HD-rules: a hybrid system interfacing Prolog with
DL-reasoners

Wiodzimierz Draberit®, Jakob Henrikssdhand Jan Matuszynski

1 Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, Pl - 01-237 Warszawa, Poland
drabent @ pi pan. waw. pl
2 Fakultat fur Informatik, Technische Universitat Dresd
j akob. henri ksson@ u- dr esden. de
3 Department of Computer and Information Science,
Linkdping University, S 581 83 Linkdping, Sweden
janma@da. liu.se

Abstract. The paper presents a prototype systébrRules (Hybrid integration

of Description Logic and Ruleghat integrates normal clauses under the well-
founded semantics with ontologies specified in Descriptiogics. The system

is hybrid: it re-uses XSB Prolog for rule reasoning and @xisOWL reason-
ers for ontology reasoning. This makes it possible to useesBrolog built-ins
(like arithmetic) in the rules. The system itself is writi@rXSB Prolog; its inter-
face to OWL employs Java. The paper outlines the principlésepintegration,
illustrates the use of the system on examples, and discussitail the main
implementation techniques.

1 Introduction

This paper presents a prototype system integrating De®xgripogic reasoners com-
patible with the DIG-standard with normal clauses as usédgit programming. The
work is based on the well-founded semantics of logic progrand on the ideas of con-
structive negation in logic programming, as discussed]irilflbe prototype implements
a language ohybrid rulesthat extends normal clauses. The hybrid rules allow queries
to OWL ontologies in their bodies. Prolog arithmetic and sasther Prolog built-ins
can also be used.

Integration of rules and ontologies is presently addrebgatdany researchers as a
necessary step in extending Semantic Web technology. TheQWology Language
OWL, standardized by W3C is supported by several reasoniite there is yet no
common agreement about the rule level. While the main vaaaB@WL is based on
DL (Description Logics), hence on FOL (first order logic)isibften claimed that rules
should allow non-monotonic reasoning. Non-monotonic saasy has been investi-
gated within logic programming. The two main kinds of the setics proposed are
the Answer Set Semantics (Stable Model Semantics) and thidouaded semantics.
The well-known proposals for integration of rules and oogiés [7, 13] are based on
Answer Set Semantics. The well-founded semantics is ug@d lrut in a way different
from our approach (for more detailed discussion see [6]).

Important aspects of the work presented in this paper are

— Our approach is based on the well-founded semantics of dgmograms, and is
compatible with FOL.: if the non-monotonic negation is noédisn the rules, the
answers to queries are logical consequences of the set o&kiDins consisting of
the rules and of the ontology.

— We allow the use of term constructors and some Prolog huifiredicates (e.g.
arithmetic) in the hybrid rules.

— The approach makes it possible to re-use existing reas(foeB3L, and for Prolog
with the well-founded semantics). This substantially difigs its implementation.

— We explain in detail the principles of implementation.

This paper extends the short paper [5] in the following wayee hybrid rule lan-
guage of [5] is extended by allowing term constructors (Brglog list constructors)
and some Prolog built-in predicates. The main implementatsues are discussed in
more detail. In particular we describe how hybrid rules amnpiled into Prolog, and
how the ontology queries in the rules are processed.

A declarative semantics of hybrid programs was defined inpoewious work [6]
and is briefly summarized in Section 2. Its main idea is thatesbkand model of a
hybrid program is constructed for every model of the undegyntology. This is sim-
ilar to the notion of NM-model in [13]. The latter is howeveaded on on the notion
of stable model, while our construction uses the notion of-feeinded model. Our
implementation is based on the operational semantics pi@iEh answers queries by
combining a constructive negation approach to SLS-reieol(4] with ontological rea-
soning. The operational semantics is sound wrt. the ddétla@ne and complete for a
restricted class of hybrid programs (see [6] for details).

2 Hybrid Programs

In this section we first introduce the syntax of hybrid pragsand provide an example
program. We then briefly discuss the declarative semantibglwrid programs and its
operational semantics. We conclude with some more examples

The Syntax. The syntax of hybrid programs is derived from the syntax efdcbmpo-
nent languages. The component languages considered ketedanguage of normal
logic programs, and some DL-based ontology language. Werasthat the alphabets
of predicate letters of logic programs and of the ontologglzage are disjoint, but both
languages have common variables and constants. (The alpbfdbgic programs also
includes function symbols of non zero arity.) Literals,ratoand predicate symbols of
logic programming will be called, respectively rule litex;arule atoms, etc. A standard
logic programming syntax is extended by allowing ontolagj@onstraints to appear in
the rule bodies. Thus, a hybrid rule looks as follows:

Roi— Ru,...,ReNegRei1), -, negRy),dI(Ca), . I (Cr).

whereRy, Ry, ..., R, are rule literals an€y, . . .,Cy, are constraints. At the moment we
only allow here constraints of the for@(x) or -C(x) whereC is a concept of the on-
tology andx is a variable or a constant. A hybrid program is a g&ifP) whereT is
an ontology (a finite set of axioms of a DL) aRdis a finite set of hybrid rules with
constraints over the alphabet®f In practiceT will be provided by a declaration asso-
ciating a short name (prefix) with the URI of the ontology. 98 here done by using
the syntaxuse 'ontologyuri’ as 'prefix . Any predicate symbagp from the ontology
is represented in the hybrid rules@sf i x#p.

Example 1.Consider a program consisting of the set of hybrid rédlefiown in Listing
1.1, and an ontology

Finland C Europe

(A T-box of one axiom and an empty A-box).

use 'http://dev.metajungle.info/owl/geography.owl’ ag’.

win (X) :— move(X,Y), neg(win(Y)).

move(e,f) = dl(g#Europe(f)).
move(c,f) — dl(neg(g#Finland (f))).
move(b,a). move(a,b). move(a,c). move(c,d). move(d,e).

Listing 1.1. An example hybrid program describing a two-person game.

The hybrid program in Listing 1.1 describes a two-persongammere each of the
players, in order, moves a token from a node of a directedgrap

d—e

[

b—~a—c=f

over an edge of the graph. The nodes correspond to geogahpbijects specified in
an ontology (e.g. cities) and are represented by constaoise edges of a graph (rep-
resented in the example by theovefacts) are labelled by constraints (added as con-
straints to the respective facts). The constraints reféen¢contology. A move from a
positionx to a positiony is enabled if there is an edge fraxto y and the constraint
is satisfied. The predicatgin/1 characterizes the winning positions of the game, as
described below.

A position is winning if a move is enabled to a position whismbt winning (call
it losing). Obviously a position where no moves are enaldddsing. Thus, position
f is losing. The move frone to f is enabled only iff is in Europe. This cannot be
concluded from the ontology. Consequently we cannot calgcthate is a winning
position. Similarly, we cannot conclude thiis not in Finland which is required for
the move front to f. However, it follows from the ontology that if is not in Europe
it is also not in Finland. Hence one of the conditions holdsffoConsequentlg is a
winning position: iff is in Europegis winning,d is losing anct is winning. Otherwise
f is not in Finland and is winning.

The positionsa andb cannot be classified as winning or losing, since frawne
can always move tb where the only enabled move is bacletdrhe third logical value
undefineds assigned tavin(a) andwin(b). The status ofl ande is also not clear, but
for different reasons discussed above. In some, but notadlets of the ontologe is
winning andd is losing and in the remaining ones the opposite holds.

The Declarative Semantics.In [6] we define a formal semantics of hybrid programs,
extending the well-founded semantics of normal progranesehve survey informally
the main ideas. The well-founded semantics of normal progrs three-valued and
gives a fixpoint formalization of the way of reasoning ilieged by the game example,
when the constraints are neglected. It assigns to everyeeleofithe Herbrand base one
of the logical valuesrue (e.g.win(c)), false(e.g.win(f)) or undefinede.g.win(a)).

The constraints added to the rule bodies refer to the onyoksgillustrated by the
example, a ground instance of a constraint may have diffénetn values in different
models of the ontology. Consider a hybrid progrémP) (whereT is a set of first
order axioms, an®® a set of hybrid rules), a mod# of T, and the seground(P) of
all ground instances of the rules Ih Each of the ground constraints is either true or
false inM. Denote byP/M the set obtained frorground(P) by removing each rule
including a constraint false il and by removing all constraints (which are thus true)
from the remaining rules. AB/M is a normal program it has a standard well-founded
model. A ground literap (or neg p)) is said to follow from the program ifp is true
(respectivelyp is false) in the well-founded model &/M for everyM. The declarative
semantics oP is defined as the set of all ground literals which follow frdra program.
Notice that there may be cases where neithaor neg p) follows from the program.
This happens if there exist modélly andM; of T such that the logical values @fin
the well-founded models d?/M1 andP/M are different, or if the logical value gf
in the well-founded model d?/M is undefinedor every modeM of T.

Notice that the semantics involves two kinds of negatioarttonotonic negation of
the ontology) and the non-monotonic negatiomeg) of the well-founded semantics.
The former is applicable only to ontology predicates, thtefeonly to rule predicates.
Thus in our implementation we can denote both by the same alyimég).

The Operational Semantics.The implementation discussed below focuses on answer-
ing atomic queries and ground negated literal queries. We informally sketch the
principles of computing answers underlying our implemgata They are based on the
operational semantics of hybrid programs presented in y&listract notions of two
kinds of derivation trees, callgetree andtu-treg which are defined by a mutually re-
cursive definition. These notions extend the well-knownoegt of SLD-trees to the
case of hybrid programs, to handle negation and constramtse presentation below
the termderivation tree (d-treejs used whenever the statement applies to both kinds of
trees.

The nodes of d-trees are labelled by goals, consisting efliterals and constraints.
The conjunction of all constraints of a node will be caltbéé constraint of the node
The label of the root is callethe initial goal of the tree. A leaf of a d-tree is called
successfuf it does not include rule literals and if its constraint &isfiable. The other

leaf nodes are callefdiled leaves. In every node containing rule literals, one of them
is distinguished as theelected literabf the node. As usual, we assume existence of a
selection function that determines the selected literbisonodes.

In the case when the initial goglof a d-tree is ground the tree has the following
property. LetCy,...,Cy be the constraints of all successful leaves of a ditréaen:

— If tis a t-tree then3(Cy Vv...VC)) — g. Thusg follows from the program if
3(C1 V... VC) is alogical consequence of the ontology.

— If tis a tu-tree theri—3(C1 Vv ... VC)) — —g. Thus the negation @ follows from
the program if—=3(Cy v ... v Cy) (or equivalently-3Cy A ... A =3Cy) is a logical
consequence of the ontology.

Thus to answer a ground quegyour prototype constructs a t-tree withas its
initial goal and checks if the respective disjunctive caaist, existentially quantified, is
a logical consequence of the ontology. If it is theeis true (in the declarative semantics
of the program).

If gis not ground and; is (the constraint of) a successful leaf of a t-treegdinen
3G — g0 follows from the program, wher@is the composition of the mgu’s along the
branch fromg to G, and the quantification is over those variables that do naioftee
in gb. Again, if 3C; is a logical consequence of the ontology ttg@follows from the
program.

We now explain how d-trees are constructed for a given irgtalg . This is similar
to construction of an SLD-tree. Every step is an attempt tereka tree which initially
has only one node labelled lgy At every step one node, not marked as failed, is
considered. Let) be the goal of the node, Istbe its selected literal and 1€ be the
conjunction of its constraints. The following cases aresidered separately:

1. sis positiveFor each rule of the program, for which there exists a vahanB, Q
of the rule such that
— sandh are unifiable with a most general unifgrand
— the constrainfC A Q)8 is satisfiable,

a child is added ta with the label obtained fromp by replacings by (B,Q)6. If

no such rule exists themis marked as a failed node.
2. sis negativei.e. of the formneg). Two sub-cases are:

(a) Ifl is non-ground, or recursion through negation has beenwsed (see be-
low) then:

— Ifthe d-tree is a t-tree then the nodés marked as a failed node and won't
be considered in the next steps of the derivation.

— If the d-tree is a tu-tree then a child is addedtwith the label obtained
be removings from q.

(b) Otherwisel is ground; the step is completed after construction of arsépa
d-treet for I. The kind of the separately constructed tree is differesmfthe
kind of the currenttree, thus itis a tu-tree if the latter tstigee, and t-tree if the
latter is a tu-tree. LeE, . ..,Cy be the constraints of the successful leavets of
If the constrainC’ = C A —3Cy A... A—3C is satisfiable then a child is added
to noden with the label obtained fromg by removings and replacing by C'.

Otherwise the node is marked as failed. In particulak,# 0 (no successful
leaf) C' is equivalent ta&C. On the other hand, if son@ (1 <i < k) is true, the
constrainC’ is equivalent tdalseand is not satisfiable.

For more details, see [6]. In general the construction ofteed-may not termi-
nate for recursive rules. Recursion not involving negditeeals may produce infinite
branches of the constructed d-tree. Recursion throughtioegaay require construc-
tion of infinite number of d-trees. In our implementationliady is used; it allows to cut
the loops in the case when the same goal re-appears in thesgroc

Example 2.When a goalvin(c) is given to the program from Example 1 then a t-tree
for win(c), tu-trees fowin(f) andwin(d), and a t-tree fowin(e) are constructed:

win(c)
|
movéc,Y),negwin(Y))
/ \
neg g#Finland(f)),negwin(f)) negwin(d))
| |

neg g#Finland(f)) g#Europg f)
win(d) win(e) win(f)
| | |
movéd,Y), negwin(Y)) movée,Y),negwin(Y)) move f,Y), negwin(Y))
| |
negwin(e)) gH#Europg f),negwin(f))
| |
neq g#Europgf)) g#Europg f)

Notice that the leaf of the tu-tree faiin(f) is failed (and the leaves of the other trees are
successful). The disjunctiong#Finland(f) v g#Europ€ f) of the successful leaves of
the t-tree forwin(c) is found to be a logical consequence of the ontology. Henee th
answer fowin(c) is Yes.

Notice that for the goals above there is no difference betvtteand tu-trees, as the
case 2a is not involved.

Let us now consider a t-tree fowin(X). The root win(X) has one child
moveX,Y),negwin(Y)), which in turn has 7 children, one per each clauseniore
Three of the children are failed leavasegwin(a)), negwin(b)), negwin(c)); the
corresponding substitutions bind to b,a,a respectively. The first two nodes are
failed due to infinite recursion through negatioeg win(c)) is failed as the constraint
——g#Finland(f) A —g#Europ€ f) obtained from a tu-tree fawin(c) is unsatisfiable.

The remaining four children lead to success leaves. (Theesponding subtrees
occur in the trees above.) The leaves and the correspondistjtsitions forx are:

gi#Europgf) —g#Finland(f) g#Europef) negg#Europdf))
{X/e} {X/c} {X/c} {X/d}

The answers for quenyin(X) are: X = e provided thatg#Europd f) (obtained from
the first leaf),X = d provided that-g#Europ€ f) (obtained from the last leaf), and
X = ¢ (as the disjunction of the leaves with substitut{ofy/c} is a logical consequence
of the ontology).

In our presentation above, we imposed certain restrictnghe operational se-
mantics from [6]. 1) We deal only with ground negated goats;rfon ground ones
only a crude, but sound, approximation is used (case 283.i¥kd avoid (in)equational
constraints in the goals of d-trees; dealing with such ¢aigs would be rather com-
plicated. 2)We construct all the successful leaves of age;tvhile in general the con-
straints of any cross-section of the tree could be takerdustChoosing the successful
leaves as the selected cross-section produces a mostlgeseita (Formally, the con-
straintC’ from case 2b is the most general among those that could bmettmom the
given tu-tree fot.) On the other hand, this approach fails if the set of thedsas infi-
nite. (More precisely, if the set of the constraints of the/kes, up to variable renaming,
is infinite.) In such a case, choosing some finite cross«®ctn provide useful results.
In the current work we prefer the simplicity of the restritt@olution to the power of
the general one. 3) A simplification of the operational seticarirom [6] is that when
a literalneg(l) is selected in a goaj (case 2b above), the root for a new d-treé.is
(The constraint ofy is not passed to the new tree.) This usually results in smadlie-
straints of the goals in d-trees, and in simpler and more povabulation of infinite
sequences of d-trees.

In practice it may be too expensive to check satisfiabilityhaf constraint of each
goal. Thus the trees constructed by an actual implementatiy contain more nodes
and have some additional success leaves, however withsfiedale constraints. Clearly
this does not violate the soundness of the operational g&rsan

Further examples.

Example 3 (A non Datalog progranblere an additional requirement to the game from
the previous example is added. Each node can be visited atomos. The list of for-
bidden nodes is kept in the second argument of predigaié.

use 'http://dev.metajungle.info/owl/geography.owl’ ag’.

win (X) :— win(X,[]).

win (X, History) :— move(X,Y, History), neg(win(Y,[XHistory])).
move (A,B, History) = edge(A,B), neg(member(B, History)).
edge(e,f) = dl(g#Europe(f)).

edge(c,f) = dl(neg(g#Finland (f))).

edge(b,a). edge(a,b). edge(a,c).

edge(c,d). edge(d,e).

member(X,[XT]).
)

member(X,[HT]) :— member(X,T).

Prolog built-in predicates can be used in hybrid rules. Ingiple, any built-in pred-
icates without side-effects (like modifying the prograself, referring to files, etc) can

be used. The semantics of built-in predicates is the sanreR®log. In particular, in-
vocations of arithmetic predicates have to satisfy theveglegroundness requirements.
As the implementation employs the Prolog selection rule pftogrammer’s reasoning
about the form of predicate invocation arguments is the sasrfer Prolog programs.

As many built-ins, likevar/1 do not have any declarative semantics, we suggest that
only such built-in predicates are used, for which if an afofails (succeeds instantiated
to AB) then each instance éffails (respectively succeeds instantiated to an instahce o
AB).

Example 4 (Using Prolog built-insHere the additional condition is changed, so that
for each node a number of allowed visits is given. An atoemberiX,L,N) is true iff
elementX occursN times in listL. Prolog arithmetic is used to deal with integers (built-
in predicatess/2 and</2). Also the built-in\ =/2 (non-unifiability check) is employed
to check disequality of nodes. (This could be done withoutdms, by replacingg\ =G
with negeq(E, G)), and definingeq/2 by eq(X, X).)

use 'http://dev.metajungle.info/owl/geography.owl’ ag’.

win (X) :— win(X,[]).
win (X, History) :— move(X,Y, History), neg(win(Y,[XHistory])).
move (A,B, History) — edge(A,B), restriction(B,R), membern(B, History ,N) <RI

edge(e,f) = dl(g#Europe(f)).
edge(c,f) = dl(neg(g#Finland (f))).

edge(b,a). edge(a,b). edge(a,c).

edge(c,d). edge(d,e).

restriction(a,7). restriction(b,6). restriction(c,1).
restriction(d,1). restriction (e, 1). restriction (f,1).
membern (E,[],0).

membern (E,[EL] ,N1) :— membern(E,L,N), Nlis N+1.
membern(E,[GL],N) :— E\=G, membern(E,L,N).

Notice that, in contrary to Example 1, infinite games are iggigle in the last
two examples. Hence each position is either winning, omipdii.e. the value of
win(X, History) is eithertrue or false for any nodeX and listHistory).

3 The prototype

This section presents a concrete prototype implementmgplerational semantics pre-
sented in Section 2. We present a general architecture sf/gtem, describe compila-
tion of hybrid programs and queries into Prolog, explaintsage of tabulation to prune
infinite computations, and present how description logitsti@aints are dealt with.

Figure 1 shows the user interface of the prototype. The wseehtered the program
from Example 1 and a query into the respective fields. Prgssia “Query” button
compiles the program and the query, and then produces areatswhe query. The
“Compile” button displays the compiled program. The prgpatis under construction,
its current version is available at http://www.ida.liutsawrl/.

Examples: Two-person game (ground) Two-person game (open)
Finland outside of Europe? In Finland and in Europe? Two-
person game with memory

Rules:

use 'http://dev.metajungle.info/owl/gecgraphy.owl' as 'g'. =

win (X) :-
move (X,Y),
neg (win(Y)) .
move (e, f) :- dl (g#Eurcpe (£f)) .
move (¢,) := dl(neg(gkFinland(f))).
move (b,a) .
move (a, b) .
move (a, c) .
move (c,d)
move (d,)
Compiled programs hidden. _ Compile program
Query:

neg(win(d)) [LQuery |

Answer:

Yes, with constraint: g#Europe(f)

Fig. 1. The web-interface of the hybrid reasoner answering a quétyanconstrained answer.

Compilation phase Querying phase
e A4 A
Hybrid program P Query Q Answer
System
Interface 1 1 4
Compiler

Prolog
program P’

DL reasoner

:Run-time system InterProlog || Pellet

Jena/DIG

XSB Ontology query system

Fig. 2. Prototype architecture overview.

General architecture. An overview of the main components of the reasoning system
is shown in Figure 2. The systems is comprised of three mairpoments:

1. Compiler.In order to reuse a Prolog engine for handling the rule pas bybrid
knowledge base, we compile hybrid rules (and queries) to Fleolog.

2. Run-time systenWhen querying a hybrid program, the reasoner queries the com
piled program (using a compiled query). The run-time sysieimplemented in
Prolog. It is responsible for constructing derivation sr@ed for proper handling of
constraints, as they appear in the underlying hybrid progra

3. Ontology query systenThe run-time system interactively communicates with an
ontology query system, responsible for checking ontolaigionstraints.

Both the run-time and ontology query systems treat the uyidgrProlog and DL en-

gines as black boxes. No modifications of the engines areage@dprinciple any Pro-

log implementation supporting communication with Javal any DL reasoner with a
DIG interface may be used. It is desirable that the Prolognengrovides tabulation,
which discovers (some) infinite branches of search tregse@ise a rather poor ap-
proximation of the well-founded semantics is obtained. uin prototype we use XSB
Prolog system [14] and Pellet [12].

Before discussing the main system components in detail, otvate the use of
protocols and API's that we depend upon for the realizatich® system.

InterProlog [11] is a Prolog-Java interface, enabling camimation and data shar-
ing between Prolog and Java programs. Communication caarimfidd both ways, that
is, passing Java objects to Prolog and sending Prolog terrdavia programs. There
is no standard interface between Prolog systems and Dlomeas. However, there
are API's for handling communication with DL reasoners frdava programs (e.g.
Jena [10]). Thus, communicating with Java programs fromogrenables access to
DL-reasoners from Prolog.

Two Prolog predicates are provided by InterProlog to aiddmmunication with
a Java program. First, in order to prepare for the passingat# detween Java and
Prolog, InterProlog provides the predicate | dTer mvbdel / 2. This predicate encodes
Prolog terms, such that they might be sent to a Java progranbemroperly under-
stood using the Java API provided by InterProlog. Bujl dTer mvbdel ([1, 2, 3], P)
succeeds with the variabeunified with the encoding of the li§tl, 2, 3] . Second, the
predicate] avaMessage/ 3 is provided to invoke a specific Java method and thereby
enabling the passing of prepared Prolog terms as argumiemsthe Prolog goal
j avaMessage(’ O ass’ -obj, R nethod(P)) produces a resuR of calling the Java
methodd ass. obj . met hod(P).

A protocol for communication with DL-reasoners is providsdDIG and is emerg-
ing as a standard [3]. The implementation does not direcdly DIG, but the DL-
reasoner interface provided by Jena [10] employs DIG. Tasitong as a DL-reasoner
is DIG-compliant, it may be plugged into our system.

Compiling HD rules into XSB Prolog. The hybrid rules include DL constraints and
cannot be directly used in Prolog computations. Each neghteral encountered in a

Prolog computation initiates construction of an undeudyiterivation tree, where DL-
constraints also have be handled. To address these issisnaHiD-Program is first
compiled into a Prolog program. We here explain the idea@ttmpilation and discuss
the details.

The underlying idea of the compilation technique is to prétthe constraints to
be selected by the Prolog selection function during rulecetien. However, since
constraints may share variables with rule predicates, sanktraint variables need to
be processed and unified when the corresponding variablég irule predicates are.
Achieving this is possible by moving the constraint pretisanto arguments of other
predicates (which are selected by the selection functiongeneral, each-ary non-
constraint predicate is extended with three additionalisrgnts during compilation
(where— represents the compilation step):

p(u) — p(u, TableConstraint Mode)

The first extra argumenT@blé is used to prevent infinite recursion through negation
(further explained below). The second arguméur{strainy will represent the con-
straints accumulated during resolving the sub-gual). The third argument\odée

will obtain a valuet ortu, depending on which kind of derivation tree is currently
being constructed. While compiling a clause, @enstraintargument for each literal

is a unique variable. On the other hand, Trebleand theModeargument are each the
same variable for all the rule literals of the clause (inalgdhe head literal).

When a negative literaheg p(u)) is encountered, a new derivation tree is to be
constructed for the positive versiqiu) of the literal, and the constraints accumulated
along the branches of the tree are to be treated as descnilsstiion 2. This is done
by a predicatenegationf4. Thus negative rule literals are compiled into appropriat
invocations of this predicate:

neg p(u)) — negatior{p(u), Table Constraint Mode
Lett(R) denote a rule literaR translated as described above. A hybrid rule

RO = Rl,,Rn,dl(Cl),,dl(Cm)

is compiled into

t(Ro) :— t(R1),...,t(Rn),
andAppen(Constraing, ...,Constrain,Cy, . ..,Cn,Constraing)

whereConstraint is the second additional argumenttdéR;) (for i = 0,...,n). The
predicateandAppendinifiesConstraing with the conjunction of the constraints of the
rule and the constraints accumulated by the invocationgRf, ..., t(Rs). In practice
this is not a single atom, but— 1 atoms with a predicandAppend3; they include

a term which represents the conjunctiorGaf. .. ,Cn. (The constraints are represented
as conjunctions, more precisely as lists built with symtzoig/2 andtrue/0; predi-
cateandAppend3 joins two such lists.) Ih < 2 thenandAppends not used. Instead,
Constraintg in the head is replaced by a term representing the conjunofi€s, .. .,
Cmwhenn = 0 (or the conjunction o€y, ... ,Cy andConstraing whenn = 1).

Predicatenegatior/4 is a main predicate of the run-time system. It constructs a d
tree for its first argument, employirfqndall/3 of Prolog. The tree is a tu-tree if the
Modeargument ist, and a t-tree otherwise. Moreovergatiory4 collects the con-
straintsCy, ...,Cx of the success leaves of the tree, and returns in its thindnaegt
the formula—3Cy A ... A =3Ck. (If someG; is true then negatiory4 fails, as in such
case-dCy A... A—dC is unsatisfiable.) If the tu-tree cannot be constructed (duen
ground root or infinite recursion through negation) thegatiory4 returngrueor fails,
according to case 2a of the description of the operatiomaasécs.

Hybrid rules may contain Prolog built-ins. Literals withilitin predicates are passed
unchanged to the compiled program, without adding the texé@ arguments. If such
literal is negative then, in the current version of the systthe negation is converted
into Prolog negation as failure.

Compiling queries. Queries to hybrid programs must also be compiled befordegier
wrt. the compiled hybrid program. Queries consisting of@# literal are compiled in
the following way:
p(d) — p(T [].Constraintt)
neg p(u)) — negatior{p(u), [],Constraintt)

That is, the tabling table is initially empty (the empty Jighe constraints will be col-
lected in a variable (her€onstrain), and the top level d-tree to be constructed is a
t-tree. (For a negative literal this tree consists of twohoe¢ nodes only.)

Each answer for a compiled query provides a const@oristrain®, and an in-
stanceud of the variables of the original query. If the constraint isatisfiable w.r.t.
the ontology, the answer is discarded. If the constraint isgical consequence of
the ontology, therp(uB) follows from the hybrid prograrfi. Otherwise, implication
Constrain® — p(uB) follows from the program.

If there are many answe@onstrain®s, . ..,ConstrainBy and p(u) is ground then
ConstrainB; V - - - VConstrainBy implies p(u), and the constrair@onstrainBy Vv --- v
ConstrainBy is checked w.r.t. the ontology. For a non ground query we &t sim-
ilarly with such answer€onstrain®;, ... ,Constrain®y for which the corresponding
instances of the goal are the sam@j = - - - = uBy.

Queries that are conjunctions of literals can be compiledlaily to the bodies of
hybrid rules; the difference is thaltis used instead of the variabl@bleandt instead
of Mode

Example 5.The rule
movéA, B,History):—edgéA, B), restriction(B, R), memberiE, History,N),N<R.

from Example 4 is compiled into

move(A, B, History, Tbl, Cnst, M) +

edge(A, B, Thbl, Cnstl, M), andAppend(Cnstl, Cnst23, Cnst),
restriction(B, R, Thl, Cnst2, M), andAppend(Cnst2, Cnst¥Xnst23),
membern(E, History, N, Thl, Cnst3, M),

N < R.

4 More generally, it is sufficient thaiConstrainB is a logical consequence, where the quantifi-
cation is over those free variables@bnstrain® that do not occur irp(ub).

Keeping the related compiler predicate simple resultedrimagtbe not natural way of
placingandAppend3 atoms in the compiled clauses.
The set of hybrid rules of Example 1 is compiled into:

win(X, Thl, Cnst, M) :— move(X, Y, Thl, Cnstl, M),
andAppend(Cnstl, Cnst2, Cnst),
negation(win(Y), Tbl, Cnst2, M).

move(e, f, Thl, and(’'g#Europe’(f)true), M).
move(c, f, Thl, and(neg('g#Finland’(f))true), M).

move(b, a, Thl, true, M). move(a, b, Tbl, true, M).
move(a, ¢, Thl, true, M). move(¢, d, Tbl, true, M).
move(d, e, Thl, true, M).

A querywin(e) is compiled intowin(e, [],Cnstt). Executing the latter goal results
in callingnegatiorfwin(f),[],Cns®,t), and construction of a tu-tree fasin(f) without
successful leaves (see Ex. 2). We ob@irs2 = true and the initial goal succeeds once,
with Cnst bound toand(g#Europ€ f),true) (which is equivalent tag#E urop€ f)).
This constraint is found to be satisfiable but not a logicalsemuence of the ontol-
ogy. Thus the user is informed that the answer is Yes, undetiton g#Europd f).

A query negwin(d)) is compiled intonegatiorfwin(d), [],Cnstt), this query re-
sults in constructing a tu-tree fawin(d), a t-tree forwin(e), and a tu-tree for
win(f). The latter steps are already described above. The (on&f)dé the tu-
tree for win(d) is (equivalent to)negg#Européf)), and the (only) answer ob-
tained fornegatioriwin(d),[],Cnstt) is (equivalent tog#E urop€ f). The answer for
negwin(d)) given for the user is the same as thatan(e) in the previous case.

A (compiled) querywin(c,[],Cnstt) results in two answers (equivalent to)
g#Europd f) andneg g#Finland(f)). Their disjunction is found a logical consequence
of the ontology. Hence the answer returned for a queérnyc) is Yes.

Tabulation. The operational semantics described in Section 2 may reasditrees
with infinite branches. Also constructing an infinite set etrgles is possible (due to
recursion through negation). We use tabulation of XSB Rytdadiscover infinite trees.
The way in which it prunes infinite branches is sound w.r.t. @perational semantics,
as the resulting tree has the same set of success leaves.

Unfortunately, the native XSB tabulation cannot be usedisoaver that an infi-
nite set of d-trees is being constructed. This is becaustébeconstructing predicate
appears in the first argument 0% /2. XSB refuses to tabulate such predicates, and
tabulation is implemented using an extra argument of thepilech predicates. If this
tabulation discovers an infinite computation then case 2aeofiefinition of the opera-
tional semantics (Section 2) is applicable.

For Datalog normal programs, tabulation of XSB Prolog gotwes finiteness of
computation. As the Herbrand base is finite, each infinitedireof a tree and each
infinite sequence of trees can be discovered and prunedisling the case for Datalog
hybrid programs (i.e. hybrid programs over a finite Herbrantverse). The reason is
that the set of constraints over a finite Herbrand univergetidinite. Hence tabulation
is not able to discover some infinite branches of a d-tree $antk infinite sequences
of d-trees). Some additional safeness conditions [6] intp&t the constraints of the

leaves of a d-tree are ground. Then the tabulation approastrided above results in
finite computations only. Under these conditions our impatation is complete for
non floundering Datalog hybrid programs. (For a given progaad goal, floundering
means selecting a non ground negative rule literal.)

Handling DL constraints. DL-reasoners normally implement satisfiability verifica-
tion of a knowledge base as the main reasoning service. Adratervices are reduced
to the problem of checking satisfiability of the knowledge®d§2]. A commonly of-
fered service is to check if an individuad)(belongs to some concegE); This service
is reduced to satisfiability by extending the knowledge haitle the axiom{a:—C}.
The queryC(a) is then a logical consequence of the knowledge base if ieneidn is
unsatisfiable.

Disjunctive queries are usually not offered as an expl@iviEe by DL-reasoners.
However, a disjunctive quer@(a) v D(b) can be reduced to checking unsatisfiabil-
ity of the knowledge base extended with: —C, b: =D} [1]. General disjunctive DL
queries cannot in a straight-forward manner be solved swiay. Most DL logics do
not consider negated roles (properties) to be valid exfmessHence, using the same
approach for roles is not feasible. This is why our prototyply allows concept literals
(not properties) as constraints in programs.

In the general case, it may be necessary to delay constiradcking until the last
step of query answering. If several nested derivation the@e been constructed dur-
ing rule reasoning, a nested constraint is produced. Thttdsconstraint possibly is a
conjunction of negated constraints, which in turn are (fpbgexistentially quantified)
conjunctions and so on. However, nested constraints cantpeatized into a conjunc-
tive normal form (CNF) of concept literals. That is, a corgtian where each conjunct
is a disjunction of concept literals (non-nested).

A conjunctive DL quenCi A... AC, where the conjuncts are disjunctions of con-
cept literals can be answered in the following manner [9¢H=@0njunct can be solved
as described above. If each conjunctis a logical conseguaitbe underlying knowl-
edge base, then so is the original conjunctive query (arelwacsa).

It is a design decision when the obtained constraints arekeltefor satisfiability.
In principle, such check should be performed for each cantd constraint. This is
however too expensive. (On the other hand, this prunesedbranches as early as
possible.) Currently the check is performed at completfdth® main t-tree, this means
once per goal. Alternative strategies are being considéoeihstance performing the
check at completion of each d-tree.

4 Conclusion

This paper describes a way of implementing HD-rules, anaaagr of combining non
monotonic rules of Logic Programming (LP) with monotonistfiorder theories of De-
scription Logic (DL). The approach has been introducedjnl{§ declarative semantics
combines the well-founded semantics of LP with the stanflestdorder semantics of
DL. An operational semantics is provided. Its main advaataghat an existing DL rea-
soner and existing Prolog engine can be re-used; henceftinetefconstruct an imple-

mentation is low. Here we implement a somehow simplifiediversf that operational
semantics. Hybrid rule programs are compiled into XSB Ryoforun-time system ex-
ecutes the compiled programs and interfaces a DL reasoneinierface itself is pro-
grammed in Java, using Jena (and indirectly DIG). The canjslwritten in XSB Pro-
log. The prototype is under development, and availabletpt/hMww.ida.liu.se/hswrl/.

Acknowledgement. This research has been partially funded by the European @Gsmm
sion and by the Swiss Federal Office for Education and Sciaittén the 6th Frame-
work Programme project REWERSE number 506779t p: / / r ewer se. net).

References

1. F. Baader, H.-J. Burckert, B. Hollunder, W. Nutt, and JSk¢kmann. Concept logics. Tech-
nical Report RR-90-10, 1990.

2. F. Baader, D. Calvanese, and D. McGuiness(et.al.), rsdifthe Description Logic Hand-
book Cambridge University Press, 2003.

3. DIG. WWW Page. URLhttp://dig. sourceforge. net/. Accessed 7 February 2007.

4. W. Drabent. What is failure? An approach to constructiegation. Acta Informatica
32(1):27-59, Feb. 1995.

5. W. Drabent, J. Henriksson, and J. Maluszynski. Hybrigdoeang with rules and constraints
under well-founded semantics. Web Reasoning and Rule Systems, Proceedings RR 2007
volume 4524 ol ecture Notes in Computer Scienpages 348-357. Springer-Verlag, 2007.

6. W. Drabent and J. Maluszynski. Well-founded semantic$ytorid rules. InWeb Reason-
ing and Rule Systems, Proceedings RR 200ume 4524 ofLecture Notes in Computer
Sciencepages 1-15. Springer-Verlag, 2007.

7. T. Eiter, G. lanni, R. Schindlauer, and H. Tompits. Effiexintegration of declarative rules
with external evaluations for semantic-web reasoningProc. of European Semantic Web
Conferencepages 273-287, 2006.

8. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompitgell-founded semantics for de-
scription logic programs in the semantic web.RaleML, pages 81-97, 2004.

9. I. Horrocks and S. Tessaris. A conjunctive query languagelescription logic aboxes.
In Proceedings of the Seventeenth National Conference oficittintelligence and Twelfth
Conference on Innovative Applications of Artificial Inigéince pages 399-404. AAAI Press
/ The MIT Press, 2000.

10. Jena Semantic Web Framework. WWW Page, 18 August 20G5lahle athtt p: //j ena.
sour cef or ge. net/. Accessed 7 February 2007.

11. Miguel Calejo. InterProlog - a Prolog-Java interfaceV\W page, September 2006. Avail-
able atht t p: / / www. decl ar ati va. conli nter prol og/ . Accessed 7 February 2007.

12. Pellet OWL Reasoner. WWW Page, 14 March 2006. Availabié tzp: / / www. mi ndswap.
org/ 2003/ pel | et/ i ndex. shtm .

13. R. Rosati. DI+log: Tight integration of description icg and disjunctive datalog. IKR,
pages 68-78, 2006.

14. XSB. WWW Page. URLhtt p:// xsh. sour cef orge. net/. Accessed 7 February 2007.

