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Abstract  
The article deals with the solution of the problem in vector optimization.  It is shown there is 

a solution which is optimal according to Lagrange in the problem with convex particular 

functions of target that is characteristic to organizational and economic systems. 
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1. Introduction 

In the history of the development and use of information technologies, three stages of the use of 

models and methods of decision-making can be distinguished. 
At the first stage, attempts were made to solve mainly optimization problems in a continual set of 

alternatives. This area has been developed in connection with the need to obtain an economic effect in 

industrial and transport technologies, both civil and military [1]. The massive nature of certain areas 
of use and development stimulated the interest of industrialists and the military in solving problems, 

and scientists in finding methods for solving optimization problems. At this stage, an important role 

was played by such scientists as L.I. Kantorovich, A.N. Kolmogorov, E.S. Wentzel, Dangitz, Ford, 

Bellman, etc [2-5]. 
The second stage of development is associated with the emergence and widespread penetration of 

computer technology into almost all spheres of human activity. 

In the second half of the twentieth century, automated control systems for various purposes were 
developed [6]. When solving the problem of human-machine interaction, much attention was paid to 

the role of the human factor, which stimulated the emergence of the development of expert methods 

and the theory of decision-making, appropriate technical means and technologies based on these 
methods. 

The third stage is associated with the rapid growth of databases, knowledge bases in general and 

special-purpose information systems, which stimulated research to identify regularity that could be 

used for decision-making. Within the framework of this new paradigm of data mining (knowledge 
discovery), systems began to be developed for analyzing large amounts of data. Among other 

regularities, a significant proportion is the identification of preferences on a set of objects, which is 

directly related to decision making. 
The increased role of the human factor in creating knowledge bases and solving the problem of 

formalizing the conclusion of conclusions was the basis for including the theory of decision-making 

in the new scientific direction "Artificial Intelligence", which unites research in the field of brain-like 

structures. Decision support systems that have combined optimization and expert methods, databases 
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and knowledge have become a practical tool for decision-makers. 
Among the works that influenced the formation of a new scientific direction, one can single out the 

works of N. Nilsson on the creation of a universal problem solver, G. Simon, who studied the problem 

of uncertainty in the science of artificial intelligence proposed by him, L. Zade, who proposed the 

formalization of subjective uncertainty, D.A. Pospelov, who studied the problem of choice within the 
framework of situational management. Selection of the best objects based on their attributive 

representation. Zagoruiko in the framework of pattern recognition [7-14]. 

Thus, at present, it becomes possible to create brain-like computing structures for ultra-high 
performance computers [15]. 

One of the most important tasks, especially in demand at the second and third stages of the 

development of decision-making theory, is the study of methods of multicriteria choice on a finite set 
of alternatives (objects). These include vector and scalar optimization. 

Vector optimization methods are based on establishing preferences on a set of vector object 

estimates. In the early twentieth century, Pareto and Edgeworth proposed the dominance relationship, 

later called Pareto-dominance. Research in this direction was continued by B. Rua, V.V. Podinsky, 
V.D. Nogin [16-19]. The ordering of objects based on the qualitative values of features was formed in 

the direction of the verbal analysis of solutions, developed in the works of O.I. Laricheva, 

A.B. Petrovsky and others [1, 20, 21]. 
Methods for scalarization of vector estimates are based on transforming a multi-criteria 

optimization problem into a single-criteria optimization problem using a multi-criteria utility function. 

The issues studied in the framework of this direction were formalized into a multicriteria utility 
theory. In the works of J. von Neumann, O. Morgenstern, an axiomatic approach was developed and 

the main directions of the multicriteria utility theory were formulated, which were then developed in 

the works of H. Rife, R. Keene, P. Fishburne, W. Armstrong, S.V. Emelyanova, N.V. Khovanova and 

others [22-28]. 
Of the Ukrainian scientists who are fruitfully working in solving this scientific direction, we 

consider it useful to single out the scientific school of E.G. Petrov [29]. 

Modern information technologies are largely based on the use of optimization procedures, which 
ensures the efficiency of their implementation [30]. 

At the same time, the complexity and coherence of the problems being solved causes the 

appearance of significant time consumption for optimization, which manifests itself as the effect of 

the dynamics of optimization procedures [31]. 
It should be considered, that with the development and improvement of information technology, 

the problem of finding the best solutions will take an increasing share among all processes.  

The desire to increase the productivity and accuracy of information processing processes led to a 
revision of the approach to determining the amount of information and the transition to the analysis 

and synthesis of information systems in the information space [32].  

The development of the information theory was historically associated with the works of 
R. Hartley, A. N. Kolmogorov, K. Shannon, A. Ya. Khinchin, V.A. Kotelnikov, V.D. Goppa, 

A.M. Iahlom [33-42]. Currently, there is a lack of elaboration of information processes and processes 

of forming models of systems and processes. 

Human activity is associated with different types and methods of decision-making management. 
These include, for example, the problem of finding optimal options for managing organizational 

systems, the problem of designing systems that provide a control law for a given object or a certain 

control sequence of actions that provide either the maximum or minimum of a given set of necessary 
system quality criteria. 

The assumed principles in the plotting and analysis of informational systems are saving principle, 

optimality principle, and the principle of unidirectional flow of time. In fact, saving principle and 
unidirectional flow of time processes are feasibility criteria that allow avoiding mistakes in the 

analysis and synthesis; and optimality principle is a tool providing protection from mistakes of 

“simple” solutions.  

That`s why it is logical to thoroughly analyze initial criteria of optimality before studying 
intellectual systems where you deal with quite combined systems [43]. 

Organizational control systems have an important place among the control systems in total. Here it 

refers to the organizational control which differs from control of technological processes most notably 



in its object which is not machinery (equipment) but people, groups of people. It stands to reason the 
border defining the difference is rather conditional.  Owing to it the control is implemented by people 

and it should be considered as organizational control [44].  

We are interested first and foremost in optimal control of organizational systems. The optimal 

control of organizational systems is a problem of designing a system that provides for the predefined 
object of control or a process the law of control or controlling consequence of influences providing 

maximum and minimum of the predefined criteria manifold for the system quality [45]. 

The problems in optimal control of organizational systems require solving problems of 
multicriteria or vector optimization. It seems reasonable to use an approach where convexity of 

particular target functions is viewed as definite peculiarity of the control system for solving the tasks 

of vector optimization. 

2. The modern state of the vector optimization problem 

To solve the problems of choice, you need to know: 

 selectable alternatives; 

 a set of functions that characterize the properties of an object; 

 a set of goals targeted to the evaluated features; 

 a group of people taking part in decision-making; 

 preference ration; 

 the degree of conformity of the alternatives to the target state [44]. 

The optimality principle, in its implementation, is associated with the concept of the goal function. 

For the problem of choosing a variant or value of an impact, the goal function is a mapping over a set 
of numbers - a function. In this case, for the goal function f(x), the value of the vector x is sought, 

which determines the solution to the optimization problem. 

The problem of mutual optimization for several particular functions of objective is referred to as 

multiparameter optimization [46]: 

𝑥∗ → min𝑓𝑖(𝑥),      𝑖 = 1, 𝑛̅̅ ̅̅ ̅. (1) 
The most accurate name of the problem (1) - vector optimization - emphasizes that it is 

simultaneous optimization of all components of objective function vector that the issue is about: 

𝑥∗ → min𝑓(𝑥) (2) 
Indeed, since particular objective functions (1) can form the vector where components are 

particular objective functions (2) the problem can be called multicriteria because the objective 

function can be called a criterion though the notion “criterion” has a reasonably   definite meaning in 

modeling, the theory of automatic control and the decision theory. In the endeavor to decrease the 
complexity of the problem (2), we define it as the problem with many functions of objective or the 

problem of vector optimization.  

It is an outwardly simple problem – you have to find vector x* brining the minimum immediately 
to all components of the target vector. Since dimx=n,  and  dimf=m, stationary condition in the form 

of matrix equation [47,48]: 

   
𝜕𝑓

𝜕𝑥
= 0, (3) 

induce the gradient matrix: 

𝜕𝑓

𝜕𝑥
=

(

 
 

𝜕𝑓1
𝜕𝑥1

⋮
𝜕𝑓1
𝜕𝑥𝑛

⋯ ⋯ ⋯
𝜕𝑓𝑚
𝜕𝑥1

⋮
𝜕𝑓𝑚
𝜕𝑥𝑛)

 
 

 (4) 

with dimension n to m. Solving the set of equations (3) lets us find new particular optima but it 

doesn’t make it possible to find the optimum for the vector function of objective since m of links 
among the components of objective function vector  is absent. Consequently, to determine the 

optimum point it is essential to have m of links. 

Methods for solving problems of the vector optimization differ in the way of additional 

organization [48]. 



The global criterion method implies ranging of criteria and objectives significance. When solving 
problems by the method of the main criterion, there is no listing of alternatives, one objective function 

and a set of restrictions are used, that is, one criterion is formed as the main target, and the rest as 

restrictive. The objective function plays the role of the main criterion and it is believed that the 

problem of multi-criteria optimization is solved by the main criterion method. A one-to-one 
correspondence between alternatives and outcomes is characteristic, the considered tasks are solved in 

conditions of certainty[44,49]. 

In such a case it is solved simply, but you have to decide by yourself what a global criterion is.     

𝑥∗ → min𝑓𝑘(𝑥) = 𝛼𝑘 (5) 
Method of forming global objective function [50] uses polynomial models of the kind: 

𝑓(𝑥) =∑𝑎𝑖𝑓(𝑥);

𝑘

𝑖=1

 

𝑎𝑖 > 0,   𝑖 = 1, 𝑘̅̅ ̅̅̅

∑𝑎𝑖 = 1

𝑘

𝑖=1

} 

(6) 

Weight coefficients αi determine sensitivity of global objective function f to the change of 
particular objective functions fi: 

  𝑎𝑖 =
𝜕𝑓

𝜕𝑓𝑖
, 𝑎𝑖 > 0, 𝑖 = 1, 𝑘̅̅ ̅̅̅   (7) 

Obviously coefficients αi  are normalization multipliers of Lagrange in the problem: 

  𝑥∗ → min𝑓(𝑥), 
𝑓𝑖(𝑥) − 𝑐𝑖 = 0,       𝑖 = 1, 𝑘̅̅ ̅̅̅. 

(8) 

With Lagrange function: 

𝐿(𝑥, 𝜆) = 𝜆0𝑓(𝑥) −∑𝜆𝑖(𝑓𝑖(𝑥) − 𝑐𝑖)

𝑘

𝑖=1

 (9) 

which leads to  Lagrange problem with minimization of constraints influence [48]. Obviously the 

appointment of weights is possible and “based on the problem requirements”.  
It is also possible to use posynomial models of the form: 

𝑓(𝑥) =∏𝑓𝑖
𝑎𝑖(𝑥)

𝑘

𝑖=1

; 

𝑓𝑖 > 0, 𝑖 = 1, 𝑘̅̅ ̅̅̅ 

(10) 

Or with structural links and feedbacks present it is reasonable to use a posynomial model: 

𝑓(𝑥) =∑𝐶𝑗∏𝑓
𝑖

𝑎𝑖𝑗(𝑥);

𝑘

𝑖=1

𝑝

𝑗=1

 

𝑓𝑖 > 0,    𝑖 = 1, 𝑘̅̅ ̅̅̅; 
𝐶𝑗 ≥ 0,   𝑗 = 1, 𝑝̅̅ ̅̅̅ 

(11) 

The given approach is called “sygnomial” optimization and based on the method of geometrical 

programming [51].  

The Min-max methods is based on a game-theoretic formulation, in which the researcher and the 

external environment are considered as a pair of players with mutually contradictory interests. The 
goal of the researcher, as before, is to minimize the criterion by choosing an estimation operator from 

a certain class, but with the Min-max methods, the estimate is sought based on the worst state of the 

system under study. Thus, the estimation problem is reduced to minimizing the exact upper bound of 
the criterion, calculated from a given set of uncertainty. Therefore, unlike asymptotic estimation 

methods, Min-max methods are designed to provide the best quality of recovery of unknown 

parameters and processes from a fixed volume of observations [52]. 

 
 



Min-max methods are based on forming “benchmarks” [53, 54]: 

𝑓𝑖(𝑥) ≤ 𝑡𝑖      𝑖 = 1, 𝑘̅̅ ̅̅̅ 
g
𝑖
(𝑥) = 0,   𝑖 = 1,𝑚̅̅̅̅ ̅̅

g
𝑖
(𝑥) ≤ 0,   𝑖 = 𝑚 + 1, 𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅

} 
(12) 

which provides no negativeness of the difference  ti – fi(x) for all valid values x.  

In such a case one can pass on to the minimum of the maximal deviation from metrics С0 in order 
to find a strong optimum: 

𝑥∗ → minmax(𝑡𝑖 − 𝑓(𝑥)),     𝑖 = 1, 𝑘̅̅ ̅̅̅.  (13) 

Priorities of Pareto are the method based on determining of an extremum or having necessary 

condition. 

When optimizing by the Pareto method, an agreement is used that preference is given to one object 
over another only if the first object is not worse than the second in all respects and at least one of them 

is better. When this condition is met, the first object is considered dominant, the second dominated. 

Finding the Pareto optimum is assumed to be the equilibrium of all criteria, therefore, it can be 
considered the preferred optimization criterion, since the "rights" of any of them cannot be infringed 

in favor of other criteria [44, 55].  

In the problem: 

𝑥∗ → min𝑓𝑖(𝑥),    𝑖 = 1, 𝑘̅̅ ̅̅̅; 
g
𝑖(𝑥) = 0,   𝑖 = 1,𝑚̅̅̅̅ ̅̅

g
𝑖(𝑥) ≤ 0,   𝑖 = 𝑚 + 1, 𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅

} 
(14) 

Let`s introduce optional constraints: 

𝑓𝑖(𝑥) ≤ 𝑓(𝑥𝑑),     𝑖 = 1, 𝑠̅̅ ̅̅ ; 
𝑓𝑖(𝑥) < 𝑓(𝑥𝑑),     𝑖 = 𝑠 + 1, 𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(15) 

Thus, we come to the problem: 

𝑥∗ → min𝑓𝑖(𝑥),        𝑖 = 1, 𝑘̅̅ ̅̅̅; 
g
𝑖 ≤ 0,   1, 𝑙̅̅ ̅̅ ; 

𝑓𝑖(𝑥) − 𝑓(𝑥𝑑) ≤ 0,          𝑖 = 1, 𝑘̅̅ ̅̅̅ 

(16) 

which leads to Lagrange problem with Lagrange function [48]: 

𝐿(𝑥, 𝜆) = 𝜆0𝑓(𝑥) − 𝜆g − 𝜆(𝑓(𝑥) − 𝑓(𝑥𝑑)) (17) 
where λ is a matrix of Lagrange multipliers – coefficients of objective function sensitivity to the 

constraints: 

𝜆 = (

𝜕𝑓1

𝜕𝑓1
⋮

𝜕𝑓1

𝜕𝑓𝑘
⋯ ⋯ ⋯
𝜕𝑓𝑘

𝜕𝑓1
⋮

𝜕𝑓𝑘

𝜕𝑓𝑘

) = (
1 𝜆12 ⋯𝜆1𝑘
⋯ 1 ⋯
𝜆𝑘1 𝜆𝑘2 ⋯1

)       (18) 

There with the condition λij=0 determines the location of an optimum within the area. In the given 

case the admissible points are considered to be the points to which the conditions of absolute 
inequality are applied.  The realization of the inequality can be described as the realization of 

preference relation. The excess in admissible points leads to the local optimum which is called an 

effective solution or Pareto – an optimal solution. If one or several constraints can be hardly 
transformed into the strict ones, the decision is called weakly efficient. As a matter of fact, the method 

of Pareto comes to the procedure of solution choice with minimal mutual influence of particular 

targets or to the analysis of matrix λ in the problem (16). 

Thus, we can draw a conclusion that modern methods in solving problems of vector optimization 
can be considered as variants of solution for Lagrange problem which allows us to set up the problem 

of strict argumentation for the optimization criterion in the problem of vector optimization.  

3. The statement of the investigation problems 

The purpose of the investigation is the analysis and refinement of optimality criterion offered in the 
given article for the convex vector problem [47].  



4. The subject matter of the investigation problems 

In accordance with the formulated investigation, the following was proposed: the problems of 

optimal management of organizational systems are the problem of designing a system that provides 

for a control object or a control process a control law or a control sequence of actions that provide a 
maximum or minimum of a given set of system quality criteria. 

We consider the simple problem of vector optimization [46]: 

𝑥∗ → min𝑓(𝑥)  (19) 
where dimx=n,  dimf=m.   

To be more specific we will talk about the minimum of the function as it is generally accepted. In 

the case the stationary condition as a necessary condition has the form of the matrix equation: 

∇𝑓(𝑥) = [
∇𝑓1(𝑥)
⋮

∇𝑓𝑚(𝑥)
] =

(

 
 

𝜕𝑓1
𝜕𝑥1

⋮
𝜕𝑓1
𝜕𝑥𝑛

⋯ ⋯ ⋯
𝜕𝑓𝑚
𝜕𝑥1

⋮
𝜕𝑓𝑚
𝜕𝑥𝑛)

 
 
= 

= (
0 ⋮ 0
⋯ ⋯ ⋯
0 ⋮ 0

) ⇔
𝜕𝑓𝑖,𝑗

𝜕𝑥𝑗
= 0, (𝑖, 𝑗 = 1, 𝑛,𝑚̅̅ ̅̅ ̅̅ ̅̅ ) 

(20) 

As it is shown above to find the minimum of the vector objective function it is required to 
introduce additionally m of relations. 

We apply the standard method of constraints variation except that the objective vector itself is used 

as a constraints vector: 

𝑓(𝑥) − 𝛼 = 0,  (21) 
where vector α is determined by the value of objective vector in the point of minimum: 

𝑓(𝑥∗) = 𝛼, (22) 
In such a case we have the vector problem with the constraint of equality type by analogy with 

(17): 

    
𝑥∗ → min𝑓(𝑥)

𝑓(𝑥) − 𝛼 = 0
}. (23) 

Lagrange function for the given problem has the following form: 

  𝐿(𝑥, 𝜆) = 𝜆0𝑓(𝑥) − 𝜆(𝑓(𝑥) − 𝛼). (24) 
In this case the necessary conditions of the minimum take form [56]: 

   
∇𝐿(𝑥∗, 𝜆∗) = 0
𝑓(𝑥∗) − 𝛼∗ = 0

}    (25) 

The obtained set of equations doesn’t have a solution since the quantity of variables doesn’t 

correspond to the quantity of links. 
As an additional link we will introduce the assumption about convexity of all particular target 

functions [57]. In this case due to dual features we obtain: 

         
𝑥∗

𝜆=𝜆∗
→   min𝐿(𝑥, 𝜆)

𝜆∗
𝑥=𝑥∗
→   max𝐿(𝑥, 𝜆)

}   (26) 

Due to stationarity of the problem and use of the first condition from (26) we’ll have: 

𝑥∗
𝜆=𝜆∗
→   min {𝜆0𝑓(𝑥) − 𝜆(𝑓(𝑥) − 𝛼)} = 𝑐𝑜𝑛𝑠𝑡  (27) 

Since the target vector f is equal to the vector of optimal values in the point of minimum the 

expression can be written in the form: 

𝜆0𝑓(𝑥
∗) − 𝜆∗(𝑓(𝑥∗) − 𝛼∗) = 𝜆0𝛼

∗ (28) 
Thus, constraints take on the form of conditions of additional slackness [58, 59]: 

(𝜆0 − 𝜆)(𝑓(𝑥) − 𝛼) = 0 (29) 
Considering minimality of the mutual influence in target functions the condition of additional 

slackness appears quite naturally in Lagrange function. 

Actually the same requirements occur under Pareto optimality.  

 
 



Hence, you can write down Lagrange function with constraints in the form of slackness conditions 
in the form: 

𝑥∗
𝜆=𝜆∗
→   min {𝜆0𝑓(𝑥) − (𝜆 − 𝜆0)(𝑓(𝑥) − 𝛼)} = 0 (30) 

Consequently, according to Lagrange in the stationary convex problem of vector optimization the 

necessary condition of optimality has the form: 

∇𝐿(𝑥∗, 𝜆∗) = 0)

𝑓(𝑥∗) − 𝛼∗ = 0

𝜆0𝑓(𝑥
∗) − (𝜆∗ − 𝜆0)(𝑓(𝑥

∗) − 𝛼∗) = 0

}    (31) 

Introducing the matrix of adduced vectors for Lagrange multipliers λ
**

: 

    𝜆∗∗ = (

1 𝜆12 𝜆13⋯ 𝜆1𝑚
𝜆21 1 𝜆23⋯ 𝜆2𝑚.
𝜆𝑚1

.
𝜆𝑚2

.
𝜆𝑚3⋯

.
1

)   (32) 

we can write down the optimality condition in the form: 

      

∇𝐿(𝑥∗, 𝜆∗) = 0)

𝑓(𝑥∗) − 𝛼∗ = 0

𝜆∗∗(𝑓(𝑥∗) − 𝛼∗) = 0

}     (33) 

Actually the additional condition is the condition of additional slackness. 

5. Practical part 

Let us consider the well-known example [60].  

The target function vector: 

𝑓(𝑥) = [
𝑥2

(𝑥 − 1)2
]  (34) 

Using the condition (20) we obtain: 

∇𝑓(𝑥) =

[
 
 
 

𝑑(𝑥2)

𝑑𝑥
𝑑((𝑥 − 1)2)

𝑑𝑥 ]
 
 
 

= [
0
0
] 

 

Which provides two points of particular minima x1
*=0 and x2

*=1, fig. 1. To solve the problem with 

vector function of target we will introduce the constraints: 

         
𝑓1(𝑥) − 𝛼1 = 0

𝑓2(𝑥) − 𝛼2 = 0
   (35) 

In the problem Lagrange functions have the following form: 

𝐿1(𝑥, 𝜆12) = 𝑥
2 − 𝜆12((𝑥 − 1)

2 − 𝛼2);

𝐿2(𝑥, 𝜆21) = (𝑥 − 1)
2 − 𝜆21(𝑥

2 − 𝛼1)
 (36) 

necessary conditions of the optimum: 

        

𝜕𝐿1

𝜕𝑥
= 2𝑥 − 𝜆122(𝑥 − 1) = 0

𝜕𝐿2

𝜕𝑥
= 2(𝑥 − 1) − 𝜆212𝑥 = 0

𝑥2 − 𝛼1 = 0

(𝑥 − 1)2 − 𝛼2 = 0

𝑥2 − 𝜆12((𝑥 − 1)
2 − 𝛼2) = 0

(𝑥 − 1)2 − 𝜆21(𝑥
2 − 𝛼1) = 0}

 
 
 

 
 
 

 (37) 

from the link (35): 

            
2𝑥 − 𝜆122(𝑥 − 1) = 0;

2(𝑥 − 1) − 𝜆212𝑥 = 0.
 (38) 

We obtain λ12=1/λ21. Since the optimum point is unique from constraints we have α1-α2=2x-1. 
 

 

 



Consequently, we can write it down: 

𝑥2 −
𝑥

𝑥 − 1
((𝑥 − 1)2 − 𝛼) = 0;

(𝑥 − 1)2 −
𝑥 − 1

𝑥
(𝑥2 − 2𝑥 + 1 − 𝛼) = 0.

 (39) 

from which we obtain the connection: 

(𝑥 − 1)2 = 𝑥2  (40) 
Consequently, optimum is reached in x*=1/2 point and target functions have the value which is 

equal to α*=1/4 in the optimum, Fig. 1. 

 

 
Figure 1: Graphic Solution of the Vector Optimization Problem 

 
Hence, the assumption about convexity of particular target functions lets us obtain the optimal 

solution of the problem without invoking compromises and expert estimation. 

6. Conclusions 

The analysis and research carried out made it possible to make an assumption about the convexity 
of the partial functions. This assumption, in turn, made it possible to obtain optimal solutions to the 

problem without involving compromises and expert assessments. 

All of the above made it possible to obtain the following important conclusions that can be used in 
the search for optimal solutions in building management systems for organizational systems. 

It is shown that methods used for solving the problem of vector optimization can be kept to the 

necessary conditions in Lagrange problem. 
It is shown that the problem of vector optimization has the solution based on duality or the optimal 

one according to Lagrange in the case of convexity of particular target functions. 

The condition of optimality contains the condition of additional slackness. 
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