
HD-rules: a hybrid system interfacing Prolog with
DL-reasoners

Włodzimierz Drabent1,3, Jakob Henriksson2, and Jan Małuszyński3

1 Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, Pl – 01-237 Warszawa, Poland

drabent@ipipan.waw.pl
2 Fakultät für Informatik, Technische Universität Dresden

jakob.henriksson@tu-dresden.de
3 Department of Computer and Information Science,
Linköping University, S 581 83 Linköping, Sweden

janma@ida.liu.se

Abstract. The paper presents a prototype systemHD-Rules (Hybrid integration
of Description Logic and Rules)that integrates normal clauses under the well-
founded semantics with ontologies specified in DescriptionLogics. The system
is hybrid: it re-uses XSB Prolog for rule reasoning and existing OWL reason-
ers for ontology reasoning. This makes it possible to use some Prolog built-ins
(like arithmetic) in the rules. The system itself is writtenin XSB Prolog; its inter-
face to OWL employs Java. The paper outlines the principles of the integration,
illustrates the use of the system on examples, and discussesin detail the main
implementation techniques.

1 Introduction

This paper presents a prototype system integrating Description Logic reasoners com-
patible with the DIG-standard with normal clauses as used inlogic programming. The
work is based on the well-founded semantics of logic programs and on the ideas of con-
structive negation in logic programming, as discussed in [6]. The prototype implements
a language ofhybrid rulesthat extends normal clauses. The hybrid rules allow queries
to OWL ontologies in their bodies. Prolog arithmetic and some other Prolog built-ins
can also be used.

Integration of rules and ontologies is presently addressedby many researchers as a
necessary step in extending Semantic Web technology. The Web Ontology Language
OWL, standardized by W3C is supported by several reasoners,while there is yet no
common agreement about the rule level. While the main variant of OWL is based on
DL (Description Logics), hence on FOL (first order logic), itis often claimed that rules
should allow non-monotonic reasoning. Non-monotonic reasoning has been investi-
gated within logic programming. The two main kinds of the semantics proposed are
the Answer Set Semantics (Stable Model Semantics) and the well-founded semantics.
The well-known proposals for integration of rules and ontologies [7, 13] are based on
Answer Set Semantics. The well-founded semantics is used in[8] but in a way different
from our approach (for more detailed discussion see [6]).

Important aspects of the work presented in this paper are

– Our approach is based on the well-founded semantics of normal programs, and is
compatible with FOL: if the non-monotonic negation is not used in the rules, the
answers to queries are logical consequences of the set of FOLaxioms consisting of
the rules and of the ontology.

– We allow the use of term constructors and some Prolog built-in predicates (e.g.
arithmetic) in the hybrid rules.

– The approach makes it possible to re-use existing reasoners(for DL, and for Prolog
with the well-founded semantics). This substantially simplifies its implementation.

– We explain in detail the principles of implementation.

This paper extends the short paper [5] in the following ways.The hybrid rule lan-
guage of [5] is extended by allowing term constructors (e.g.Prolog list constructors)
and some Prolog built-in predicates. The main implementation issues are discussed in
more detail. In particular we describe how hybrid rules are compiled into Prolog, and
how the ontology queries in the rules are processed.

A declarative semantics of hybrid programs was defined in ourprevious work [6]
and is briefly summarized in Section 2. Its main idea is that a Herbrand model of a
hybrid program is constructed for every model of the underlying ontology. This is sim-
ilar to the notion of NM-model in [13]. The latter is however based on on the notion
of stable model, while our construction uses the notion of well-founded model. Our
implementation is based on the operational semantics of [6], which answers queries by
combining a constructive negation approach to SLS-resolution [4] with ontological rea-
soning. The operational semantics is sound wrt. the declarative one and complete for a
restricted class of hybrid programs (see [6] for details).

2 Hybrid Programs

In this section we first introduce the syntax of hybrid programs and provide an example
program. We then briefly discuss the declarative semantics of hybrid programs and its
operational semantics. We conclude with some more examples.

The Syntax. The syntax of hybrid programs is derived from the syntax of the compo-
nent languages. The component languages considered here are the language of normal
logic programs, and some DL-based ontology language. We assume that the alphabets
of predicate letters of logic programs and of the ontology language are disjoint, but both
languages have common variables and constants. (The alphabet of logic programs also
includes function symbols of non zero arity.) Literals, atoms and predicate symbols of
logic programming will be called, respectively rule literals, rule atoms, etc. A standard
logic programming syntax is extended by allowing ontological constraints to appear in
the rule bodies. Thus, a hybrid rule looks as follows:

R0 :− R1, . . . ,Rk,neg(Rk+1), . . . ,neg(Rn),dl(C1), . . . ,dl(Cm).

whereR0,R1, . . . ,Rn are rule literals andC1, . . . ,Cm are constraints. At the moment we
only allow here constraints of the formC(x) or ¬C(x) whereC is a concept of the on-
tology andx is a variable or a constant. A hybrid program is a pair(T,P) whereT is
an ontology (a finite set of axioms of a DL) andP is a finite set of hybrid rules with
constraints over the alphabet ofT. In practiceT will be provided by a declaration asso-
ciating a short name (prefix) with the URI of the ontology. This is here done by using
the syntaxuse ’ontologyuri’ as ’pre f ix’. Any predicate symbolp from the ontology
is represented in the hybrid rules asprefix#p.

Example 1.Consider a program consisting of the set of hybrid rulesP shown in Listing
1.1, and an ontology

Finland⊑ Europe.

(A T-box of one axiom and an empty A-box).

use ’ h t t p : / / dev . me ta jung le . i n f o / owl / geography . owl ’ as’ g ’ .

win (X) :− move (X,Y) , neg (win (Y)) .

move (e , f) :− d l (g# Europe (f)) .
move (c , f) :− d l (neg (g# F in la nd (f))) .

move (b , a) . move (a , b) . move (a , c) . move (c , d) . move (d , e) .

Listing 1.1. An example hybrid program describing a two-person game.

The hybrid program in Listing 1.1 describes a two-person game, where each of the
players, in order, moves a token from a node of a directed graph

d → e
↑ ⇓

b ↔ a → c ⇒ f

over an edge of the graph. The nodes correspond to geographical objects specified in
an ontology (e.g. cities) and are represented by constants.Some edges of a graph (rep-
resented in the example by themovefacts) are labelled by constraints (added as con-
straints to the respective facts). The constraints refer tothe ontology. A move from a
positionx to a positiony is enabled if there is an edge fromx to y and the constraint
is satisfied. The predicatewin/1 characterizes the winning positions of the game, as
described below.

A position is winning if a move is enabled to a position which is not winning (call
it losing). Obviously a position where no moves are enabled is losing. Thus, position
f is losing. The move frome to f is enabled only iff is in Europe. This cannot be
concluded from the ontology. Consequently we cannot conclude thate is a winning
position. Similarly, we cannot conclude thatf is not in Finland which is required for
the move fromc to f . However, it follows from the ontology that iff is not in Europe
it is also not in Finland. Hence one of the conditions holds for f . Consequentlyc is a
winning position: if f is in Europe,e is winning,d is losing andc is winning. Otherwise
f is not in Finland andc is winning.

The positionsa andb cannot be classified as winning or losing, since froma one
can always move tob where the only enabled move is back toa. The third logical value
undefinedis assigned towin(a) andwin(b). The status ofd ande is also not clear, but
for different reasons discussed above. In some, but not all models of the ontologye is
winning andd is losing and in the remaining ones the opposite holds.

The Declarative Semantics.In [6] we define a formal semantics of hybrid programs,
extending the well-founded semantics of normal programs. Here we survey informally
the main ideas. The well-founded semantics of normal programs is three-valued and
gives a fixpoint formalization of the way of reasoning illustrated by the game example,
when the constraints are neglected. It assigns to every element of the Herbrand base one
of the logical valuestrue (e.g.win(c)), false(e.g.win(f)) or undefined(e.g.win(a)).

The constraints added to the rule bodies refer to the ontology. As illustrated by the
example, a ground instance of a constraint may have different truth values in different
models of the ontology. Consider a hybrid program(T,P) (whereT is a set of first
order axioms, andP a set of hybrid rules), a modelM of T, and the setground(P) of
all ground instances of the rules inP. Each of the ground constraints is either true or
false inM. Denote byP/M the set obtained fromground(P) by removing each rule
including a constraint false inM and by removing all constraints (which are thus true)
from the remaining rules. AsP/M is a normal program it has a standard well-founded
model. A ground literalp (or neg(p)) is said to follow from the program iffp is true
(respectivelyp is false) in the well-founded model ofP/M for everyM. The declarative
semantics ofP is defined as the set of all ground literals which follow from the program.
Notice that there may be cases where neitherp nor neg(p) follows from the program.
This happens if there exist modelsM1 andM2 of T such that the logical values ofp in
the well-founded models ofP/M1 andP/M2 are different, or if the logical value ofp
in the well-founded model ofP/M is undefinedfor every modelM of T.

Notice that the semantics involves two kinds of negation: the monotonic negation of
the ontology (¬) and the non-monotonic negation (neg) of the well-founded semantics.
The former is applicable only to ontology predicates, the latter only to rule predicates.
Thus in our implementation we can denote both by the same symbol (neg).

The Operational Semantics.The implementation discussed below focuses on answer-
ing atomic queries and ground negated literal queries. We now informally sketch the
principles of computing answers underlying our implementation. They are based on the
operational semantics of hybrid programs presented in [6] by abstract notions of two
kinds of derivation trees, calledt-treeandtu-tree, which are defined by a mutually re-
cursive definition. These notions extend the well-known concept of SLD-trees to the
case of hybrid programs, to handle negation and constraints. In the presentation below
the termderivation tree (d-tree)is used whenever the statement applies to both kinds of
trees.

The nodes of d-trees are labelled by goals, consisting of rule literals and constraints.
The conjunction of all constraints of a node will be calledthe constraint of the node.
The label of the root is calledthe initial goal of the tree. A leaf of a d-tree is called
successfulif it does not include rule literals and if its constraint is satisfiable. The other

leaf nodes are calledfailed leaves. In every node containing rule literals, one of them
is distinguished as theselected literalof the node. As usual, we assume existence of a
selection function that determines the selected literals of the nodes.

In the case when the initial goalg of a d-tree is ground the tree has the following
property. LetC1, . . . ,Ck be the constraints of all successful leaves of a d-treet. Then:

– If t is a t-tree then(∃(C1∨ . . .∨Ck)) → g. Thusg follows from the program if
∃(C1∨ . . .∨Ck) is a logical consequence of the ontology.

– If t is a tu-tree then(¬∃(C1∨ . . .∨Ck)) →¬g. Thus the negation ofg follows from
the program if¬∃(C1 ∨ . . .∨Ck) (or equivalently¬∃C1 ∧ . . .∧¬∃Ck) is a logical
consequence of the ontology.

Thus to answer a ground queryg our prototype constructs a t-tree withg as its
initial goal and checks if the respective disjunctive constraint, existentially quantified, is
a logical consequence of the ontology. If it is theng is true (in the declarative semantics
of the program).

If g is not ground andCi is (the constraint of) a successful leaf of a t-tree forg then
∃Ci → gθ follows from the program, whereθ is the composition of the mgu’s along the
branch fromg toCi , and the quantification is over those variables that do not occur free
in gθ. Again, if ∃Ci is a logical consequence of the ontology thengθ follows from the
program.

We now explain how d-trees are constructed for a given initial goalg . This is similar
to construction of an SLD-tree. Every step is an attempt to extend a tree which initially
has only one node labelled byg. At every step one noden, not marked as failed, is
considered. Letq be the goal of the node, lets be its selected literal and letC be the
conjunction of its constraints. The following cases are considered separately:

1. s is positive.For each rule of the program, for which there exists a varianth :- B,Q
of the rule such that

– sandh are unifiable with a most general unifierθ, and
– the constraint(C∧Q)θ is satisfiable,

a child is added ton with the label obtained fromqθ by replacings by (B,Q)θ. If
no such rule exists thenn is marked as a failed node.

2. s is negative, i.e. of the formneg(l). Two sub-cases are:
(a) If l is non-ground, or recursion through negation has been discovered (see be-

low) then:
– If the d-tree is a t-tree then the noden is marked as a failed node and won’t

be considered in the next steps of the derivation.
– If the d-tree is a tu-tree then a child is added ton with the label obtained

be removings from q.
(b) Otherwisel is ground; the step is completed after construction of a separate

d-treet for l . The kind of the separately constructed tree is different from the
kind of the current tree, thus it is a tu-tree if the latter is at-tree, and t-tree if the
latter is a tu-tree. LetC1, . . . ,Ck be the constraints of the successful leaves oft.
If the constraintC′ = C∧¬∃C1∧ . . .∧¬∃Ck is satisfiable then a child is added
to noden with the label obtained fromq by removings and replacingC by C′.

Otherwise the node is marked as failed. In particular, ifk = 0 (no successful
leaf)C′ is equivalent toC. On the other hand, if someCi(1≤ i ≤ k) is true, the
constraintC′ is equivalent tofalseand is not satisfiable.

For more details, see [6]. In general the construction of a d-tree may not termi-
nate for recursive rules. Recursion not involving negativeliterals may produce infinite
branches of the constructed d-tree. Recursion through negation may require construc-
tion of infinite number of d-trees. In our implementation tabling is used; it allows to cut
the loops in the case when the same goal re-appears in the process.

Example 2.When a goalwin(c) is given to the program from Example 1 then a t-tree
for win(c), tu-trees forwin(f) andwin(d), and a t-tree forwin(e) are constructed:

win(c)
|

move(c,Y),neg(win(Y))
/ \

neg(g#Finland(f)),neg(win(f))
|

neg(g#Finland(f))

neg(win(d))
|

g#Europe(f)

win(d)
|

move(d,Y),neg(win(Y))
|

neg(win(e))
|

neg(g#Europe(f))

win(e)
|

move(e,Y),neg(win(Y))
|

g#Europe(f),neg(win(f))
|

g#Europe(f)

win(f)
|

move(f ,Y),neg(win(Y))

Notice that the leaf of the tu-tree forwin(f) is failed (and the leaves of the other trees are
successful). The disjunction¬g#Finland(f)∨g#Europe(f) of the successful leaves of
the t-tree forwin(c) is found to be a logical consequence of the ontology. Hence the
answer forwin(c) is Yes.

Notice that for the goals above there is no difference between t- and tu-trees, as the
case 2a is not involved.

Let us now consider a t-tree forwin(X). The root win(X) has one child
move(X,Y),neg(win(Y)), which in turn has 7 children, one per each clause formove.
Three of the children are failed leaves:neg(win(a)), neg(win(b)), neg(win(c)); the
corresponding substitutions bindX to b,a,a respectively. The first two nodes are
failed due to infinite recursion through negation;neg(win(c)) is failed as the constraint
¬¬g#Finland(f)∧¬g#Europe(f) obtained from a tu-tree forwin(c) is unsatisfiable.

The remaining four children lead to success leaves. (The corresponding subtrees
occur in the trees above.) The leaves and the corresponding substitutions forX are:

g#Europe(f) ¬g#Finland(f) g#Europe(f) neg(g#Europe(f))
{X/e} {X/c} {X/c} {X/d}

The answers for querywin(X) are:X = e provided thatg#Europe(f) (obtained from
the first leaf),X = d provided that¬g#Europe(f) (obtained from the last leaf), and
X = c (as the disjunction of the leaves with substitution{X/c} is a logical consequence
of the ontology).

In our presentation above, we imposed certain restrictionson the operational se-
mantics from [6]. 1) We deal only with ground negated goals; for non ground ones
only a crude, but sound, approximation is used (case 2a). This is to avoid (in)equational
constraints in the goals of d-trees; dealing with such constraints would be rather com-
plicated. 2) We construct all the successful leaves of a tu-tree, while in general the con-
straints of any cross-section of the tree could be taken instead. Choosing the successful
leaves as the selected cross-section produces a most general result. (Formally, the con-
straintC′ from case 2b is the most general among those that could be obtained from the
given tu-tree forl .) On the other hand, this approach fails if the set of the leaves is infi-
nite. (More precisely, if the set of the constraints of the leaves, up to variable renaming,
is infinite.) In such a case, choosing some finite cross-section can provide useful results.
In the current work we prefer the simplicity of the restricted solution to the power of
the general one. 3) A simplification of the operational semantics from [6] is that when
a literal neg(l) is selected in a goalq (case 2b above), the root for a new d-tree isl .
(The constraint ofq is not passed to the new tree.) This usually results in smaller con-
straints of the goals in d-trees, and in simpler and more powerful tabulation of infinite
sequences of d-trees.

In practice it may be too expensive to check satisfiability ofthe constraint of each
goal. Thus the trees constructed by an actual implementation may contain more nodes
and have some additional success leaves, however with unsatisfiable constraints. Clearly
this does not violate the soundness of the operational semantics.

Further examples.

Example 3 (A non Datalog program).Here an additional requirement to the game from
the previous example is added. Each node can be visited at most once. The list of for-
bidden nodes is kept in the second argument of predicatewin/2.

use ’ h t t p : / / dev . me ta jung le . i n f o / owl / geography . owl ’ as’ g ’ .

win (X) :− win (X , []) .

win (X, H i s t o r y) :− move (X,Y, H i s t o r y) , neg (win (Y, [X| H i s t o r y])) .

move (A, B , H i s t o r y) :− edge (A,B) , neg (member (B , H i s t o r y)) .

edge (e , f) :− d l (g# Europe (f)) .
edge (c , f) :− d l (neg (g# F in la nd (f))) .
edge (b , a) . edge (a , b) . edge (a , c) .
edge (c , d) . edge (d , e) .

member (X, [X|T]) .
member (X, [H|T]) :− member (X, T) .

Prolog built-in predicates can be used in hybrid rules. In principle, any built-in pred-
icates without side-effects (like modifying the program itself, referring to files, etc) can

be used. The semantics of built-in predicates is the same as in Prolog. In particular, in-
vocations of arithmetic predicates have to satisfy the relevant groundness requirements.
As the implementation employs the Prolog selection rule, the programmer’s reasoning
about the form of predicate invocation arguments is the sameas for Prolog programs.

As many built-ins, likevar/1 do not have any declarative semantics, we suggest that
only such built-in predicates are used, for which if an atomA fails (succeeds instantiated
to Aθ) then each instance ofA fails (respectively succeeds instantiated to an instance of
Aθ).

Example 4 (Using Prolog built-ins).Here the additional condition is changed, so that
for each node a number of allowed visits is given. An atommembern(X,L,N) is true iff
elementX occursN times in listL. Prolog arithmetic is used to deal with integers (built-
in predicatesis/2 and</2). Also the built-in\=/2 (non-unifiability check) is employed
to check disequality of nodes. (This could be done without built-ins, by replacingE\=G
with neg(eq(E,G)), and definingeq/2 byeq(X,X).)

use ’ h t t p : / / dev . me ta jung le . i n f o / owl / geography . owl ’ as’ g ’ .

win (X) :− win (X , []) .

win (X, H i s t o r y) :− move (X,Y, H i s t o r y) , neg (win (Y, [X| H i s t o r y])) .

move (A, B , H i s t o r y) :− edge (A,B) , r e s t r i c t i o n (B , R) , membern (B , H i s to ry ,N) , N<R .

edge (e , f) :− d l (g# Europe (f)) .
edge (c , f) :− d l (neg (g# F in la nd (f))) .
edge (b , a) . edge (a , b) . edge (a , c) .
edge (c , d) . edge (d , e) .

r e s t r i c t i o n (a , 7) . r e s t r i c t i o n (b , 6) . r e s t r i c t i o n (c , 1) .
r e s t r i c t i o n (d , 1) . r e s t r i c t i o n (e , 1) . r e s t r i c t i o n (f , 1) .

membern (E , [] , 0) .
membern (E , [E|L] , N1) :− membern (E , L ,N) , N1 i s N+1.
membern (E , [G|L] ,N) :− E\=G, membern (E , L ,N) .

Notice that, in contrary to Example 1, infinite games are impossible in the last
two examples. Hence each position is either winning, or losing (i.e. the value of
win(X,History) is eithertrue or false, for any nodeX and listHistory).

3 The prototype

This section presents a concrete prototype implementing the operational semantics pre-
sented in Section 2. We present a general architecture of thesystem, describe compila-
tion of hybrid programs and queries into Prolog, explain theusage of tabulation to prune
infinite computations, and present how description logic constraints are dealt with.

Figure 1 shows the user interface of the prototype. The user has entered the program
from Example 1 and a query into the respective fields. Pressing the “Query” button
compiles the program and the query, and then produces an answer to the query. The
“Compile” button displays the compiled program. The prototype is under construction,
its current version is available at http://www.ida.liu.se/hswrl/.

Fig. 1. The web-interface of the hybrid reasoner answering a query with a constrained answer.

Run-time system

XSB

DL reasoner

Hybrid program P

Ontology query system

Answer

Prolog
program P’

System
Interface

Query Q

Compilation phase Querying phase

Query Q’

Jena/DIG

InterProlog Pellet

Compiler

Fig. 2. Prototype architecture overview.

General architecture. An overview of the main components of the reasoning system
is shown in Figure 2. The systems is comprised of three main components:

1. Compiler.In order to reuse a Prolog engine for handling the rule part ofa hybrid
knowledge base, we compile hybrid rules (and queries) to plain Prolog.

2. Run-time system.When querying a hybrid program, the reasoner queries the com-
piled program (using a compiled query). The run-time systemis implemented in
Prolog. It is responsible for constructing derivation trees and for proper handling of
constraints, as they appear in the underlying hybrid program.

3. Ontology query system.The run-time system interactively communicates with an
ontology query system, responsible for checking ontological constraints.

Both the run-time and ontology query systems treat the underlying Prolog and DL en-
gines as black boxes. No modifications of the engines are needed; in principle any Pro-
log implementation supporting communication with Java, and any DL reasoner with a
DIG interface may be used. It is desirable that the Prolog engine provides tabulation,
which discovers (some) infinite branches of search trees. Otherwise a rather poor ap-
proximation of the well-founded semantics is obtained. In our prototype we use XSB
Prolog system [14] and Pellet [12].

Before discussing the main system components in detail, we motivate the use of
protocols and API’s that we depend upon for the realization of the system.

InterProlog [11] is a Prolog-Java interface, enabling communication and data shar-
ing between Prolog and Java programs. Communication can be handled both ways, that
is, passing Java objects to Prolog and sending Prolog terms to Java programs. There
is no standard interface between Prolog systems and DL-reasoners. However, there
are API’s for handling communication with DL reasoners fromJava programs (e.g.
Jena [10]). Thus, communicating with Java programs from Prolog enables access to
DL-reasoners from Prolog.

Two Prolog predicates are provided by InterProlog to aid in communication with
a Java program. First, in order to prepare for the passing of data between Java and
Prolog, InterProlog provides the predicatebuildTermModel/2. This predicate encodes
Prolog terms, such that they might be sent to a Java program and be properly under-
stood using the Java API provided by InterProlog. E.g.buildTermModel([1,2,3],P)
succeeds with the variableP unified with the encoding of the list[1,2,3]. Second, the
predicatejavaMessage/3 is provided to invoke a specific Java method and thereby
enabling the passing of prepared Prolog terms as arguments.E.g. the Prolog goal
javaMessage(’Class’-obj,R,method(P)) produces a resultR of calling the Java
methodClass.obj.method(P).

A protocol for communication with DL-reasoners is providedby DIG and is emerg-
ing as a standard [3]. The implementation does not directly use DIG, but the DL-
reasoner interface provided by Jena [10] employs DIG. Thus,as long as a DL-reasoner
is DIG-compliant, it may be plugged into our system.

Compiling HD rules into XSB Prolog. The hybrid rules include DL constraints and
cannot be directly used in Prolog computations. Each negative literal encountered in a

Prolog computation initiates construction of an underlying derivation tree, where DL-
constraints also have be handled. To address these issues a given HD-Program is first
compiled into a Prolog program. We here explain the idea of the compilation and discuss
the details.

The underlying idea of the compilation technique is to prevent the constraints to
be selected by the Prolog selection function during rule execution. However, since
constraints may share variables with rule predicates, suchconstraint variables need to
be processed and unified when the corresponding variables inthe rule predicates are.
Achieving this is possible by moving the constraint predicates into arguments of other
predicates (which are selected by the selection function).In general, eachn-ary non-
constraint predicate is extended with three additional arguments during compilation
(where−→ represents the compilation step):

p(ū) −→ p(ū,Table,Constraint,Mode)

The first extra argument (Table) is used to prevent infinite recursion through negation
(further explained below). The second argument (Constraint) will represent the con-
straints accumulated during resolving the sub-goalp(ū). The third argument (Mode)
will obtain a valuet or tu, depending on which kind of derivation tree is currently
being constructed. While compiling a clause, theConstraintargument for each literal
is a unique variable. On the other hand, theTableand theModeargument are each the
same variable for all the rule literals of the clause (including the head literal).

When a negative literalneg(p(ū)) is encountered, a new derivation tree is to be
constructed for the positive versionp(ū) of the literal, and the constraints accumulated
along the branches of the tree are to be treated as described in Section 2. This is done
by a predicatenegation/4. Thus negative rule literals are compiled into appropriate
invocations of this predicate:

neg(p(ū)) −→ negation(p(ū),Table,Constraint,Mode)

Let t(R) denote a rule literalR translated as described above. A hybrid rule

R0 :− R1, . . . ,Rn,dl(C1), . . . ,dl(Cm)

is compiled into

t(R0) :− t(R1), . . . ,t(Rn),
andAppend(Constraint1, . . . ,Constraintn,C1, . . . ,Cm,Constraint0)

whereConstrainti is the second additional argument oft(Ri) (for i = 0, . . . ,n). The
predicateandAppendunifiesConstraint0 with the conjunction of the constraints of the
rule and the constraints accumulated by the invocations oft(R1), . . . ,t(Rn). In practice
this is not a single atom, butn−1 atoms with a predicateandAppend/3; they include
a term which represents the conjunction ofC1, . . . ,Cm. (The constraints are represented
as conjunctions, more precisely as lists built with symbolsand/2 and true/0; predi-
cateandAppend/3 joins two such lists.) Ifn < 2 thenandAppendis not used. Instead,
Constraints0 in the head is replaced by a term representing the conjunction of C1, . . . ,
Cm whenn = 0 (or the conjunction ofC1, . . . ,Cm andConstraint1 whenn = 1).

Predicatenegation/4 is a main predicate of the run-time system. It constructs a d-
tree for its first argument, employingfindall/3 of Prolog. The tree is a tu-tree if the
Mode argument ist, and a t-tree otherwise. Moreover,negation/4 collects the con-
straintsC1, . . . ,Ck of the success leaves of the tree, and returns in its third argument
the formula¬∃C1 ∧ . . .∧¬∃Ck. (If someCi is true thennegation/4 fails, as in such
case¬∃C1∧ . . .∧¬∃Ck is unsatisfiable.) If the tu-tree cannot be constructed (dueto non
ground root or infinite recursion through negation) thennegation/4 returnstrueor fails,
according to case 2a of the description of the operational semantics.

Hybrid rules may contain Prolog built-ins. Literals with built-in predicates are passed
unchanged to the compiled program, without adding the threeextra arguments. If such
literal is negative then, in the current version of the system, the negation is converted
into Prolog negation as failure.

Compiling queries. Queries to hybrid programs must also be compiled before queried
wrt. the compiled hybrid program. Queries consisting of a single literal are compiled in
the following way:

p(ū) −→ p(ū, [],Constraint,t)
neg(p(ū)) −→ negation(p(ū), [],Constraint,t)

That is, the tabling table is initially empty (the empty list), the constraints will be col-
lected in a variable (hereConstraint), and the top level d-tree to be constructed is a
t-tree. (For a negative literal this tree consists of two or three nodes only.)

Each answer for a compiled query provides a constraintConstraintθ, and an in-
stance ¯uθ of the variables of the original query. If the constraint is unsatisfiable w.r.t.
the ontology, the answer is discarded. If the constraint is alogical consequence of
the ontology, thenp(ūθ) follows from the hybrid program.4 Otherwise, implication
Constraintθ → p(ūθ) follows from the program.

If there are many answersConstraintθ1, . . . ,Constraintθk andp(ū) is ground then
Constraintθ1∨·· · ∨Constraintθk implies p(ū), and the constraintConstraintθ1∨·· · ∨
Constraintθk is checked w.r.t. the ontology. For a non ground query we can deal sim-
ilarly with such answersConstraintθ1, . . . ,Constraintθk for which the corresponding
instances of the goal are the same: ¯uθ1 = · · · = ūθk.

Queries that are conjunctions of literals can be compiled similarly to the bodies of
hybrid rules; the difference is that[] is used instead of the variableTableandt instead
of Mode.

Example 5.The rule

move(A,B,History):−edge(A,B), restriction(B,R),membern(E,History,N),N<R.

from Example 4 is compiled into

move (A, B , H i s to ry , Tbl , Cnst , M) :−
edge (A, B , Tbl , Cnst1 , M) , andAppend (Cnst1 , Cnst23 , Cns t) ,
r e s t r i c t i o n (B , R, Tbl , Cnst2 , M) , andAppend (Cnst2 , Cnst3 ,Cnst23) ,
membern (E , H i s to ry , N, Tbl , Cnst3 , M) ,
N < R .

4 More generally, it is sufficient that∃Constraintθ is a logical consequence, where the quantifi-
cation is over those free variables ofConstraintθ that do not occur inp(ūθ).

Keeping the related compiler predicate simple resulted in amaybe not natural way of
placingandAppend/3 atoms in the compiled clauses.

The set of hybrid rules of Example 1 is compiled into:

win (X, Tbl , Cnst , M) :− move (X, Y, Tbl , Cnst1 , M) ,
andAppend (Cnst1 , Cnst2 , Cns t) ,
n e g a t i o n (win (Y) , Tbl , Cnst2 , M) .

move (e , f , Tbl , and (’g# Europe ’ (f) ,t rue) , M) .
move (c , f , Tbl , and (neg (’ g# F in la nd ’ (f)) ,t rue) , M) .

move (b , a , Tbl , t rue , M) . move (a , b , Tbl , t rue , M) .
move (a , c , Tbl , t rue , M) . move (c , d , Tbl , t rue , M) .
move (d , e , Tbl , t rue , M) .

A querywin(e) is compiled intowin(e, [],Cnst,t). Executing the latter goal results
in callingnegation(win(f), [],Cnst2,t), and construction of a tu-tree forwin(f) without
successful leaves (see Ex. 2). We obtainCnst2= trueand the initial goal succeeds once,
with Cnst bound toand(g#Europe(f),true) (which is equivalent tog#Europe(f)).
This constraint is found to be satisfiable but not a logical consequence of the ontol-
ogy. Thus the user is informed that the answer is Yes, under conditiong#Europe(f).

A query neg(win(d)) is compiled intonegation(win(d), [],Cnst,t), this query re-
sults in constructing a tu-tree forwin(d), a t-tree for win(e), and a tu-tree for
win(f). The latter steps are already described above. The (only) leaf of the tu-
tree for win(d) is (equivalent to)neg(g#Europe(f)), and the (only) answer ob-
tained fornegation(win(d), [],Cnst,t) is (equivalent to)g#Europe(f). The answer for
neg(win(d)) given for the user is the same as that forwin(e) in the previous case.

A (compiled) query win(c, [],Cnst,t) results in two answers (equivalent to)
g#Europe(f) andneg(g#Finland(f)). Their disjunction is found a logical consequence
of the ontology. Hence the answer returned for a querywin(c) is Yes.

Tabulation. The operational semantics described in Section 2 may resultin d-trees
with infinite branches. Also constructing an infinite set of d-trees is possible (due to
recursion through negation). We use tabulation of XSB Prolog to discover infinite trees.
The way in which it prunes infinite branches is sound w.r.t. our operational semantics,
as the resulting tree has the same set of success leaves.

Unfortunately, the native XSB tabulation cannot be used to discover that an infi-
nite set of d-trees is being constructed. This is because thetree constructing predicate
appears in the first argument of->/2. XSB refuses to tabulate such predicates, and
tabulation is implemented using an extra argument of the compiled predicates. If this
tabulation discovers an infinite computation then case 2a ofthe definition of the opera-
tional semantics (Section 2) is applicable.

For Datalog normal programs, tabulation of XSB Prolog guarantees finiteness of
computation. As the Herbrand base is finite, each infinite branch of a tree and each
infinite sequence of trees can be discovered and pruned. Thisis not the case for Datalog
hybrid programs (i.e. hybrid programs over a finite Herbranduniverse). The reason is
that the set of constraints over a finite Herbrand universe isnot finite. Hence tabulation
is not able to discover some infinite branches of a d-tree (andsome infinite sequences
of d-trees). Some additional safeness conditions [6] implythat the constraints of the

leaves of a d-tree are ground. Then the tabulation approach described above results in
finite computations only. Under these conditions our implementation is complete for
non floundering Datalog hybrid programs. (For a given program and goal, floundering
means selecting a non ground negative rule literal.)

Handling DL constraints. DL-reasoners normally implement satisfiability verifica-
tion of a knowledge base as the main reasoning service. All other services are reduced
to the problem of checking satisfiability of the knowledge base [2]. A commonly of-
fered service is to check if an individual (a) belongs to some concept (C). This service
is reduced to satisfiability by extending the knowledge basewith the axiom{a:¬C}.
The queryC(a) is then a logical consequence of the knowledge base if its extension is
unsatisfiable.

Disjunctive queries are usually not offered as an explicit service by DL-reasoners.
However, a disjunctive queryC(a)∨D(b) can be reduced to checking unsatisfiabil-
ity of the knowledge base extended with{a:¬C, b : ¬D} [1]. General disjunctive DL
queries cannot in a straight-forward manner be solved in this way. Most DL logics do
not consider negated roles (properties) to be valid expressions. Hence, using the same
approach for roles is not feasible. This is why our prototypeonly allows concept literals
(not properties) as constraints in programs.

In the general case, it may be necessary to delay constraint checking until the last
step of query answering. If several nested derivation treeshave been constructed dur-
ing rule reasoning, a nested constraint is produced. That is, the constraint possibly is a
conjunction of negated constraints, which in turn are (possibly existentially quantified)
conjunctions and so on. However, nested constraints can be normalized into a conjunc-
tive normal form (CNF) of concept literals. That is, a conjunction where each conjunct
is a disjunction of concept literals (non-nested).

A conjunctive DL queryC1∧ . . .∧Cn where the conjuncts are disjunctions of con-
cept literals can be answered in the following manner [9]. Each conjunct can be solved
as described above. If each conjunct is a logical consequence of the underlying knowl-
edge base, then so is the original conjunctive query (and vice versa).

It is a design decision when the obtained constraints are checked for satisfiability.
In principle, such check should be performed for each constructed constraint. This is
however too expensive. (On the other hand, this prunes d-tree branches as early as
possible.) Currently the check is performed at completion of the main t-tree, this means
once per goal. Alternative strategies are being considered, for instance performing the
check at completion of each d-tree.

4 Conclusion

This paper describes a way of implementing HD-rules, an approach of combining non
monotonic rules of Logic Programming (LP) with monotonic first order theories of De-
scription Logic (DL). The approach has been introduced in [6]. Its declarative semantics
combines the well-founded semantics of LP with the standardfirst order semantics of
DL. An operational semantics is provided. Its main advantage is that an existing DL rea-
soner and existing Prolog engine can be re-used; hence the effort to construct an imple-

mentation is low. Here we implement a somehow simplified version of that operational
semantics. Hybrid rule programs are compiled into XSB Prolog. A run-time system ex-
ecutes the compiled programs and interfaces a DL reasoner. The interface itself is pro-
grammed in Java, using Jena (and indirectly DIG). The compiler is written in XSB Pro-
log. The prototype is under development, and available at http://www.ida.liu.se/hswrl/.

Acknowledgement.This research has been partially funded by the European Commis-
sion and by the Swiss Federal Office for Education and Sciencewithin the 6th Frame-
work Programme project REWERSE number 506779 (cf.http://rewerse.net).

References

1. F. Baader, H.-J. Bürckert, B. Hollunder, W. Nutt, and J. H. Siekmann. Concept logics. Tech-
nical Report RR-90-10, 1990.

2. F. Baader, D. Calvanese, and D. McGuiness(et.al.), editors. The Description Logic Hand-
book. Cambridge University Press, 2003.

3. DIG. WWW Page. URL:http://dig.sourceforge.net/. Accessed 7 February 2007.
4. W. Drabent. What is failure? An approach to constructive negation. Acta Informatica,

32(1):27–59, Feb. 1995.
5. W. Drabent, J. Henriksson, and J. Maluszynski. Hybrid reasoning with rules and constraints

under well-founded semantics. InWeb Reasoning and Rule Systems, Proceedings RR 2007,
volume 4524 ofLecture Notes in Computer Science, pages 348–357. Springer-Verlag, 2007.

6. W. Drabent and J. Maluszynski. Well-founded semantics for hybrid rules. InWeb Reason-
ing and Rule Systems, Proceedings RR 2007, volume 4524 ofLecture Notes in Computer
Science, pages 1–15. Springer-Verlag, 2007.

7. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective integration of declarative rules
with external evaluations for semantic-web reasoning. InProc. of European Semantic Web
Conference, pages 273–287, 2006.

8. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.Well-founded semantics for de-
scription logic programs in the semantic web. InRuleML, pages 81–97, 2004.

9. I. Horrocks and S. Tessaris. A conjunctive query languagefor description logic aboxes.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence, pages 399–404. AAAI Press
/ The MIT Press, 2000.

10. Jena Semantic Web Framework. WWW Page, 18 August 2005. Available athttp://jena.
sourceforge.net/. Accessed 7 February 2007.

11. Miguel Calejo. InterProlog - a Prolog-Java interface. WWW page, September 2006. Avail-
able athttp://www.declarativa.com/interprolog/. Accessed 7 February 2007.

12. Pellet OWL Reasoner. WWW Page, 14 March 2006. Available at http://www.mindswap.
org/2003/pellet/index.shtml.

13. R. Rosati. Dl+log: Tight integration of description logics and disjunctive datalog. InKR,
pages 68–78, 2006.

14. XSB. WWW Page. URL:http://xsb.sourceforge.net/. Accessed 7 February 2007.

