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Abstract. We present an information integration system called SIN-
TAGMA which supports the semantic integration of heterogeneous in-
formation sources using a meta data driven approach. The main idea of
SINTAGMA is to build a so called Model Warehouse, containing several
layers of integrated models connected by mappings. At the bottom of
this hierarchy there are the models representing the actual information
sources. Higher level models represent virtual databases, which can be
queried, as the mappings provide a precise description of how to populate
these virtual sources using the concrete ones.

This paper focuses on a recent development in SINTAGMA allowing
the information expert to use Description Logic based ontologies in the
development of high abstraction level conceptual models. Querying these
models is performed using the Closed World Assumption as we argue that
traditional Open World DL reasoning is less appropriate in the context
of database oriented information integration environments.

The implementation of SINTAGMA uses constraints and logic program-
ming, for example, the complex queries are translated into Prolog goals.
This allows us to provide functionalities not supported by other integra-
tion frameworks.

1 Introduction

This paper presents the Description Logic modelling capabilities of the SIN-
TAGMA Enterprise Information Integration system. SINTAGMA is based on
the SILK tool-set, developed within the EU FP5 project SILK (System Integra-
tion via Logic & Knowledge) [2]. SILK is a data centered, monolithic informa-
tion integration system supporting semi-automatic integration on relational and
semi-structured sources.

The SINTAGMA system extends the original framework in several direc-
tions. As opposed to the monolithic SILK structure, SINTAGMA is built from
loosely coupled distributed components. The functionality has become richer as,
among others, the system now deals with Web Services as information sources.



The present paper is about a recent extension of the system which allows the
integration expert to use Description Logic models in the integration process.

The paper is structured as follows. In Section 2 we give a general introduc-
tion to the SINTAGMA system, describing the main components, the SILan
modelling language, and the query execution mechanism. In the next section
we discuss the description logic extension of SILan: we introduce the syntactic
constructs and the modelling methodology. In Section 4 we present the execu-
tion mechanism used when querying Description Logic models. In Section 5 we
examine related work. Finally, we conclude with a summary of our results.

The examples we use in the upcoming discussions are part of an integration
scenario. This scenario represents a world where we attempt to integrate various
information sources about writers, painters and their work (i.e. books, paintings,
etc.) and present this information in the form of abstract views.
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Fig. 1. The architecture of the SINTAGMA system

2 System Architecture

The overall architecture of the system can be seen in Figure 1. The main idea
of our approach is to collect and manage meta-information on the sources to be
integrated. These pieces of information are stored in the Model Warehouse of the
system, in the form of UML-like models [8], constraints and mappings. This way
we can represent structural as well as non-structural information, such as class
invariants, implications, etc. The Model Warehouse resides in and is handled by
the Model Manager component.



We use the term mediation to refer to the process of querying SINTAGMA
models. Mediation decomposes complex integrated queries to simple queries an-
swerable by individual information sources and, having obtained data from these,
composes the results into an integrated form. Mediation is the task of the Me-
diator component.

Access to heterogeneous information sources is supported by wrappers. Wrap-
pers hide the syntactic differences between the sources of different kinds, by pre-
senting them to upper layers uniformly, as UML models. These models (called
interface models) are entered into the Model Warehouse automatically. In the
following we give a brief introduction to the main components.

2.1 The Model Manager

The Model Manager is responsible for managing the Model Warehouse (MW)
and providing integration support, such as model comparison and verification
(not covered in this paper). Here we focus on the role of the Model Warehouse.

The content of the MW is given in the language called SILan which is based
on UML [8] and Description Logics [12]. The syntax of SILAN resembles IDL, the
Interface Description Language of CORBA [16]. We demonstrate the knowledge
representation facilities of SINTAGMA by a simple SILan example showing the
relevant features of the meta-data repository (Figure 2).

model Art {
class Artist:BuiltIns::DLAny {
attribute String name;
attribute Integer birthDate;
constraint self.creation.date > 1900;

};

class Work:BuiltIns::DLAny {
attribute String title;
attribute String author;
attribute Integer date;
attribute String type;
primary key title;

I

association hasWork {
connection Artist as creator;
connection Work as creation;

LI -

Fig. 2. SILan representation of the model Art



The example describes the model Art containing two classes, Artist and
Work. It also contains an association between an artist and her works. We will
explain the details of this example within the discussion below.

Semantics of SILan models The central elements of SILan models are classes
and associations, since these are the carriers of information. A class denotes a
set of entities called the instances of the class. Similarly, an n-ary association
denotes a set of n-ary tuples of class instances called links.

Classes can have attributes which are defined as functions mapping the class
to a subset of values allowed by the type of the attribute. Classes can inherit
from other classes. The instances of the descendant class are all instances of the
ancestor class. In our example both Artist and Work inherit from the built-in
class DLAny (cf. lines 2 and 8). See Section 3.3 for more details.

Associations have connections, an n-ary association has n connections. In an
association some of the connections can be named, providing intuitive navigation.
For example, the connections of association hasWork corresponding to classes
Artist and Work are called creator and creation respectively (lines 17-18).

Classes are allowed to have a primary key, composed of one or more at-
tributes. This specifies that the given subset of the attributes uniquely identifies
an instance of the class. In our example, as a gross simplification, attribute title
serves as a key in class Work, i.e. there cannot be two works (books, for example)
with the same title.

Finally, invariants can be specified for classes and associations using the ob-
ject constraint extension of UML, the OCL language [7]. Invariants give state-
ments about instances of classes (and links of associations) that hold for each
of them. The constraint in the declaration of Artist (line 5) is an invariant
stating that the publication date of each work of an artist is greater than 1900".
The identifier self refers to an arbitrary instance of the context, in this case
the class Artist. Then two navigation steps follow. In the first step we navigate
through the association hasWork to an arbitrary work of the artist and in the
second step from the work to its publication date and state that this is always
greater than 1900.

In addition to the object oriented modelling paradigm, the SILan language
also supports constructs from the Description Logic (DL) world [12]. This, re-
cently added new feature of SINTAGMA is discussed in Section 3.

Abstractions For mediation, we need mappings between the different sources
and the integrated model. These mappings are called abstractions because they
often provide a more abstract view of the notions present in the lower level
models. An example abstraction called wO can be seen in Figure 3.

! This may be so because the given information source is known to be dealing with
works of art of 20th century or later.



This abstraction populates the class Work in the model Art (line 3) using
classes Product and Description, both from the model Interface?. This means
that the abstraction specifies how to create a “virtual” instance of class Work,
given that the other two classes are already populated (e.g. they correspond
to real information sources). In lines 1-3 the identifiers m0, m1 and m2 are de-
clared, and these will be used throughout the abstraction specification to denote
instances of the appropriate classes.

abstraction wO (mO: Interface::Product,
ml: Interface::Description
-> m2: Art::Work) {

constraint
ml.id = m0.id and
ml.code = 84
implies
m2.title = m0.title and
m2.author = m0.author and
m2.date = mO.publication_date and
m2.type = ml.description and
m2.DL_ID = mO.title;

Fig. 3. SILan representation of the abstraction populating class Work

The abstraction describes that given an instance of class Product called mO and
an instance of class Description called m1, for which the conditions in lines 6-7
hold, there exists an instance m2 of class Work with attribute values specified by
lines 9 13%. Note that line 6 specifies that the id attributes of the two instances
have to be the same, and thus corresponds to a relational join operation. In
our integration scenario Product and Description actually correspond to real-
world Oracle tables containing books and paintings. The task of abstraction w0
is to convert the records of these tables into instances of class Work.

We note that other abstractions can also populate class Work. In this case
the set of instances of Work will be the union of the instances produced by the
appropriate abstractions. Note that if a new information source is added, we
only have to specify a new abstraction corresponding to this source, while the
existing abstractions can be left unchanged.

Notice that the abstraction in Figure 3 takes the form of an implication
describing how the given sources can contribute to populating the high level class
Art: :Work. This is characteristic of the Local as View integration approach [4].

? In SILan double colons (::) separate the model name from the name of its constituent
(class, association, etc.).
3 Attribute DL_ID has a special role as explained in Section 3.3.



2.2 The Wrappers

Wrappers provide a common interface for accessing various information source
types, such as relational and object-oriented databases, semi-structured sources
(e.g. XML or RDF), as well as Web-services.

database — model

column — attribute

Product

title String
id Integer
author String

table — class

publication date String

Fig. 4. Modelling relational sources in SILan

A wrapper has two main tasks. First, it extracts meta-data from the informa-
tion source and delivers these to the Model Manager in the form of SILan models.
For example, in case of relational sources, databases correspond to models, ta-
bles to classes, columns to attributes, as shown in Figure 4 (cf. class Product in
abstraction w0 presented in Figure 3).

The other principal task of a wrapper is to transform queries, formulated
in terms of this interface model, into the format required by the underlying
information source, and thus allow for running queries on the sources.

2.3 The Mediator

The Mediator [1] supports queries on high level model elements by decompos-
ing them into interface model specific questions. This is performed by creating a
query plan satisfying the data flow requirements of the sources. During the exe-
cution of this query plan the data transformations described in the abstractions
are carried out.

Whenever we query a model element in SINTAGMA, the Model Manager
basically provides the following two kinds of information to the Mediator:

1. the query goal itself, i.e. a Prolog term representing what to query;
2. set of mediator rules, using which the mediator can decompose the complex
query into primitive ones (i.e. queries that refer only to interface models).

For example, let us consider the query shown below involving class Work.

query RecentWork
select *
from w: Art::Work
where w.date > 2000;



This query is looking for recent works, namely those instances of the class
Art: :Work that were created after 2000*. In this case, the query goal is sim-
ilar to the following simple Prolog expression:

:- ’Work:class:220° (DT, [A, B, C, D, E], DA), C > 2000. (1)

Here, the first Prolog goal corresponds to an instance of Art::Work. The
variables in this term will be instantiated during query execution. The pred-
icate name ’Work:class:220’ is composed from three parts: the kind of the
model element (class) and its unique internal identifier (220), preceded by
the unqualified and thus non-unique SILan name (Work), provided for read-
ability. Model elements are often referred to by handles of form Kind(Id), e.g.
class(220). The above predicate name in fact represents the static type of the
instances queried for.

The first argument of the goal is the dynamic type of the instance, i.e. the
handle of the class which, in case of inheritance, can be different from the static
type. The second argument contains the values of the static attributes, in this
case we have five such variables (cf. declaration of class Work in Figure 2), e.g. C
denotes the value of the attribute date. The third and last argument of the query
term carries the values of the dynamic attributes. These represent the additional
attributes (not known at query time) of the instance if it happens to belong to
a descendant class of Art::Work. Note that in the current implementation of
SINTAGMA, as a simplification, the third query argument contains the list of
both static and dynamic attributes.

The second part of the query goal corresponds to a simple arithmetic OCL
constraint, which uses variable C representing the date attribute of the work in
question.

The mediator rules representing the abstraction w0 shown in Figure 3 take
the following form:

’Product:class:190°(_,[A,B,C,D],_ ),
’Description:class:191°(_, [84,E,B],_) --->
’Work:class:220’ (class(220), [D,A,C,D,E], [D,A,C,D,E])

The specific rule above describes how to create an instance of the class Work
whenever we have two appropriate instances of classes Product and Description
available. If there were more abstractions, the Mediator would get more rules as
there would be more than one possible way to populate the given class.

Note that the mediator rules are also used to describe inheritance between
model elements. In such a case the dynamic type of the model element on the
right hand side of the rule is a variable (as opposed to the constant class(220)
above). This variable is the same as the dynamic type of the model element on
the left hand side. The dynamic attributes are propagated similarly.

* We could have created a class named RecentWork and populated it by an appropri-
ate abstraction. Then, instead of formulating a SILan query, we could have simply
directly asked for the instances of this class. The question whether to use a query or
an abstraction is a modelling decision.



Finally, let us mention that an n-ary association is implemented as an n-ary
relation, each argument of which is a ternary structure corresponding to a class
instance, similar to the one appearing in (1). For example, a query goal for the
association hasWork (cf. Figure 2) has the following form:

:- YhasWork:association:227’ (
’Artist:class:218°(DT1,[A,B,C],DA1), (2)
’Work:class:220° (DT2, [D,E,F,G,H] ,DA2)

3 DL modelling in SINTAGMA

Let us now introduce the new DL modelling capabilities of the SINTAGMA
system. First we discuss why we need Description Logic models during the inte-
gration process and we provide an introductory example. Then we present the
DL constructs supported by our system and discuss the restrictions we place
on their usage. Finally, we summarise the tasks of the integration expert when
using DL elements during integration.

3.1 Introduction

In the Model Warehouse we handle models of different kinds. We distinguish
between application and conceptual models. The application models represent
existing or virtual information sources and because of this they are fairly elabo-
rate and precise. Conceptual models, however, represent mental models of user
groups, therefore they are vaguer than the application models.

We argue that to construct such models it is more appropriate to use some
kind of ontological formalism instead of the relatively rigid object oriented
paradigm. Accordingly, we extended our modelling language to incorporate sev-
eral description logic constructs, in addition to the UML-like ones described
earlier. In the envisioned scenario, the high-level models of the users are formu-
lated in description logic and via appropriate definitions they are connected to
lower-level models. Mediation for a conceptual model works in the same way as
for any other model: the query is decomposed, following the abstractions, until
we reach the interface models (in general, through some further intermediate
models) which can be queried directly.

Before going into the details, we show an example to illustrate the way how
DL descriptions are represented in SILan (note that Writer and Painter are
both descendants of class Artist, but otherwise they are normal UML classes.

model Conceptual {
class WriterAndPainter {};
constraint equivalent { (3)
WriterAndPainter,
Unified::Writer and Unified::Painter};

};



Here we define the class WriterAndPainter by providing a SILan constraint.
This constraint can be placed anywhere in the Model Warehouse: in the example
above we simply put it in the same model that declares the class WriterAnd
Painter itself. The constraint actually corresponds to a DL concept definition
aziom: WriterAndPainter = WriterMPainter. Namely, it states that the instances of
class WriterAndPainter are those (and only those) who belong to the unnamed
class containing the individuals who are both writers and painters. Thus, DL
concepts are defined using the Global as View approach [4], as opposed to when
populating high-level classes using abstractions (cf. Section 2.1).

Note that the class WriterAndPainter could be created without DL support.
However, in that case the integration expert would have to go through a much
more elaborate process of (1) creating the high level class WriterAndPainter,
specifying all its attributes and (2) populating it with an appropriate abstraction
involving a join. Now, with DL support, she simply formulates a very short and
intuitive DL axiom. We argue that this is easier for the expert to do, and it also
makes the content of the Model Warehouse more readable to others.

3.2 DL elements in SILan

From the DL point of view, SINTAGMA supports acyclic Description Logic
TBoxes containing concept definition axioms formulated in the extension of the
ALCN (D) language (see more below about the extension). Only single atomic
concepts, so called named symbols can appear on the left hand side of the axioms,
such as WriterAndPainter in example (3). The remaining atomic concepts, not
appearing on the left hand side are called base symbols. Such a TBox is definito-
rial, i.e. the meaning of the base symbols unambiguously defines the meaning of
the named symbols. The base symbols, in our case, correspond to normal SIN-
TAGMA classes and associations, e.g. Writer and Painter in the example (3).
The ABox is a set of concept and role assertions, as determined by the instances
of the classes which correspond to the base symbols participating in the TBox.

The DL concept constructors supported by SINTAGMA and their SILan
equivalents are summarised in Table 1. Note that this table actually describes the
possible concept formats on the right hand side of a definition axiom, assuming
that we have expanded the TBox®.

The only non-classical DL element, in Table 1 is the concrete domain restric-
tion (the last line in the table). Such a restriction specifies a subset of instances
of the base concept A for which the given OCL constraint holds. This is a gener-
alisation of the idea of concrete domains in the Description Logics world. Below
we show an example of a concrete SILan restriction describing those works whose
type (i.e. the value of the attribute type) is “painting’.

{class constraint Art::Work satisfies self.type="painting"}

The reason we allow only concept definition axioms is that we aim to use DL
concepts to describe executable high-level views of information sources. In this

® The expanded version of an acyclic TBox is another TBox where every named symbol
on the right hand side of the axioms is substituted by its definition.



Name Syntax|SILan equivalent

Base concept A UML class

Atomic role R UML association

Top T DLAny

Bottom 1 DLEmpty

Negation -C not C

Intersection CnD |Cand D

Union CuD [CorD

Value restrictions VR.C |slot constraint R all values C

Existential restrictions|3dR.C |slot constraint R some value C

Number restrictions [xX nR |[slot constraint R cardinality i..j

Concrete restriction — class constraint A satisfies OCL

Table 1. (extended) DL concept constructors supported in SILan

sense a DL concept is actually a syntactic variant of a SILan query or a SILan
class populated by an abstraction.

Note that this also implies that we use the Closed World Assumption (CWA)
in DL query execution. We argue that this is appropriate because of the follow-
ing three reasons. First, CWA automatically ensures that our DL constructs are
semantically compatible with other constructs in the SINTAGMA system. Sec-
ond, we argue that the Open World Assumption(OWA) is applicable when we
have only partial knowledge and would like to determine the consequences of
this knowledge, true in every universe in which the axioms of this partial knowl-
edge hold. In contrast with this, in the context of information integration, our
users would like to consider a single universe, in which a base concept or a role
denotes ezactly those individuals (or pairs of individuals) which are present in
the corresponding database. To illustrate this issue, let us consider the following
example: the concept of novice painter is defined to contain painters having at
most 5 paintings (for example, being a novice painter may be a precondition for
a government grant). To model this situation, the integration expert creates the
DL axiom shown below.

NovicePainter = Painter M (< 5 hasPainting)

However, querying this concept, using OWA, will provide no results in general
as an open world reasoner would return an individual only if it is provable that
it has no more than 5 paintings. Practically, this is not what the information
expert wants.

10



The third reason why we decided to use the closed world assumption is the
fact that we have huge amounts of data in the underlying databases. Traditional,
tableau based DL reasoners do not cope well with large ABoxes [10]. Resolution
based DL proving techniques [13] do much better, but they are either still not
fast or not expressive enough [15]. By using CWA we can implement DL queries
using the well researched, efficient database technology.

3.3 Modeling methodology and tasks of the integration expert

The integration expert is responsible for creating the DL axioms. Although
these are represented in SILan within the SINTAGMA system, the expert can use
any available OWL editor to create OWL descriptions. These descriptions then
can be loaded by the OWL importer of the SINTAGMA system that basically
realises an OWL-SILan translation (cf. the “Model Im(Ex)port” box in Figure 1).

One thing the expert should take care of is to match the names of the base
symbols and the corresponding SINTAGMA classes and associations. This is
often done in two steps: first the integration expert creates concept definition
axioms using the widely accepted terminology of the domain, not paying atten-
tion to the names of the model elements in the Model Warehouse. Next, the
expert provides additional definition axioms for each base symbol connecting it
with the proper model element. For example, we could use names A and B instead
of Writer and Painter in (3), provided that we have the following axioms:

A = VWriter
B = Painter

Another important issue is to decide how to identify the instances of the base
concepts, e.g the instances of the class Writer and class Painter. Without this,
it is not possible to determine the instances of class WriterAndPainter.

In a traditional DL ABox, an instance has a name that unambiguously iden-
tifies it. Unambiguity is guaranteed because DL reasoning systems use the so
called unique name assumption, i.e. they assume that two different instance
names denote different elements in the domain.

In SINTAGMA, similarly to databases, an instance is identified by the subset
of its attribute values, e.g. two writers could be considered to be the same if their
names match. In other words, this means that name is a key in class Writer.

The problem is that such keys are fairly useless when we compare instances
of different sources. This is because, in general, we cannot draw any direct con-
clusion from the relation of the keys belonging to instances from different classes.
For example, databases containing employees often use numeric IDs as keys. Hav-
ing two employees from different companies with the same ID does not mean
that we are talking about the same person. Similarly, if the IDs of the employees
do not match, they are not necessarily different persons.

What we need is some kind of shared key that uniquely identifies the instances
of the classes participating in DL concept definitions. Luckily, the object-oriented
paradigm we use in SINTAGMA provides a nice way to have such identifiers.

We have mentioned earlier that in SINTAGMA the notion of DL concept
is a syntactic variant of SINTAGMA class. This also means that the result of

11
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a DL query is an ordinary instance that has to belong to some class(es). For
example, when we are looking for the instances that are in both classes Writer
and Painter we are actually interested in an artist instance belonging to these
classes simultaneously. This is true in general: whatever DL concept constructs
we use to describe a DL concept the result must belong to some class that is a
common ancestor of the classes involved.

Instead of asking the integration expert to define such common ancestor
classes in an ad hoc way, we introduce the built-in class DLAny. This class cor-
responds to the DL concept top (T) and it has only one attribute called DL_ID
which is a key. We require that all the classes participating in DL concept defini-
tions are the descendants of DLAny® (cf. lines 2 and 8 of Figure 2). Because of the
properties of generalisation attribute DL_ID will be a key in all of the descendant
classes, i.e. it will exactly serve as the global identifier we were looking for.

Now, the task of the integration expert is to assign appropriate values to
the DL_ID attributes: she needs to extend the existing abstractions populating
the base symbols (classes) to also consider the attribute DL_ID. By appropriate
values we mean that the DL_IDs of two instances should match if these instances
are the same, and should differ otherwise. An example for this can be seen in
Figure 5 populating the class Writer.

abstraction ap (m0: Interface::Member ->
ml: Unified::Writer) {

constraint let n = m0.fname.concat(" ").concat(m0.lname) in
ml.name = n and
ml.birthDate = mO.date and
ml.id = m0.iwa and
ml.style = mO.style and
ml.DL_ID = n;

Fig. 5. Populating the DL_ID attribute of a base concept

This abstraction populates the class Writer from an interface class called
Member (lines 1-2). Let us assume that the members of this association have
some kind of a unique identifier, such as the membership number of an imaginary
“International Writer Association” (IWA), present in the underlying database. It
may be worth bringing this key to the class Writer (line 7) as it makes possible
to find writers efficiently if they happen to be IWA members. However, the
unique identifier from the DL point of view has to be different: in fact it is the
concatenation of the first and last name of the writer (line 4 and 9).

This is because the class Writer can also be populated from other sources
where the IWA number makes no sense. Furthermore, we may want class Writer
to be a descendant of class Artist, together with some other classes, such as

% Note that this is a necessary condition. As for any concept C, C' C T holds, any DL
instance has to belong to the class corresponding to T, i.e. to DLAny.

12



Painter. This requires a key that can be computed from all the underlying
sources, such as the name of the artist”.

To summarise, the integration expert has to perform the following tasks when
DL modelling is used during the integration process:

1. declare DL classes and for each provide corresponding definition axioms;
2. ensure that each base concept appearing in the definition axioms is:

(a) inherited from class DLAny,

(b) populated properly, i.e. its DL_ID attribute is filled appropriately.

4 Querying DL models in SINTAGMA

Now we turn our attention to querying DL concepts in SINTAGMA. As
described in Section 2.3 our task is to create a query goal and a set of mediator
rules. When we query a DL class, we only generate mediator rules for the base
symbols. As these are ordinary classes and associations, this process is exactly
the same as the one we use for cases without any DL construct involved.

Recall that a SINTAGMA instance is characterised by three properties, as
exemplified by (1) on page 7: its dynamic type DT, its static attributes SA and
its dynamic attributes DA. A DL class has only a single static attribute, the
DL_ID key. However, in contrast with an object oriented query, a DL query
may return an answer that has multiple dynamic types. For example, when we
enumerate the class WriterAndPainter we get instances that belong to both
classes Writer and Painter. Accordingly, an answer to a DL query takes the
form of a pair (ID, DTAs), where ID is the value of the DL_ID, while DTAs =
[DT1-DA;,DT9-DA,y, . ..] is the list of the dynamic types of the answer, each
paired with the corresponding dynamic attribute list.

The algorithm specifying what goals to create from a DL concept description
is summarised in Figure 6. Here we describe a function @¢ which, given an
arbitrary concept C, returns the corresponding query goal with two arguments,
ID and DTAs. We define this function case by case.

If we have a base class, we simply create a query term representing the
instances of the class, similar to the one in goal (1). If we have the intersection
of two concepts C' and D, we recursively transform concepts C' and D and put
them in a Prolog conjunction. The union of classes is similar: we create a Prolog
disjunction. Negation —C' is implemented by enumerating the DLAny class, and
removing those instances which belong to C. The expensive DLAny enumeration
can be avoided when the negation appears in a conjunction (which is normally
the case).

The more interesting cases involve associations. Here R denotes the associa-
tion itself, while R and R denote the classes that are the domain and the range
of association R, respectively. Recall that a binary association is represented by
a binary relation with ternary structures as arguments as in (2).

" This is also a simplification. More realistically, the key could be the name together
with the birth date.
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&4 (ID, DTAs) = A(DT, [ID|_], DA), DTAs = [DT-DA]
&cnp (ID, DTAs) = & (ID, DTAs1),dp (ID, DTAs2),DTAs = DTAs1 @ DTAs2,
where @ denotes the (compile time) concatenation of lists
dcup (ID, DTAs) = (P (ID, DTAs) ; &p(ID, DTAs))
&_c (ID, DTAs) = DLAny(ID, DTAs), \+ &¢(ID, )
®3r.c(ID, DTAs) = R(R” (pT, [IDI_1, DAY, R™(_, [1D2I_1, .)),
&c(ID2, _), DTAs = [DT-DA]
®yp.c(ID, DTAs) = R (DT, [ID|_], DA), DTAs = [DT-DAI,
\+ (R(RP(pT, [ID|_1, DA), R™(_, [1D2]_1, _)),
\+ & (ID2, _))
Py (ID, DTAs) = aggregate([DT, ID, DAl, [S=cnt(0)],
R(R” (T, [D1_1, DAY, REC_, _, O))),
conditiony (n, S), DTAs = [DT-DA]

Fig. 6. Transforming DL constructs into query goals

The existential restriction IR.C is simply transformed to a query of the
association R and the concept C. The goal corresponding to a value restriction
VR.C first enumerates the domain of R and then uses double negation to ensure
that the given instance has no R-values which do not belong to C. Finally, a
number restriction (X nR) is transformed into a goal which uses a bagof-like
Prolog predicate aggregate/3 to enumerate the instances in the domain of R
together with the number of R-values connected to them, and then simply applies
the appropriate arithmetic comparison.

A concrete restriction involving a base concept A and an OCL constraint O
is transformed in a straightforward way into the query goal as shown below®:

&, (ID, DTAs), DTAs = [DT-DA], ¥, (ID, DA)

In all formulas so far, ID denotes the value of the attribute DL_ID containing
the unique name of the DL instances (see Section 3.3). Here we make use of the
fact that these attributes are always placed first in the static attribute list of an
instance. To illustrate the general algorithm, two example transformations are
shown in Figure 7. The second example involves an association hasPainting
and a class Modern (representing, say, contemporary pieces of art).

& Here, Wo (ID, DA) is the Prolog translation of the OCL constraint O. This is an “old”
feature, implemented before the introduction of DL extension into SINTAGMA.
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Class to query: WriterAndPainter

DL definition: Writer [ Painter

Query goal: ’Writer:class:234° (DT1, [ID|_],DA1),
’Painter:class:236° (DT2, [ID|_],DA2),
DTAs = [DT1-DA1,DT2-DA2]

Class to query: ModernPainterWriter
DL definition: Writer MM JhasPainting.Modern
Query goal: ‘Writer:class:234° (DT1,[ID|_],DA1),
’hasPainting:association: 142’ (
’Artist:class:218° (DT2, [ID|_],DA2),
*Work:class:220(_, [ID2]_]1,.)),
’Modern:class:237°(_, [ID2]_1,_),
DTAs = [DT1-DA1,DT2-DA2]

Fig. 7. Transformation examples

5 Related work

The two main approaches in information integration are the Local as View
(LAV) and the Global as View (GAV) [4]. In the former, sources are defined
in terms of the global schema, while in the latter, the global schema is defined
in terms of the sources (similarly to the classical views in database systems).
Information Manifold [14] is a good example for a LAV system. Examples for
the GAV approach include the Stanford-IBM integration system TSIMMIS [6].

In SINTAGMA we apply a hybrid approach, i.e. we use both LAV and GAV.
When using abstractions to populate high-level classes we employ the LAV, while
in case of DL class definitions we use the GAV approach.

There are several completed and ongoing research projects in the area of using
description logic-based approaches for both Enterprise Application Integration
(EAI) and Enterprise Information Integration (EII) as well.

The generic EAI research stresses the importance of the Service Oriented
Architecture, and the provision of new capabilities within the framework of Se-
mantic Web Services. Examples for such research projects include DIP [11] and
INFRAWEBS [9]. These projects aim at the semantic integration of Web Ser-
vices, in most cases using Description Logic based ontologies and Semantic Web
technologies. Here, however, DL is used mostly for service discovery and design-
time workflow validation, but not during query execution.

On the other hand, several logic-based EII tools use Description Logics and
take a similar approach as we did in SINTAGMA. That is, they create a DL
model as a view over the information sources to be integrated. The basic frame-
work of this solution is described e.g. in [5,3]. The fundamental difference com-
pared to our approach is that these applications deal with the classical Open
World Assumption, therefore their task can be viewed as an ABox instance re-
trieval task. However, as already discussed in Section 3.2, one problem with this
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is that the ABox is distributed among the underlying heterogenous databases
which therefore can be extremely big. We argue that existing DL reasoners are
not usable when this amount of data and complex DL queries are involved.

6 Conclusions

In this paper we presented the DL extension of the information integration
system SINTAGMA. This extension allows the information expert to use De-
scription Logic based ontologies in the development of high abstraction level
conceptual models. Querying these models is performed using the Closed World
Assumption over the underlying information sources.

We have presented the main components of the SINTAGMA system: the
Model Manager which is responsible for the Model Warehouse, the Wrapper,
which provides a uniform view over the heterogenous information sources and
the Mediator, which decomposes complex high-level queries into primitive ones
answerable by the individual information sources.

Next, we have described the DL modelling elements the integration expert
can use when building conceptual models and we have also discussed the mod-
elling methodology she has to follow. We have presented the way how DL queries
are executed within the SINTAGMA system. Finally, we have illustrated our ap-
proach by providing a use case about artists.

We argue that our solution for combining DL and UML modelling in a unified
integration framework provides a viable alternative to existing systems. The
usage of DL constructs in building high-level conceptual models has substantial
benefits, both in terms of modelling efficiency and maintenance.
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