, so that

for each node a number of allowed visits is given. An atom membern(X ,L,N) is true iff
element X occurs N times in list L. Prolog arithmetic is used to deal with integers (built-

in predicates is/2 and</2). Also the built-in \=/2 (non-unifiability check) is employed
to check disequality of nodes. (This could be done without built-ins, by replacing E\=G

with neg(eq(E,G)), and defining eq/2 by eq(X ,X).)

use ’ h t t p : / / dev . me t a j ung l e . i n f o / owl / geography . owl ’ a s ’ g ’ .

win (X) :− win (X , []) .

win (X, H i s t o r y) :− move (X,Y, H i s t o r y) , neg (win (Y, [X | H i s t o r y])) .

move (A, B , H i s t o r y) :− edge (A,B) , r e s t r i c t i o n (B ,R) , membern (B , H i s t o r y ,N) , N<R .

edge (e , f) :− d l (g#Europe (f)) .

edge (c , f) :− d l (neg (g# F i n l a nd (f))) .

edge (b , a) . edge (a , b) . edge (a , c) .

edge (c , d) . edge (d , e) .

r e s t r i c t i o n (a , 7) . r e s t r i c t i o n (b , 6) . r e s t r i c t i o n (c , 1) .

r e s t r i c t i o n (d , 1) . r e s t r i c t i o n (e , 1) . r e s t r i c t i o n (f , 1) .

membern (E , [] , 0) .

membern (E , [E |L] , N1) :− membern (E , L ,N) , N1 i s N+1.

membern (E , [G |L] ,N) :− E\=G, membern (E , L ,N) .

Notice that, in contrary to Example 1, infinite games are impossible in the last

two examples. Hence each position is either winning, or losing (i.e. the value of

win(X ,History) is either true or false, for any node X and list History).

3 The prototype

This section presents a concrete prototype implementing the operational semantics pre-

sented in Section 2. We present a general architecture of the system, describe compila-

tion of hybrid programs and queries into Prolog, explain the usage of tabulation to prune

infinite computations, and present how description logic constraints are dealt with.

Figure 1 shows the user interface of the prototype. The user has entered the program

from Example 1 and a query into the respective fields. Pressing the “Query” button

compiles the program and the query, and then produces an answer to the query. The

“Compile” button displays the compiled program. The prototype is under construction,

its current version is available at http://www.ida.liu.se/hswrl/.

84

Fig. 1. The web-interface of the hybrid reasoner answering a query with a constrained answer.

Run-time system

XSB

DL reasoner

Hybrid program P

Ontology query system

Answer

Prolog
program P’

System
Interface

Query Q

Compilation phase Querying phase

Query Q’

Jena/DIG

InterProlog Pellet

Compiler

Fig. 2. Prototype architecture overview.

85

General architecture. An overview of the main components of the reasoning system

is shown in Figure 2. The systems is comprised of three main components:

1. Compiler. In order to reuse a Prolog engine for handling the rule part of a hybrid

knowledge base, we compile hybrid rules (and queries) to plain Prolog.

2. Run-time system.When querying a hybrid program, the reasoner queries the com-

piled program (using a compiled query). The run-time system is implemented in

Prolog. It is responsible for constructing derivation trees and for proper handling of

constraints, as they appear in the underlying hybrid program.

3. Ontology query system. The run-time system interactively communicates with an

ontology query system, responsible for checking ontological constraints.

Both the run-time and ontology query systems treat the underlying Prolog and DL en-

gines as black boxes. No modifications of the engines are needed; in principle any Pro-

log implementation supporting communication with Java, and any DL reasoner with a

DIG interface may be used. It is desirable that the Prolog engine provides tabulation,

which discovers (some) infinite branches of search trees. Otherwise a rather poor ap-

proximation of the well-founded semantics is obtained. In our prototype we use XSB

Prolog system [14] and Pellet [12].

Before discussing the main system components in detail, we motivate the use of

protocols and API’s that we depend upon for the realization of the system.

InterProlog [11] is a Prolog-Java interface, enabling communication and data shar-

ing between Prolog and Java programs. Communication can be handled both ways, that

is, passing Java objects to Prolog and sending Prolog terms to Java programs. There

is no standard interface between Prolog systems and DL-reasoners. However, there

are API’s for handling communication with DL reasoners from Java programs (e.g.

Jena [10]). Thus, communicating with Java programs from Prolog enables access to

DL-reasoners from Prolog.

Two Prolog predicates are provided by InterProlog to aid in communication with

a Java program. First, in order to prepare for the passing of data between Java and

Prolog, InterProlog provides the predicate buildTermModel/2. This predicate encodes

Prolog terms, such that they might be sent to a Java program and be properly under-

stood using the Java API provided by InterProlog. E.g. buildTermModel([1,2,3],P)

succeeds with the variable P unified with the encoding of the list [1,2,3]. Second, the

predicate javaMessage/3 is provided to invoke a specific Java method and thereby

enabling the passing of prepared Prolog terms as arguments. E.g. the Prolog goal

javaMessage(’Class’-obj,R,method(P)) produces a result R of calling the Java

method Class.obj.method(P).

A protocol for communication with DL-reasoners is provided by DIG and is emerg-

ing as a standard [3]. The implementation does not directly use DIG, but the DL-

reasoner interface provided by Jena [10] employs DIG. Thus, as long as a DL-reasoner

is DIG-compliant, it may be plugged into our system.

Compiling HD rules into XSB Prolog. The hybrid rules include DL constraints and

cannot be directly used in Prolog computations. Each negative literal encountered in a

86

Prolog computation initiates construction of an underlying derivation tree, where DL-

constraints also have be handled. To address these issues a given HD-Program is first

compiled into a Prolog program.We here explain the idea of the compilation and discuss

the details.

The underlying idea of the compilation technique is to prevent the constraints to

be selected by the Prolog selection function during rule execution. However, since

constraints may share variables with rule predicates, such constraint variables need to

be processed and unified when the corresponding variables in the rule predicates are.

Achieving this is possible by moving the constraint predicates into arguments of other

predicates (which are selected by the selection function). In general, each n-ary non-

constraint predicate is extended with three additional arguments during compilation

(where−→ represents the compilation step):

p(ū) −→ p(ū,Table,Constraint,Mode)

The first extra argument (Table) is used to prevent infinite recursion through negation

(further explained below). The second argument (Constraint) will represent the con-

straints accumulated during resolving the sub-goal p(ū). The third argument (Mode)
will obtain a value t or tu, depending on which kind of derivation tree is currently

being constructed. While compiling a clause, the Constraint argument for each literal

is a unique variable. On the other hand, the Table and theMode argument are each the

same variable for all the rule literals of the clause (including the head literal).

When a negative literal neg(p(ū)) is encountered, a new derivation tree is to be

constructed for the positive version p(ū) of the literal, and the constraints accumulated
along the branches of the tree are to be treated as described in Section 2. This is done

by a predicate negation/4. Thus negative rule literals are compiled into appropriate
invocations of this predicate:

neg(p(ū)) −→ negation(p(ū),Table,Constraint,Mode)

Let t(R) denote a rule literal R translated as described above. A hybrid rule

R0 :− R1, . . . ,Rn,dl(C1), . . . ,dl(Cm)

is compiled into

t(R0) :− t(R1), . . . ,t(Rn),
andAppend(Constraint1, . . . ,Constraintn,C1, . . . ,Cm,Constraint0)

where Constrainti is the second additional argument of t(Ri) (for i = 0, . . . ,n). The
predicate andAppend unifies Constraint0 with the conjunction of the constraints of the

rule and the constraints accumulated by the invocations of t(R1), . . . ,t(Rn). In practice
this is not a single atom, but n− 1 atoms with a predicate andAppend/3; they include
a term which represents the conjunction ofC1, . . . ,Cm. (The constraints are represented
as conjunctions, more precisely as lists built with symbols and/2 and true/0; predi-
cate andAppend/3 joins two such lists.) If n < 2 then andAppend is not used. Instead,

Constraints0 in the head is replaced by a term representing the conjunction of C1, . . . ,
Cm when n= 0 (or the conjunction ofC1, . . . ,Cm andConstraint1 when n= 1).

87

Predicate negation/4 is a main predicate of the run-time system. It constructs a d-
tree for its first argument, employing findall/3 of Prolog. The tree is a tu-tree if the
Mode argument is t, and a t-tree otherwise. Moreover, negation/4 collects the con-
straints C1, . . . ,Ck of the success leaves of the tree, and returns in its third argument
the formula ¬∃C1 ∧ . . .∧¬∃Ck. (If some Ci is true then negation/4 fails, as in such
case ¬∃C1∧ . . .∧¬∃Ck is unsatisfiable.) If the tu-tree cannot be constructed (due to non
ground root or infinite recursion through negation) then negation/4 returns true or fails,
according to case 2a of the description of the operational semantics.

Hybrid rules may contain Prolog built-ins. Literals with built-in predicates are passed

unchanged to the compiled program, without adding the three extra arguments. If such

literal is negative then, in the current version of the system, the negation is converted

into Prolog negation as failure.

Compiling queries. Queries to hybrid programsmust also be compiled before queried

wrt. the compiled hybrid program. Queries consisting of a single literal are compiled in

the following way:

p(ū) −→ p(ū, [],Constraint,t)
neg(p(ū)) −→ negation(p(ū), [],Constraint,t)

That is, the tabling table is initially empty (the empty list), the constraints will be col-

lected in a variable (here Constraint), and the top level d-tree to be constructed is a

t-tree. (For a negative literal this tree consists of two or three nodes only.)

Each answer for a compiled query provides a constraint Constraint!, and an in-

stance ū! of the variables of the original query. If the constraint is unsatisfiable w.r.t.

the ontology, the answer is discarded. If the constraint is a logical consequence of

the ontology, then p(ū!) follows from the hybrid program.4 Otherwise, implication

Constraint!→ p(ū!) follows from the program.
If there are many answers Constraint!1, . . . ,Constraint!k and p(ū) is ground then

Constraint!1∨ · · ·∨Constraint!k implies p(ū), and the constraintConstraint!1∨ · · ·∨
Constraint!k is checked w.r.t. the ontology. For a non ground query we can deal sim-

ilarly with such answers Constraint!1, . . . ,Constraint!k for which the corresponding
instances of the goal are the same: ū!1 = · · · = ū!k.

Queries that are conjunctions of literals can be compiled similarly to the bodies of

hybrid rules; the difference is that [] is used instead of the variable Table and t instead
ofMode.

Example 5. The rule

move(A,B,History):−edge(A,B),restriction(B,R),membern(E,History,N),N<R.

from Example 4 is compiled into

move (A, B , H i s t o r y , Tbl , Cnst , M) :−
edge (A, B , Tbl , Cns t1 , M) , andAppend (Cns t1 , Cns t23 , Cns t) ,

r e s t r i c t i o n (B , R , Tbl , Cns t2 , M) , andAppend (Cns t2 , Cns t3 , Cns t23) ,

membern (E , H i s t o r y , N, Tbl , Cns t3 , M) ,

N < R .

4 More generally, it is sufficient that ∃Constraint! is a logical consequence, where the quantifi-
cation is over those free variables of Constraint! that do not occur in p(ū!).

88

Keeping the related compiler predicate simple resulted in a maybe not natural way of

placing andAppend/3 atoms in the compiled clauses.
The set of hybrid rules of Example 1 is compiled into:

win (X, Tbl , Cnst , M) :− move (X, Y, Tbl , Cns t1 , M) ,

andAppend (Cns t1 , Cns t2 , Cns t) ,

n e g a t i o n (win (Y) , Tbl , Cns t2 , M) .

move (e , f , Tbl , and (’ g#Europe ’ (f) , true) , M) .

move (c , f , Tbl , and (neg (’ g# F i n l a nd ’ (f)) , true) , M) .

move (b , a , Tbl , true , M) . move (a , b , Tbl , true , M) .

move (a , c , Tbl , true , M) . move (c , d , Tbl , true , M) .

move (d , e , Tbl , true , M) .

A query win(e) is compiled into win(e, [],Cnst,t). Executing the latter goal results
in calling negation(win(f), [],Cnst2,t), and construction of a tu-tree forwin(f)without
successful leaves (see Ex. 2). We obtainCnst2= true and the initial goal succeeds once,

with Cnst bound to and(g#Europe(f),true) (which is equivalent to g#Europe(f)).
This constraint is found to be satisfiable but not a logical consequence of the ontol-

ogy. Thus the user is informed that the answer is Yes, under condition g#Europe(f).
A query neg(win(d)) is compiled into negation(win(d), [],Cnst,t), this query re-

sults in constructing a tu-tree for win(d), a t-tree for win(e), and a tu-tree for
win(f). The latter steps are already described above. The (only) leaf of the tu-
tree for win(d) is (equivalent to) neg(g#Europe(f)), and the (only) answer ob-
tained for negation(win(d), [],Cnst,t) is (equivalent to) g#Europe(f). The answer for
neg(win(d)) given for the user is the same as that for win(e) in the previous case.

A (compiled) query win(c, [],Cnst,t) results in two answers (equivalent to)

g#Europe(f) and neg(g#Finland(f)). Their disjunction is found a logical consequence
of the ontology. Hence the answer returned for a query win(c) is Yes.

Tabulation. The operational semantics described in Section 2 may result in d-trees

with infinite branches. Also constructing an infinite set of d-trees is possible (due to

recursion through negation).We use tabulation of XSB Prolog to discover infinite trees.

The way in which it prunes infinite branches is sound w.r.t. our operational semantics,

as the resulting tree has the same set of success leaves.

Unfortunately, the native XSB tabulation cannot be used to discover that an infi-

nite set of d-trees is being constructed. This is because the tree constructing predicate

appears in the first argument of ->/2. XSB refuses to tabulate such predicates, and
tabulation is implemented using an extra argument of the compiled predicates. If this

tabulation discovers an infinite computation then case 2a of the definition of the opera-

tional semantics (Section 2) is applicable.

For Datalog normal programs, tabulation of XSB Prolog guarantees finiteness of

computation. As the Herbrand base is finite, each infinite branch of a tree and each

infinite sequence of trees can be discovered and pruned. This is not the case for Datalog

hybrid programs (i.e. hybrid programs over a finite Herbrand universe). The reason is

that the set of constraints over a finite Herbrand universe is not finite. Hence tabulation

is not able to discover some infinite branches of a d-tree (and some infinite sequences

of d-trees). Some additional safeness conditions [6] imply that the constraints of the

89

leaves of a d-tree are ground. Then the tabulation approach described above results in

finite computations only. Under these conditions our implementation is complete for

non floundering Datalog hybrid programs. (For a given program and goal, floundering

means selecting a non ground negative rule literal.)

Handling DL constraints. DL-reasoners normally implement satisfiability verifica-

tion of a knowledge base as the main reasoning service. All other services are reduced

to the problem of checking satisfiability of the knowledge base [2]. A commonly of-

fered service is to check if an individual (a) belongs to some concept (C). This service

is reduced to satisfiability by extending the knowledge base with the axiom {a :¬C}.
The queryC(a) is then a logical consequence of the knowledge base if its extension is
unsatisfiable.

Disjunctive queries are usually not offered as an explicit service by DL-reasoners.

However, a disjunctive query C(a)∨D(b) can be reduced to checking unsatisfiabil-
ity of the knowledge base extended with {a :¬C, b : ¬D} [1]. General disjunctive DL
queries cannot in a straight-forward manner be solved in this way. Most DL logics do

not consider negated roles (properties) to be valid expressions. Hence, using the same

approach for roles is not feasible. This is why our prototype only allows concept literals

(not properties) as constraints in programs.

In the general case, it may be necessary to delay constraint checking until the last

step of query answering. If several nested derivation trees have been constructed dur-

ing rule reasoning, a nested constraint is produced. That is, the constraint possibly is a

conjunction of negated constraints, which in turn are (possibly existentially quantified)

conjunctions and so on. However, nested constraints can be normalized into a conjunc-

tive normal form (CNF) of concept literals. That is, a conjunction where each conjunct

is a disjunction of concept literals (non-nested).

A conjunctive DL query C1 ∧ . . .∧Cn where the conjuncts are disjunctions of con-
cept literals can be answered in the following manner [9]. Each conjunct can be solved

as described above. If each conjunct is a logical consequence of the underlying knowl-

edge base, then so is the original conjunctive query (and vice versa).

It is a design decision when the obtained constraints are checked for satisfiability.

In principle, such check should be performed for each constructed constraint. This is

however too expensive. (On the other hand, this prunes d-tree branches as early as

possible.) Currently the check is performed at completion of the main t-tree, this means

once per goal. Alternative strategies are being considered, for instance performing the

check at completion of each d-tree.

4 Conclusion

This paper describes a way of implementing HD-rules, an approach of combining non

monotonic rules of Logic Programming (LP) with monotonic first order theories of De-

scription Logic (DL). The approach has been introduced in [6]. Its declarative semantics

combines the well-founded semantics of LP with the standard first order semantics of

DL. An operational semantics is provided. Its main advantage is that an existing DL rea-

soner and existing Prolog engine can be re-used; hence the effort to construct an imple-

90

mentation is low. Here we implement a somehow simplified version of that operational

semantics. Hybrid rule programs are compiled into XSB Prolog. A run-time system ex-

ecutes the compiled programs and interfaces a DL reasoner. The interface itself is pro-

grammed in Java, using Jena (and indirectly DIG). The compiler is written in XSB Pro-

log. The prototype is under development, and available at http://www.ida.liu.se/hswrl/.

Acknowledgement. This research has been partially funded by the European Commis-

sion and by the Swiss Federal Office for Education and Science within the 6th Frame-

work Programme project REWERSE number 506779 (cf. http://rewerse.net).

References

1. F. Baader, H.-J. Bürckert, B. Hollunder, W. Nutt, and J. H. Siekmann. Concept logics. Tech-

nical Report RR-90-10, 1990.

2. F. Baader, D. Calvanese, and D. McGuiness(et.al.), editors. The Description Logic Hand-

book. Cambridge University Press, 2003.

3. DIG. WWW Page. URL: http://dig.sourceforge.net/. Accessed 7 February 2007.

4. W. Drabent. What is failure? An approach to constructive negation. Acta Informatica,

32(1):27–59, Feb. 1995.

5. W. Drabent, J. Henriksson, and J. Maluszynski. Hybrid reasoning with rules and constraints

under well-founded semantics. In Web Reasoning and Rule Systems, Proceedings RR 2007,

volume 4524 of Lecture Notes in Computer Science, pages 348–357. Springer-Verlag, 2007.

6. W. Drabent and J. Maluszynski. Well-founded semantics for hybrid rules. In Web Reason-

ing and Rule Systems, Proceedings RR 2007, volume 4524 of Lecture Notes in Computer

Science, pages 1–15. Springer-Verlag, 2007.

7. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective integration of declarative rules

with external evaluations for semantic-web reasoning. In Proc. of European Semantic Web

Conference, pages 273–287, 2006.

8. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded semantics for de-

scription logic programs in the semantic web. In RuleML, pages 81–97, 2004.

9. I. Horrocks and S. Tessaris. A conjunctive query language for description logic aboxes.

In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth

Conference on Innovative Applications of Artificial Intelligence, pages 399–404. AAAI Press

/ The MIT Press, 2000.

10. Jena Semantic Web Framework. WWW Page, 18 August 2005. Available at http://jena.

sourceforge.net/. Accessed 7 February 2007.

11. Miguel Calejo. InterProlog - a Prolog-Java interface. WWW page, September 2006. Avail-

able at http://www.declarativa.com/interprolog/. Accessed 7 February 2007.

12. Pellet OWL Reasoner. WWW Page, 14 March 2006. Available at http://www.mindswap.

org/2003/pellet/index.shtml.

13. R. Rosati. Dl+log: Tight integration of description logics and disjunctive datalog. In KR,

pages 68–78, 2006.

14. XSB. WWW Page. URL: http://xsb.sourceforge.net/. Accessed 7 February 2007.

91

Using Prolog as the fundament for applications
on the semantic web

Jan Wielemaker1, Michiel Hildebrand2, and Jacco van Ossenbruggen2

1 Human Computer Studies,
University of Amsterdam,

The Netherlands,
wielemak@science.uva.nl

2 CWI, Amsterdam, The Netherlands
firstname.lastname@cwi.nl

Abstract. This article describes the experiences developing a Semantic
Web application entirely in Prolog. The application, a demonstrator that
provides access to multiple art collections and linking these using cultural
heritage vocabularies, has won the first price in the ISWC-06 contest on
Semantic Web end-user applications. In this document we concentrate on
the Prolog-based architecture, describing experiences and vital aspects
of the design.

1 Introduction

Prolog has some attractive properties for Web and Semantic Web applications.
Safety and automatic memory management as well as incremental compilation
are essential to web-programming, (natural) language processing, simple rea-
soning, constraint programming and a natural representation of the Semantic
Web triple model are features that contribute to the usability of Prolog for
web-programming. Disadvantages are lack of ready-to-use resources for dealing
with Web protocols and documents as well as the availability of skilled Prolog
programmers in this field.

Within the E-culture research program3 we were in the luxury position to
have access to a good Prolog based starting point [13] and contributing re-
searchers with Prolog affinity and experience. A small demonstrator was ex-
tended into a award-winning application [9] by a team of five programmers spread
over three institutes.

SWI-Prolog’s features for Web-programming are described in detail in [14].
This document describes practical experience using the framework in a larger
project. We concentrate on design aspects to facilitate re-usability and indepen-
dence between the various components of the software.

This document is organised as follows. First we introduce the E-culture
demonstrator, briefly describing its functionality and software architecture. Then
we describe the libraries enabling the design, concentrating on those that have
3 http://e-culture.multimedian.nl/

92

been added during the project to enhance modularity and reuse. In Sect. 7 we
give some practical tips for deployment of a large Prolog-based server on the
Web. We conclude with problems, lessons learned, related work and plans.

Fig. 1. Screendumps of the E-culture web-application. (a) simple text-based search
interface, (b) geographical map visualisation, (c) resource annotation interface, (d)
faceted navigation, (e) timeline visualisation.

2 Introducing the E-culture demonstrator

The aim of the E-culture demonstrator is to provide a common gateway to multi-
ple museum collections and cultural heritage documents. Museums use different
database models based on different vocabularies to represent their collection.
Merging this into a single datamodel is complicated, labour intensive and leads
to loss of information due to inadequacy of the common model as well as errors in
the transformation process. We converted [11] both vocabularies and meta-data
into RDF/OWL preserving the original structure. Only where literal strings were
based on a known vocabulary, we restored the mapping to the vocabulary. Af-
ter this lossless transformation process, the meta-data schema is mapped to the
standard VRA schema4 using RDFS subPropertyOf relations and cross-relations
between vocabularies were restored or created. Our current RDF graph contains
4 http://www.vraweb.org/

93

8.6 million triples describing over 100,000 art-objects from 4 different sources
and 7 vocabularies.

The RDF graph is stored in memory [15] and made accessible from Prolog
by means of the predicate rdf(Subject, Predicate, Object). The web-server of
the demonstrator is realised by the SWI-Prolog multi-threaded HTTP server
library5. In this web-server, a predicate serves one (typical) or more HTTP loca-
tions. The handler receives the parsed HTTP request as a Prolog data structure
and writes a CGI document to the current output stream. This approach is
comparable to Tomcat, where a class is defined to handle an HTTP location by
writing a CGI document onto a stream.

Although any Prolog predicate that produces a valid CGI document can be
used, the library html write provides a DCG-based framework to write HTML
and XHTML documents from the same specification. This library ensures proper
nesting of tags and escapes for special characters. The library is described in [14].

The system contains two types of reusable modules. Reasoning modules on
top of RDF provide RDFS (Schema) and limited OWL inferencing as well
as more domain specific reasoning such as various graph-search and graph-
abstraction predicates. Presentation modules define HTML DCG rules produc-
ing reusable components of the interface, such as presenting an image thumbnail
or a widget that allows for selecting a term from a vocabulary using AJAX-based
[7] interactivity.

Based on these reusable modules, different interfaces to the data are realised
by different HTTP locations. Currently we have four interfaces. Basic search
performs a graph-search from literals that match at least one word with the
query to target objects (art-works) and clusters the results based on the RDF
properties and class of the resource in the path from literal to target object.
Relation search describes relations between arbitrary objects. /facet provides a
traditional facetted browser [5] and Mazzle merges basic search with facetted
browsing while providing multiple points of focus, currently art-works, artists
and geographical locations. Figure 1 shows some screenshots of the application,
while the architecture is summarised in Fig. 2

3 Used technologies

It is an explicit aim of the project to use Open Standards where possible. This
implies RDF/OWL for representing meta-data and vocabularies, a web-server
(HTTP) using W3C standards for access. Machine-access is provided by means
of the SPARQL6 or SeRQL [2] RDF query language while human access uses
browser standards.

Standard HTML has two limitations: lack of graphics and lack of interactiv-
ity. Initially these were resolved using SVG for non-interactive graphics and Java
applets for interactivity. Eventually both have been replaced by HTML+CSS
using AJAX for interactivity. HTML+CSS has limited graphical capability, but
5 http://www.swi-prolog.org/packages/http.html
6 http://www.w3.org/TR/rdf-sparql-query/

94

Prolog

RDF Store

RDFS OWL

Application

Reasoning

HTTP

HTML-WRITE

Reusable

interface DCGs

Basic Search /facet Mazzle

C

Web-Applications

Reusable

application code

Prolog Libraries

Fig. 2. Architectural components of the Prolog-based web-application

sufficient for our needs and they are much better supported by todays browsers.
HTML+CSS with AJAX can deal with the interactivity we require, such as
suggesting relevant vocabulary terms on each key-stroke in a text entry field.
(Re)usable AJAX client scripts are widely available. Providing the required
HTTP service that connects them to the data is easy.

4 Core Web libraries

In this section we describe the core libraries that enable the design. Some libraries
have been described in other publications, in which case we keep the description
concise.

4.1 The RDF library

The RDF library [15] is the core of SWI-Prolog’s Semantic Web infrastructure.
The key predicate is rdf(Subject, Predicate, Object), providing very natural ac-
cess to the triple store. The predicate itself is defined in C. Because we know all
clauses are ground unit clauses, resources are atoms and predicates are organised
in a hierarchy using rdfs:subPropertyOf we can design an optimal representation
minimising space and optimising access times. During the E-culture project we
realised several enhancements to the core RDF library that are not described in
previous publications and which we describe below.

Multi-threading support is enhanced by introducing read-write locks and
transactions. During normal operation, multiple readers are allowed to work con-
currently. Transactions are realised using rdf transaction(:Goal, +Context). If
a transaction is started, the thread waits until other transactions have finished. It
then executes Goal, adding all write operations to an agenda. During this phase
the database is not actually modified and other readers are allowed to proceed.

95

If Goal succeeds, the thread waits until all readers have completed and updates
the database. If Goal fails or throws an exception the agenda is discarded and
the failure or error is returned to the caller of rdf transaction/2. Note that
this behaviour is different from multi-threaded Prolog assert/retract.

– In multi-threaded (SWI-)Prolog, accessing a dynamic predicate for read or
write demands synchronisation only for a short time. In particular, readers or
writers with a choice-point allow other threads to operate on the same predi-
cate. At the same time logical update semantics are realised. This is achieved
using time-stamps and keeping erased clauses around until the predicate is
sufficiently ‘dirty’ and there are no readers or writers.

– Multiple related modifications are bundled in a transaction. This is often
desirable as many high-level (RDFS/OWL) changes involve multiple triples.
Using transactions guarantees a consistent view of the database and avoids
partial modifications.

RDF literals have been promoted to first class citizens in the database.
Typed literals are supported using arbitrary Prolog terms as RDF object. Num-
bers (float, integer) are store in their native C representation, Unicode strings
are stores as Prolog atom-handles and other Prolog terms are stored using the
recorded-database access provided by SWI-Prolog through the foreign interface
by means of PL record(), PL recorded() and PL erase(). All literals are kept in
an AVL-tree, where

numeric-literals < string-literals < term-literals

Numeric literals are sorted by value. String literals are sorted alphabetically,
case insensitive and after removing diacritics. String literals that are equal after
discarding case and diacritics are sorted on Unicode value. Other Prolog terms
are sorted on Prolog standard order of terms. Sorted string literals are used for
fast prefix search which is important for suggestions and disambiguation as-you-
type with AJAX style interaction.

The literal search facilities are completed by means of monitors. Using
rdf monitor(:Goal, +Events) we register a predicate to be called at one or
more given events. Monitors that trigger on literal creation and destruction are
used to maintain a word-index for the literals as well as an index from stem to
word and metaphone [8] key to word. Monitors are also used to achieve persis-
tency. For persistency, each named graph is backed up by a file containing the
state after initial load or last check-point and a file describing actions on the
named graph, the journal.

4.2 Library HTML write

The HTML writer library uses Prolog DCGs in ‘write’ mode to translate a
ground Herbrand term into a list of HTML tokens. The tokens are written to a
Prolog stream using print html/2 to produce valid HTML. The Herbrand term
can have embedded \term sequences, which causes nested invocation of the DCG

96

referenced by term. We introduce the HTML library using an example from the
OpenID7 library. Note the in-line invocation of the rules openid title//0 and
hidden//2. Details have been described in [14].

4.3 Session management

The core HTTP library defines a hook to expand the HTTP re-
quest. This hook is exploited by the session management library to re-
alise cookie-based session management. The session library also defines
http session assert(+Term), http session retract(?Term) and common as-
sert/retract variations to realise storage of session specific data which can be
queried using http session data(?Term).

Session-data is automatically retracted after session timeout. Start and end
of a session is broadcasted (see Sect. 4.6), to enable additional processing by
individual modules.

4.4 The HTTP dispatching code

The core HTTP library, described in [12], handles all requests through a single
predicate. Normally this predicate is defined ‘multifile’ to split the source of the
server over multiple files. This approach proved inadequate for a larger server
with multiple developers for the following reasons:

– There is no way to distinguish between non-existence of an HTTP location
and failure of the predicate due to a programming error. This is an omission
in itself, but with a larger project and multiple developers it becomes more
serious.

– There is no easy way to tell where the specific clause is that handles an
HTTP location.

– As the order of clauses in a multi-file predicate that come from different
files is ill defined, it is not easy to reliably redefine the service behind a given
HTTP location. Redefinition is desirable for re-use as well as for experiments
during development.

To overcome these limitations we introduced a new library http dispatch that
defines the directive http handler(Location, Predicate, Options). The directive
is handled by term expansion/2 to manage a multi-file predicate. This pred-
icate in turn is used to build a Prolog term stored in a global variable that
provides fast search for locations. Modifications to the multi-file predicate cause
re-computation of the Prolog term on the next HTTP request. Options can be
used to specify access rights as well as a priority that allows for overruling ex-
isting definitions. Typically, each location is handled by a dedicated predicate.
Based on the handler definitions, we can easily distinguish failure from non-
existence as well as find, edit and debug the predicate implementing an HTTP
location.
7 http://openid.net/

97

%% openid_login_form(+ReturnTo, +Options)// is det.
%
% Create the OpenID form. This is exported as a separate DCG,
% allowing applications to redefine /openid/login and reuse this
% part of the page.

openid_login_form(ReturnTo, Options) -->
{ option(action(Action), Options, verify)
},
html(div(class(’openid-login’),

[\openid_title,
form([name(login),

action(Action),
method(’GET’)

],
[\hidden(’openid.return_to’, ReturnTo),
div([input([class(’openid-input’),

name(openid_identifier),
size(30)

]),
input([type(submit),

value(’Verify!’)
])

])
])

])).

hidden(Name, Value) -->
html(input([type(hidden), name(Name), value(Value)])).

openid_title -->
html(div(class(’openid-title’),

[a(href(’http://openid.net/’),
img([src(’file?name=openid_logo’), alt(’OpenID’)])),

span(’Login’)
])).

Fig. 3. HTML DCG presenting OpenID login page.

98

4.5 Setting management

Managing settings of the application is not typical for Web-servers, but the size
of this project raised the need for central management of settings. Initial man-
agement was based on a file called parms.pl that defined setting/1, containing
clauses like setting(thumbnail_size(100,100)). As the project grew we re-
alised it was difficult for different developers to maintain different values for the
settings without corrupting the central file under CVS revision control and this
central file, holding information for many modules, seriously harmed modularity
of the application and we introduced two new libraries. One for declaring, stor-
ing and asking setting values and one for querying and editing settings through
the web-interface.

Declaration of a setting is achieved using the directive setting(:Name,
+Type, +Default, +Comment). Settings are local to a module. Settings from
other modules can be defined and requested using the standard 〈module〉:〈name〉
syntax instead of using a plain atom for the name. The interface includes set-
ting(:Name, -Value), set setting(:Name, +Value), save settings(+File) and
load settings(+File). When settings are saved to file, only those that have a
value not equal to their default are saved. Setting default declarations provide
syntactical constructs to ask for environment variables and the value of other
settings. Numerical settings can use arithmetic expressions and textual settings
can use the + operator for concatenation.

Whenever a setting is modified the broadcast library described in Sect. 4.6 is
informed. This allows modules to react on changes to settings immediately, also
for settings that are only read during initialisation of the service.

The result provides distributed declaration of settings that no longer harms
modularity. Proper typing and comments simplify reuse of settings over the
application and an extensible web-interface manages the application settings.

4.6 The broadcasting service

The Prolog library broadcast was initially developed for the graphical subsystem
XPCE to deal with application events and distributed information gathering. Its
function can be compared to hooks, but central administration makes it easier
to inspect broadcasted events and check who is listening to what events. The
hooks are called listeners and are owned, where the owner is represented by
an arbitrary ground term. When omitted, this is the module-name making the
registration. We illustrate the functionality using a simple session. The atom me
represents the owner. Details and source can be requested from the SWI-Prolog
documentation server8.

?- listen(me, hello(X), format(’Hello ~w~n’, [X])).
?- broadcast(hello(world)).
Hello world
?- unlisten(me).
8 http://gollem.science.uva.nl/SWI-Prolog/pldoc/

99

?- broadcast(hello(world)).

Where broadcast/1 runs a failure driven loop over all listeners, broad-
cast request/1 is non-deterministic and succeeds on any listener that succeeds.

The web-libraries use the broadcasting service for session and setting man-
agement.

5 SWI-Prolog enabling features

Discussed with more detail in [14], we will briefly summarise the requirements
on Prolog that enable its use as Semantic Web application platform.

– Scalability requires for a multi-threaded Prolog engine. Next to exploiting
multi-CPU hardware efficiently, it also avoids slow queries from making the
server inaccessible.

– Using unlimited-length Unicode atoms and atom garbage collection allows
for uniform and simple representation of arbitrary text for web-applications.

– The system requires support for incremental compilation, so code can be
modified and the server can be updated and tested without restart or loos-
ing sessions. SWI-Prolog offers make/0, which reloads all modified source-
files comfortably. Currently, temporal inconsistencies in the running program
during reload can cause errors in services that run concurrently. We plan to
enhance this using read-write locks that synchronise program update with
the HTTP worker threads. Lacking these locks is generally no problem for
local development or non-critical public services.

6 The role of RDF query languages

Most Semantic Web applications are modelled after relational database applica-
tions, where the application logic accesses the database through SQL. We see a
number of Semantic Web equivalents to SQL, such as SeRQL [2] and the W3C
recommendation SPARQL9. Both allow for specifying a graph expression con-
sisting of a number of obligatory and optional edges and nodes extended with
conditions on literal values, SeRQL matches the graph expression on the tran-
sitive closure using the semantics of RDFS. The SPARQL standard does not
specify whether or not entailment reasoning is performed by the database en-
gine. We implemented SeRQL and SPARQL support on top of the SWI-Prolog
Semantic Web library using the HTTP infrastructure defined in this document
to make the server accessible for both humans and machines.

The E-culture application, however, does not use SeRQL or SPARQL. In-
stead, queries by the application logic are expressed as Prolog goals on the raw
RDF database and/or RDFS/OWL reasoning modules. At places where the or-
der of executing conjunctions is critical and cannot easily be predicted by the
9 http://www.w3.org/TR/rdf-sparql-query/

100

application programmer, we use the query optimiser we developed for the SeRQL
server [13], which rewrites a Prolog goal involving multiple calls to rdf/3 and
tests for optimal performance. Semantic Web query languages are not used in
the application logic because

– Prolog itself already provides a completely transparent and easy to use API.
As the application programmer uses Prolog anyway, Prolog syntax is a nat-
ural choice. Note that a classical approach for accessing relational databases
from Prolog is by translating Prolog goals into SQL statements [6]. We see
only a role using a query language for access by external applications and if
query expressions are used to specialise the application for a specific envi-
ronment and this specialisation is done outside the application itself.

– SPARQL lacks expressiveness to construct complex path expressions. For ex-
ample, SPARQL does not support regular expressions in query paths, there-
fore, there exists no query that gets the root of a resource given a transitive
property. Note that PSPARQL [3] is being developed to support exactly this.

– For our purpose we often need specific RDFS/OWL reasoning support in
different parts of the demonstrator. Partial reasoning that fulfil our require-
ments is easily implemented and performs well. We believe efficient complete
DL-reasoning over our large and generally inconsistent RDF store is not re-
alistic.

– We have a need for dedicated graph search in which we guarantee quick
termination by limiting the ‘semantic distance’ based on weighted relations.

– Current Semantic Web query languages support for literal search is generally
limited to regular expression search and numerical conditions. We have need
for searching for keywords that can appear inside literals, possibly consider-
ing stemming. We also require fast prefix search for the suggestion interface,
both on full literals and on keywords. Many applications solve this prob-
lem by populating a general text indexing engine such as Lucene10 with the
literals.
Indexing integrated with the RDF store, however, greatly reduces memory
requirements and access times, while simplifying maintenance when the RDF
store is modified.

7 Deployment

Like Apache, Tomcat, etc., the Prolog based HTTP server can talk directly to a
standard compliant browser. This setup, running the Prolog server interactively
from a non-privileged port is normally used by the developers.

With some care, public deployment can also use the Prolog server directly.
On a typical Unix system this requires the server to be started as root and make
the required system calls available from Prolog to drop privileges after opening
the server port. Typically this setup asks for a dedicated, possibly virtual, server
machine. Due to practical considerations we opted for the option to use a public
10 http://lucene.apache.org/

101

Apache server as reverse proxy. It also allows placing the Prolog server inside
a firewall and realises a greater level of reliability because ill-formed requests
are already blocked by the proxy server. The configuration file below makes the
demo available from apache. Apache requires the standard modules proxy and
proxy http to be enabled The Prolog server listens to port 3020.

ProxyPass /demo/ http://mn9c.mydomain.org:3020/demo/
ProxyPassReverse /demo/ http://mn9c.mydomain.org:3020/demo/

The Prolog server is started from a Unix boot script. Maintenance of the E-
culture demo such as re-loading modified Prolog source files using make/0 is
realised by means of HTTP commands. The SWI-Prolog documentation server11
is realised with a similar setup, but the Prolog server runs interactively in a
terminal inside a VNC server session using an unprivileged user that is started
from a Unix boot script. This setup allows easy monitoring and modifications
by contacting the VNC virtual desktop.

8 Metrics

Our current RDF store contains 8.6 million triples while we plan to deal with
150 million triples on a server with 8 CPUs and 32GB main memory within 2
years. The application specific code is about 35,000 lines. The SeRQL/SPARQL
infrastructure counts 18,000 lines. Finally, the SWI-Prolog HTTP library is 5,100
lines and the Semantic Web database 7,300 lines Prolog and 11,000 lines of C.

Time to load all 8.6 million triples from RDF/XML and Turtle source is 350
seconds. Time to restore from the file-based persistent database is 40 seconds.
Timings are measured on an Intel core duo X6800@2.93Ghz using the 64-bit
version of SWI-Prolog 5.6.34 under SuSE Linux 10.2. Initial load and restore are
currently not multi-threaded.

Process’ data size is 1.8GB (64-bit mode). Resources are represented as
atoms. We counted 3,4 million atoms, 0.6 million for the literal index, 2.8 million
for resources and literals and only 18,000 for the program.

The 8.6 million triples contain 1.9 million literals. The token and stem indices
are built in 90 seconds and require 200MB memory. The token index contains
1.0 million words and numbers. The stem index has 380,000 stems.

We acquired some statistics on public server. During 3 days of operation
using 8 worker threads on 2 CPUs it used 12,000 seconds CPU time, an average
of 2.5% of the system capacity. Table 1 shows how calls to rdf/3 are distributed
over the possible instantiation patterns.

9 Problems experienced

Our server uses a large amount of not very well established technology. There
is not much established technology in the Semantic Web world, making this un-
avoidable in that part of the application. For serving general web-pages however
11 http://gollem.science.uva.nl/SWI-Prolog/pldoc/

102

Indexed Calls
- - - 14,430
+ - - 833,552
- + - 3,600
+ + - 216,792,146
- - + 2,252,522
- + + 38,739,699
+ + + 2,337,826

Table 1. Indexing pattern on rdf(Subject,Predicate,Object) calls after 3 days of oper-
ation.

there are many alternatives such as Tomcat servlets, jsp, php, asp, etc. Doing
it all in Prolog greatly simplifies and enhances the performance in the interac-
tion between the RDF store and the general web-page generation. It also greatly
simplifies deployment. An installed version of SWI-Prolog and the hierarchy of
Prolog source files are the only dependencies.

Upgrading a platform that had only be tested on small scale applications
developed by one programmer to a large demanding application with multiple
developers proved to be a challenge that requested the concurrent development of
modules to deal with dispatching, session management and setting management.
We also had to establish the best practices to use the infrastructure, notably
to reach at proper re-usability of interface components. Affinity with Prolog
programming in the whole team was necessary to make this work. We hope
the matured Prolog libraries for web-programming with a planned Open Source
release of the demonstrator provides a platform for other teams.

There were two main sources of bugs in the platform. One was still incomplete
or false processing in both the HTML/HTTP infrastructure and the Semantic
Web libraries. The other source of problems was found in the low-level RDF
store, notably locking for thread-safety and memory management issues in the
C-code.

10 Lessons learned

We started this project based on the SeRQL server running on top of the SWI-
Prolog Semantic Web and HTTP libraries [13]. This system was fairly simple
and small, handling about 50 HTTP locations that had largely be defined by the
OpenRDF [2] project. It was developed by a single programmer. The E-culture
project has a larger development team, is aiming at a demanding and stable
server platform while the best way to support end-users based on Semantic Web
data is explored using multiple prototype web interfaces.

It quickly became apparent that this required infrastructure and best-practice
guidelines on how web-applications needed to be written for optimal re-usability
and modularity.

103

– The http dispatch library greatly enhanced the ability to find and debug
code handling an HTTP location.

– The setting management library realises distributed management of appli-
cation settings.

– Instead of mixing application logic, general HTML primitives and the spe-
cific code to handle a set of HTTP locations in a single file we started a
libraries with HTML primitives, general primitives based on the Semantic
Web libraries and more high-level application logic.

Note that the design as a web application makes it easy to deploy multiple
user-interfaces concurrently on the same server from different HTTP locations.
Based on a stable low-level RDF and HTML output routines, experimental code
and (semi-) production code live together on the same server.

New explorations are not handled using a branch in the revision control sys-
tem, but using a copy of the code running on another HTTP location. Not using
CVS branches simplifies refacturing needed to deal with evolving new infrastruc-
ture such as the introduction of the dispatch, setting and session management
libraries.

The HTML write library based on DCG with inline calling of other rules
using the \-syntax proves to work well. It can generate both traditional HTML
and XHTML from the same Prolog source and allows for easy reuse of common
components. An open issue is the content of the HTML head, notably required
references to CSS and Javascript files. We must consider a syntax where DCG
components can specify required CSS and Javascript which is moved to the head
in an extra rewriting step.

Initially interactivity and graphics was provided by means of Java applets
running SeRQL queries on the server. Modifications required changing and re-
compiling the applet code and quite commonly restarting the browser. Later we
moved the application logic from the applet to the Prolog server, only keeping
the interface behaviour in the applet. With stable applets, we can now change the
application logic on the server and deploy the changes using a simple make/0
at the server.

In early development all interaction was handled server-side, which required
a new HTTP request and an update of the entire page for each action. A more
responsive solution is available with client-side programming in Javascript. Sim-
ple interactions for which all data is already available on the client side can be
solved completely client side with Dynamic HTML, an example is the thumbnail
browser in /facet.

If the interaction requires additional data, the XMLHttpRequest [7] allows
this to be requested from to the server asynchronously. The server response,
typically in XML or JSON, is then processed on the client side where it updates
the HTML through the Document Object Model (DOM). The combination of
these technologies, also known as AJAX, allows for rich interaction strategies
while reducing the server workload.

Various interface widgets, such as trees and tabbed views, are publicly avail-
able in several JavaScript libraries. Furthermore, services for geographical map-

104

ping, timeline and calendar visualisations are easily integrated and updated with
AJAX technology.

11 Future plans

Scalability will be tested against two axis. By incorporating more collections we
plan to scale to 150 million RDF triples. As the system becomes more widely
knows and serves a larger set of collections more user-friendly we anticipate
higher loads. It is planned to test scalability on an 8 CPU system with 32 GB
main memory.

As the connectivity between vocabularies grows, the graph-based algorithms
require more selective exploration of the graph and different abstraction mech-
anisms to provide sufficiently simple abstractions to satisfy the user.

We also foresee that a larger part of reasoning in the system will be speci-
fied in standard (Semantic Web) languages. Notably OWL descriptions can be
used to specify target objects and rules (SWRL) can be be used to express
simple reasoning and mappings that cannot be expressed using subPropertyOf
or owl:sameAs. Such expressions can be translated into Prolog programs and
optimised before execution.

We plan to rewrite parts of the web-interface and base it on the Yahoo
UI library12. Replacing our widgets by professional (web-)widgets enhances the
look-and-feel and releases the project from browser compatibility issues. Data
interchange with the server will be based on JSON13.

12 Related work

As far as we know, there are no Prolog systems offering comprehensive sup-
port for web programming concentrating on the Semantic Web. Many Prolog
systems offer some form of support for the HTTP protocol. The most widely
known example is the PiLLoW library [4] developed by the Ciao Prolog team
and available for at least Ciao, SWI-Prolog, SICSTus Prolog and YAP. In [14] we
compare PiLLoW and the SWI-Prolog infrastructure for handling HTML docu-
ments. ProWeb [1] is an ALP-Prolog library aimed at embedded HTTP servers
for controlling appliances. Its notion of Request Processing Modules (RPM) is
probably comparable to our http dispatch library. Lack of details on RPM make
an actual comparison impossible. WebLS by Amzi! [10] appears specialised for
question-answering type of applications.

13 Conclusions

We presented the SWI-Prolog (Semantic) web application platform with the E-
culture demo server. The platform combines an RDF in-core database that is
12 http://developer.yahoo.com/yui/
13 http://www.json.org/

105

seamlessly connected to Prolog with an HTTP server infrastructure, The award-
winning web-application, developed by five researchers proves the applicability
of Prolog for Semantic Web applications. All described infrastructure is available
as Open Source under the LGPL license. The source of the application as a whole
will be made available later during the project.

Acknowledgements

This research was supported by the MultimediaN project funded through the
BSIK programme of the Dutch Government.

References

1. Manfred Bathelt, Ulrich Gall, Bernd Hindel, and Christian Kurzke. Accessing
embedded systems via www: the proweb toolset. In Selected papers from the sixth
international conference on World Wide Web, pages 1065–1073, Essex, UK, 1997.
Elsevier Science Publishers Ltd.

2. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: An archi-
tecture for storing and querying rdf and rdf schema. In Proc. First International
Semantic Web Conference ISWC 2002, Sardinia, Italy, volume 2342 of LNCS,
pages 54–68. Springer-Verlag, 2002.

3. cois Baget Jérôme Euzenat Faisal Alkhateeb, Jean-Fran˙RDF with regular expres-
sions. Technical Report RR-6191, INRIA Rhône-Alpes, May 22 2007.

4. Daniel Cabeza Gras and Manuel V. Hermenegildo. Distributed WWW program-
ming using (ciao-)prolog and the piLLoW library. TPLP, 1(3):251–282, 2001.

5. Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman. /facet: A
Browser for Heterogeneous Semantic Web Repositories. In The Semantic Web -
ISWC 2006, pages 272–285, November 2006.

6. Matthias Jarke, Jim Clifford, and Yannis Vassiliou. An optimizing prolog front-end
to a relational query system. SIGMOD Rec., 14(2):296–306, 1984.

7. Linda Dailey Paulson. Building Rich Web Applications with Ajax. IEEE Com-
puter, 38(10):14–17, 2005.

8. Lawrence Philips. The double metaphone search algorithm. C/C++ Users J.,
18(6):38–43, 2000.

9. Guus Schreiber, Alia Amin, Mark van Assem, Viktor de Boer, Lynda Hardman,
Michiel Hildebrand, Laura Hollink, Zhisheng Huang, Janneke van Kersen, Marco
de Niet, Borys Omelayenko, Jacco van Ossenbruggen, Ronny Siebes, Jos Taekema,
Jan Wielemaker, and Bob J. Wielinga. Multimedian e-culture demonstrator. In
Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Pe-
ter Mika, Michael Uschold, and Lora Aroyo, editors, International Semantic Web
Conference, volume 4273 of Lecture Notes in Computer Science, pages 951–958.
Springer, 2006.

10. Arvindra Sehmi and Mary Kroening. Webls: A custom prolog rule engine for
providing web-based tech support. Technical report, Amzi! inc.

11. Mark van Assem, Maarten R. Menken, Guus Schreiber, Jan Wielemaker, and
Bob J. Wielinga. A method for converting thesauri to rdf/owl. In International
Semantic Web Conference, pages 17–31, 2004.

12. J. Wielemaker.

106

16 Wielemaker, et all,

13. Jan Wielemaker. An optimised semantic web query language implementation in
prolog. In Maurizio Baggrielli and Gopal Gupta, editors, ICLP 2005, pages 128–
142, Berlin, Germany, October 2005. Springer Verlag. LNCS 3668.

14. Jan Wielemaker, Zhisheng Huang, and Lourens van der Mey. SWI-Prolog and the
Web. Paper submitted to tplp, HCS, University of Amsterdam, 2006.

15. Jan Wielemaker, Guus Schreiber, and Bob Wielinga. Prolog-based infrastructure
for RDF: performance and scalability. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida, pages
644–658, Berlin, Germany, october 2003. Springer Verlag. LNCS 2870.

Author Index

Abreu, Salvador 27

Drabent, Wlodek76

Fernandes, ClÃudio 27

Henriksson, Jakob 76
Hildebrand, Michiel 91

Kattenstroth, Heiko 60

Lopes, Nuno . 27
LukÃcsy, Gergely 43

Maluszynski, Jan76
May, Wolfgang . 60

Polleres, Axel . 3
Pontelli, Enrico . 1

Ruckhaus, Edna13
Ruiz, Eduardo . 13

Schenk, Franz . 60
Schindlauer, Roman 3
Szeredi, Peter . 43

van Ossenbruggen, Jacco 91
Vidal, Maria-Esther 13

Wielemaker, Jan 91

107

