
A Next Generation Data Language Proposal

Eugene Panferov

Independent researcher, 11A Milosava Djorica, 11427 Vranic, Barajevo, Serbia

Abstract
This paper analyzes the fatal drawback of the relational calculus not allowing relations to be domains of relations,
and its consequences entrenched in SQL. In order to overcome this obstacle we propose multitable index – an
easily implementable upgrade to an existing data storage, which enables a revolutionary change in the field of data
languages – the demotion of relational calculus and “tables”. We propose a new data language with pragmatic
typisation where types represent domain knowledge but not memory management. The language handles sets
of tuples as first class data objects and supports set operation and tuple (de)composition operations as fluently as
basic arith. And it is equally suitable for building-into a general purpose language as well as querying a remote
DB (thus removing the ubiquitous gap between SQL and “application”).

Keywords
pragmatic typisation, data language, multitable index

1. Introduction

In the year 1972 Edgar. F. Codd stated his anticipation as follows: In the near future, we can expect a
great variety of languages to be proposed for interrogating and updating data bases. It is now 2021. The
only data language of any significance is SQL. Something clearly has gone wrong?

We attempt to analyze what aspects of SQL are holding back any development in the area of data
languages, and propose radical solutions in both abstraction layers: data language and data storage.
Back in 1970s data languages were seen as sub-languages of general-purpose languages [2]. Instead
something very opposite has grown – a complete perfect isolation of general purpose languages from
the database interrogation language – splitting every program in two poorly interacting parts. Perhaps
this venue of development is “logical” for the language theorists (simpler formulated problems lead
to better written papers of carefully limited scope that are conducive of safer grants). But in the real
life what do you need a programming language for except for DATA PROCESSING, and what do you
interrogate a database for except for DATA PROCESSING.

That means the abyss between a data language (now standalone SQL) and a general purpose language
has to be bridged. The procedural sub-languages were developed in the SQL environment, that could be
thought of as such an attempt, that is so far failed. We approach this abyss from the opposite direction,
trying to develop a brand new language that contains a native data sub-language, however the focus is
on this data sub-language as this is the bloody problem.

First of all, we focus on the fundamental drawback of the relational calculus: it does not allow
relations to be domains of relations [2, section 3]. Whereas addressing this problem in the design of the
language (section 4) provides valuable insights into possible significant improvements of underlying
data storage (section 3).

The proposed language (section 5) attempts to overcome the following flaws of SQL:

• human language mimicking (which leads to inconsistent, completely inextensible, and needlessly
complicated syntax);

• mixing relational operations together and with the output formatting;

COLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems, April 22–23, 2021,
Kharkiv, Ukraine
email: e@bestmx.net (E. Panferov)
orcid: 0000-0001-6205-7553 (E. Panferov)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:e@bestmx.net
https://orcid.org/0000-0001-6205-7553
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

• imperative DDL;
• impossibility of relations between relations (which leads to non-homogeneous representation
and undermines the relation abstraction itself, lowering the level of programming)

• separation of the data language from the application layer language (which results in the develop-
ment of a complete duplicate data scheme that exists outside the relational database and suffers
all the drawbacks that the relational database tried to solve in the first place, besides doubling the
development labour while adding nothing)

The proposed language aims to integrate with a general purpose language used for describing an
application layer, in order to keep the relational data representation throughout all processing stages
as the primary and the only data-model for a given program, accessible as first-class data-objects in a
general purpose language (i.e. participating as arguments in native expressions).

The proposed language abandons surrogate and foreign keys (thus making the level of abstraction
higher than SQL). The proposed data language is capable of dealing with relations between relations
uniformly, by utilizing the proposed mechanism of multitable index, that in turn eliminates the need
for joins.

2. State of the art

We have no choice but to focus on SQL, since it is the uncontested data language nowadays. SQL is a
huge, unbelievable success. It is the most successful non-imperative algorithmic language ever existed
[12]. Apparently, due to the lack of competition, but the fact had to be stated. For the same reason SQL
remains basically unchanged, keeping initial imperfections and adopting only minor improvements
(aka “features”). We witness the lack of meaningful development in the entire field of data-languages
both within and outside SQL. SQL retains all its prime imperfections, and these are not implementation
imperfections nor any quantitative deficiency, SQL contains fundamental mistakes in its very design
stemming from its theoretical foundation, which turned several pathological use-cases of the language
into a necessity of life. So much so it will be difficult to explain the severity of the pathology due to its
prevalence in the population.

The apparent stagnation and growing malpractices gave rise to so called “noSQL” movement. Which
is a destructive cult founded on pure frustration and the lack of positive insight, of which the very
name is telling. If your data language is unsatisfactory, then by throwing it away you only solve the
problems it created, but you do not solve the problem of accessing your data, that you have BEFORE
the adoption of the data language. Nevertheless, this motion metastasized into the heart of SQL – ISO
sanctioned XML contamination [6], effectively creating a rivaling alternative to SQL within SQL – an
apparent sign of decay.

2.1. The multitude of rivalling representations

A very typical approach to database design is Entity-Relation diagrams. It is very intuitive and
informative way of visualizing data structure.

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑖𝑡𝑒𝑚

In the example above we have two entities and one relation between them. Let us map them into a
relational database. The entities will be mapped as tables, and the relation will be mapped as a foreign
key. Note, we are doing the most typical design procedure “by the textbook”.

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
𝑖𝑑
𝑛𝑎𝑚𝑒

𝑖𝑡𝑒𝑚
𝑐𝑎𝑡_𝑖𝑑
𝑖𝑑
𝑛𝑎𝑚𝑒

By the same textbook, tables are supposed to represent relations! From the perspective of relational
algebra (or relational calculus – at this point the distinction does not show up). the 𝑖𝑡𝑒𝑚 and 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
are relations. So, we have three relations: Category, Item, and the relation between them.

Why do we represent two of them properly (as it meant to be) and at the same time simulate the
third one by programming a foreign key? Is there a real need for a non-homogeneous representation?
Is the relation 𝑖𝑡𝑒𝑚 − 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 − 𝑡𝑜 − 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 any worse or better than 𝑖𝑡𝑒𝑚 or 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦? Can we define
coherently a distinction between them?

For this particular disturbance of the representation we pay by lowering the level of programming
(as in “low-level programming”). Foreign keys are very low-level relatively to tables. Compare a table
representing a relation versus a foreign key representing a relation:

CREATE TABLE category (
Id INT

, name TEXT);

Here you simply declare: these two attributes constitutes a relation. You do not care how the
association between them will be built and maintained. You can freely manipulate pairs (𝑖𝑑, 𝑛𝑎𝑚𝑒) and
apply relational operations to the relation 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦.

CREATE TABLE item (
Id INT

, category INT REFERENCES category(id)
, name TEXT);

Here you have created a fake attribute 𝑖𝑡𝑒𝑚.𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦. You have defined its type which have no
correspondence to the domain knowledge – it is a surrogate type – whereas the domain knowledge
is “item belongs to category”, it is not integer. Then you command your RDBMS to check your input
in order to keep obvious garbage out (in other words, this 𝑅𝐸𝐹𝐸𝑅𝐸𝑁𝐶𝐸𝑆 directive defines a subset of
the integer, making the type of this fake attribute more relevant). Thus you have manually created a
relation! You involve yourself in the very internals of its representation. The maintenance in principle is
up to you, although the machine agrees to assist by means of 𝑅𝐸𝐹𝐸𝑅𝐸𝑁𝐶𝐸𝑆 directive, the interpretation,
however, is entirely up to you – the system does not recognize this relation as a relation. You can not
apply relational operations to it.

A join creates a relation from existing relations. At first glance, it looks a reasonably useful operation.
But the decades of practice reveal that a resulting relation does always pre-exist its formal “creation” by
joining. Let us select something from the first example 𝑖𝑡𝑒𝑚 ⟶ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦:

SELECT category.name, item.name
FROM category, item
WHERE category.id = item.category

This “newly created” relation (𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 .𝑛𝑎𝑚𝑒, 𝑖𝑡𝑒𝑚.𝑛𝑎𝑚𝑒) was already hidden inside our database be-
hind the foreign key (underlined). It is not new information created inside the database, this information
had been put inside the database on purpose. Every pair of tables you ever join, you manually MADE
JOINABLE! The join operator merely legalizes a hidden foreign-key relation as a first-class relation. A
join is nothing more than A CONVERSION between these two ways of representing a relation.

But this trivial operation comes with nontrivial cost. First it takes a significant part of programmer’s
labor to make all joins precisely predictable. A programmer must make sure all joins will result in a
set of relations that are meant to be stored, and no join will ever reveal any new information. Then
a programmer is forced to codify the conversion routine itself for many relations separately. And
finally, in runtime, join is a resource consuming operation, perhaps the heaviest operation in any typical
usecase.

Multiply the runtime price for the amount of times you access those joins, because the results are
being thrown away every time. So you need to pay the price of join every time you access such relation.
You keep converting your hidden foreign-key relations time and again.

And to add insult to injury, those costly results are already known to you! Your database has been
designed this way that you know what comes from a join. You pay repeatedly for something you
already have and always has had!

All this time a join solves a technicality problem that has nothing to do with the domain knowledge.
Some minor inconvenience of internal representation of relations somehow became a significant part
of supposedly high-level programming and legally consumed a lion share of runtime.

Because foreign keys are not capable of representing many-to-many relations, there is another
alternative representation for relations: link-tables. It is also a low-level simulation of relations, that
compromises the idea of RDBMS, and it imposes some extra cost. Here is the simplest case of a relation
many-to-many:

𝑏𝑜𝑜𝑘 𝑔𝑒𝑛𝑟𝑒
𝑏𝑜𝑜𝑘_𝑔𝑒𝑛𝑟𝑒

The most recommended mainstream way to represent it in terms of tables is a link-table:

𝑏𝑜𝑜𝑘
𝑖𝑑
𝑡𝑖𝑡 𝑙𝑒
𝑎𝑢𝑡ℎ𝑜𝑟
...

𝑏𝑜𝑜𝑘_𝑔𝑒𝑛𝑟𝑒
𝑏𝑜𝑜𝑘_𝑖𝑑
𝑔𝑒𝑛𝑟𝑒_𝑖𝑑

𝑔𝑒𝑛𝑟𝑒
𝑖𝑑
𝑛𝑎𝑚𝑒

Let us select genres of a book X:

SELECT genre.name FROM book_genre, genre, book
WHERE book.title = X
AND book_id = book.id
AND genre_id = genre.id

Nothing unusual, all three tables properly joined according to the foreign keys provided. But, look,
𝑏𝑜𝑜𝑘_𝑔𝑒𝑛𝑟𝑒 is a relation on the Cartesian product of 𝑏𝑜𝑜𝑘 and 𝑔𝑒𝑛𝑟𝑒. We need to perform a search of
the dimension (𝑏𝑜𝑜𝑘, 𝑔𝑒𝑛𝑟𝑒). What do we do in the select above? We produce a Cartesian product of
𝑏𝑜𝑜𝑘, 𝑔𝑒𝑛𝑟𝑒, and 𝑏𝑜𝑜𝑘_𝑔𝑒𝑛𝑟𝑒 itself. And then we perform a search of the dimension (𝑏𝑜𝑜𝑘, 𝑔𝑒𝑛𝑟𝑒)2 – twice
bigger search space than needed!

What have we done?! We represented a relation 𝑏𝑜𝑜𝑘_𝑔𝑒𝑛𝑟𝑒 as THREE formally independent relations.
One proper table-relation plus two foreign-keys, that require special costly treatment to be accessed
at all. And this is formally the best practice, because it is the only way to describe such a relation in
terms of relations as implemented in SQL. There are of course other methods, say arrays, that result in
non-relational methods of querying data, that a select does not cover.

Please note that in this representation the foreign keys on their own do not represent any domain
knowledge relation. It is semantically a different role of a foreign key – not all your foreign keys
correspond to a relation, and you must be aware of that – do you have a facility in SQL to distinguish
these important usecases? Ah! Sweet confusion piles up!

Some RDBMSes introduce subclasses and inheritance [9]. Needless to say that a subclass is a relation
on a class, therefore, we have another rival representation. How many have you counted already?

Some RDBMSes introduce complex types, arrays, collections (a.k.a. “nested tables” NB!) [11] which
are relation representations too. Take a look at oracle documentation:

---- a collection is defined as:
CREATE OR REPLACE TYPE emp AS OBJECT (

e_name VARCHAR2(53),
s_sec VARCHAR2(11),
addr VARCHAR2(113));

---- You can create a table with this object

This is a relation, no more and no less. So far we have SEVEN alternative representation for relations,
of which only one enjoys availability of relational operations provided by so called RDBMSes.

Which representation to choose for a particular relation? Is there any method to choose representa-
tions from this multitude? Why so many representations after all?

The “why” question has an easy and obvious answer: because the notion of tablewas never satisfactory
for the role of a relation. All those “improvement” efforts had to be strongly motivated by the need to
represent relations – should table suffice, collections would never be born.

2.2. The price of tables

A typical RDBMS suggests the following mapping: 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 → 𝑡𝑎𝑏𝑙𝑒; 𝑑𝑜𝑚𝑎𝑖𝑛 → 𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒. Note that
a table can not adopt another table as an attribute. Therefore, there simply is no room for relations
between relations. Taking in account that a typical domain knowledge contains a whole hierarchy of
relations with the majority of them being relations between relations, with tables we can represent
only SOME of relations for any given facet of knowledge. Once we represent a relation with a table
we prevent table representations for all relations that includes the current one in their domain, and all
that are included in the current one’s domain. The representation of the former takes link-tables and
foreign-keys. The representation of the latter takes complex types and collections.

This is why we are stockpiling alternative representations. And it is not a solution at all. An RDBMS
controls relations represented as tables, which are a mere part of a data model, which consists of many
more relations having alternative representations, so that our data model resides partially (and mostly)
outside a system designed for proper maintenance of the data-model.

At this point the very name “RDBMS” loses its meaning.

3. Multitable index

Any facet of real life knowledge is not a plain set of relations, it is always a hierarchy of relations.
Only a minority of relations are leaves of this hierarchy. Typically a majority of relations adopt other
relations as domains. For a meaningful system of managing a relational data model, first of all, we must
make possible relations between relations.

Our language must contain the following closure (for definitions we use intuitive BNF-like notation
[5]):

relation ::= domains graph
domains ::= domain
domains ::= domains domain
domain ::= relation
domain ::= scalar_type
scalar_type // provided by an underlying system
graph // to be defined later

This is very important from the standpoint of the set theory that a relation (being a set) might play a
role of a domain. Exactly this is missed in relational calculus and relational algebra as defined by Codd
in [2] and [1] The 𝑠𝑐𝑎𝑙𝑎𝑟_𝑡𝑦𝑝𝑒 is merely a predefined set, provided by an underlying computational
system, for example 𝑛𝑢𝑚𝑏𝑒𝑟 or 𝑠𝑡𝑟 𝑖𝑛𝑔𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 were considered basic types by E. F. Codd in his

original definition of the relational model of data. Everything is plain and clear in this definition except
for the mysterious 𝑔𝑟𝑎𝑝ℎ that is about to be defined (by 𝑔𝑟𝑎𝑝ℎ we literally mean the graph of a relation
as in the definition of relation [13]).

Let’s say we have a binary relation 𝜌 between sets 𝐴 and 𝐵:

𝐴 𝐵
𝜌

𝑘𝑒𝑦𝑠
1
4
7
9

𝑘𝑒𝑦𝑠
2
3
8
9

relation graph

Assuming we already have sets 𝐴, 𝐵 somehow represented, we need to represent the legs of the
graph. Apparently the relation graph’s legs comprise a finite set, and any finite set can be represented
as a set of integers, so we can represent our relation graph as:

𝐺(𝜌) = {12, 13, 48, 49, 73, 99}

Nothing is easier than creating an index for a finite set of integers:

50

25 75

12; 13 48 49; 73 99

This index (by-design) represents the graph of the relation 𝜌. At the same time it is merely a regular
featureless index, like any other index in your RDBMS. Whereas 𝜌 is a “horrible” many-to-many relation.
And it is being represented by a single trivial index.

From an alternative vantage point, the primary purpose of a relation graph is to answer the question:
whether a tuple is a member of the relation – this question an index is supposed to answer too. A graph
and an index share the purpose and share representation. For all practical intents and purposes: a
relation graph IS an index.

Nothing prevents this index from holding data-storage node references. Nothing prevents your
RDBMS to maintain this index.

But we did not impose any restrictions on the domains 𝐴 and 𝐵 – these are just sets (we merely
enumerated them with integer keys) – therefore 𝐴, 𝐵 can be relations.

Thus we have created a many-to-many relation between relations that does not require neither
link-tables nor joins but a SINGLE INDEX. An index that possesses no single feature impossible for any
normal RDBMS.

The only special feature of this index is that it has to hold two storage-node references at each leaf
– nothing more. Generally these references point to different tables, so we called this type of index
“multitable index”.

Introduction of such index makes all the difference in the world for almost no price. A multitable
index allows to store relations between relations, treat them as first-class relations, access them without
joining (it basically stores the information a join re-calculates at every call). At this point the restriction
for indexes to be limited to a single table looks ridiculously artificial and unjustified.

4. The paradigm shift

The language practices of SQL made relations so strongly associated with tables that the notion of
relation is totally replaced by table. You say relation you mean table. The word relation has become a
geeky euphemism for tables. It is grossly wrong, for all the reasons exhaustively described above.

Therefore, a huge mental paradigm shift is required, in order to reflect the mathematical reality inside
a properly built RDBMS:

Tables aren’t relations! – Indexes are!
Indeed in PostgreSQL indexes internally ARE relations, already. Somewhat special, but nothing

should prevent you from using them as described above, since an index is capable of storing all the
information you demand from a very heavy join of two tables together with a link-table.

5. The language

We need a language to be pure, simple, and coherent. Its notation must be clear, unambiguous, and
intuitively human readable (but not mimicking a human language, in fact resemblance of a human
language does only complicate understanding [3]). Ideally, similar objects must be described by similar
sentences of the language, while dissimilar ones be described by easily distinguishable sentences.
Also, we want to keep a number of keywords and unique syntax constructs to the bare minimum.
Since everything has been already invented, we will try to stick with s-expressions [4] and follow the
functional style.
No more human language mimicking. Contrary to the creators’ intent, decades of human

language mimicking, did not not make a single layman fluent in SQL. This handicap should not be
carried any farther.
Relational operations to be written separately. We do not want to mix projection with other

operation, and defer all the 𝑙 𝑖𝑚𝑖𝑡𝑠 and 𝑜𝑟𝑑𝑒𝑟𝑠 up to the output formatting phase. Hopefully it will make
the notation of data manipulation cleaner, at the same time the output formatting richer (as being freed
from the limitations imposed by the data manipulation context).
Declutter the notation. We will keep the notation free from meaningless variety of separators –

a space is enough. For example, if we want to construct a triple, we have to provide triple members
(and optionally their order), like this: (𝑥1, 𝑥2, 𝑥3). The question is what information the comma symbol
adds to this notation? The only right answer is: void. Because of this, we simply discard the garbage,
so we got: (𝑥1𝑥2𝑥3). This seemingly superficial change in fact is a very significant improvement to
the syntax. It effectively removes the whole idea of “in between items”, which ordinarily causes whole
series of tiny annoying problems (particularly nasty in machine generated scripting (beginning with
“duplicate separator” (is a duplicate separator an error? could it have a meaning?))).

Make basic types and relations interchangeable. This is the pivot point of the language. It makes
the language capable of expressing relations between relations.
Introduce variables and assignments. SQL does not provide a room for assignments, they

are totally alien to the SQL’s structure, yet strongly demanded (recently introduced 𝑊𝐼𝑇𝐻 clause is
a counter-intuitive assignment in essence). Our variables will be IMMUTABLE, will have a single
transaction lifespan and visibility, will be interchangeable with relations in every context except for data
definition, and will represent only sets of tuples. Perhaps, assignments have no need to be calculated
immediately.
Make DML returning value. Since we have explicit output operations, and separated relational

operations, and we have assignments, then we can avoid the 𝑅𝐸𝑇𝑈𝑅𝑁 𝐼𝑁𝐺 clause altogether by making
DML return affected rows. And since we may utilize a return value only explicitly, then we can just
discard it by not utilizing it.
Respect the fact that a relation is a function of its primary key. Indeed we can treat them as

functions all the way long and that gives us an opportunity to create a procedural language around the
data sublanguage.

Keep types as few as possible. The epoch of counting bytes is over. There is no need in keeping
several different types for integers, also we do not see any high level application for bitwise operations
and related stuff. We now want computers to count their bytes (if they are concerned). On the other
hand we provide a useful tool for constructing complex types of arbitrary complexity, namely relations
– we do not need to anticipate all possible user’s wishes by maintaining a library of fancy peculiar
types which will be rarely known and never used (because user’s wishes always prove themselves more
peculiar than our wildest anticipation).

5.1. Type system

The language is completely NULL-free. The only known legitimate usecase of NULLS is an optional
foreign key. But our language does not have foreign keys.

The language contains the following predefined basic types:

𝑡 𝑖𝑚𝑒, 𝑡 𝑖𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑡𝑒𝑥𝑡, 𝑖𝑛𝑡, 𝑟 𝑒𝑎𝑙, 𝑏𝑜𝑜𝑙

𝑖𝑛𝑡 is “infinite” as is a norm nowadays, no bytes counting, and such int effectively replaces fixed
points, so we don’t even bother about fixed point types.
𝑟𝑒𝑎𝑙 is a floating point type, and it approximates real numbers, sometimes this distinction matters, and

you need a type that is not precise. So that the minimal set of numeric types is still two very different
types, which difference goes beyond hardware limitations and software implementations.
𝑡𝑒𝑥𝑡 is “infinite” (as in PostgreSQL [8]) – no more “varchars”!!! – limitations that are not related to a

data-model itself should not be present in a data-model definition. A difference for example between
𝑣𝑎𝑟𝑐ℎ𝑎𝑟(10) and 𝑣𝑎𝑟𝑐ℎ𝑎𝑟(11) does not represent sufficient meaning – it must be explained why these
are different types, as opposed to different user-input-validation procedures on a client side – such
explanation does not exist. You can easily verify the insignificance of the said difference by recalling
how many times a typical 𝑣𝑎𝑟𝑐ℎ𝑎𝑟 gets expanded in a typical production database per week.
𝑡 𝑖𝑚𝑒 is an arbitrarily rounded reference to a point in time expressed in units of currently standard

calendar. The closest comparison is the PostgreSQL’s 𝑡 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑡𝑧 [10], however, our 𝑡 𝑖𝑚𝑒 is much
better. Postgres loses the timezone information and it does not respect the fact that absolutely all
timestamps are always rounded. Natural timestamp input is typically rounded coarser than an internal
representation of a 𝑡 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑡𝑧 and the information of the user requirement for timestamp granularity
is lost for Postgres.

Unlike Postgres, we preserve the timezone information, and we preserve the timestamp granularity.
Our 𝑡 𝑖𝑚𝑒 stores the time, the timezone it was originally inputted in, and its granularity – when it is
“a year 1984” it does not become “1984-01-01 00:00:00.000000”, it remains “a timestamp given to the
accuracy of a whole year”.
𝑡 𝑖𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is analogous to PostgreSQL’s 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [10], but better – it does NOT share a lexeme with

text constants (see 5.2).
A calendar arithmetic should be stolen from Postgres because it is so far the only proper implementa-

tion of our calendar in the entire software industry.
In addition to these basic types one complex type could be useful enough to define him in the core

language:
𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

Where 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 is a pair (𝑖𝑛𝑡, 𝑖𝑛𝑡) treated as a number by all numeric operations. Given our “infinite”
integers, a rational arithmetic covers literally all the holes between 𝑟𝑒𝑎𝑙 and 𝑖𝑛𝑡, because [7]. It is not
complicated computationally, roughly twice the workload of integers, plus some output simplification
overhead. And the results could potentially be presented neatly, striking balance between precision and
simplicity.

Such type poses a question though: Shall we throw out 𝑖𝑛𝑡 completely, in favour of 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙, since
𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 can do everything with the same precision?

5.1.1. Automagic: mapping, flattening, tuple simplification

The language is thoroughly relational – all data objects in the language are (they “are” in the sense of
their treatment, you can safely assume a scalar is a set containing a single tuple of a single element, but
it does not mean we actually implement all the overhead internally) sets of tuples, all of them. From
that follow certain decisions:

• The availability and the role and the appearance of Cartesian products and unions 5.3.3.
• Automagical mapping of functions [14]: a function (that is not defined as a folding function) if
given a set of arguments applies to each element producing a set of results.

• Automagical list flattening, if a set is inserted into another set as an element a concatenation
takes place instead, which fact is not even hidden from a user, since the only constructor of sets
is the 𝑢𝑛𝑖𝑜𝑛 operation. A set of sets has no meaning in a relation context – if it does, there is a
relational solution: tuples – a set contains tuples and tuples can contain sets, no flattening is
called for (see example below).

• Automagical tuple depth reduction: if a tuple contains a tuple as a single element the inner
tuple is consumed the depth is reduced (see example below). Otherwise, tuples can contain tuples
as elements, it is meaningful, no flattening occurs.

• Operations of aggregation/grouping and their opposites should be defined. A result of aggrega-
tion/grouping is still a valid relational data object enjoying all the rights and opportunities.

Example list flattening
Apparently the following two sets:

[1 2 3 4]
[[1 2] [3 4]]

contain different information, even the amount of information differs (easy check: how many permuta-
tions are allowed in each case). But what is a semantic of this distinction?

When using these sets you have to imply some meaning into the very fact of their nestedness –
meaningless structures are not allowed.

On the other hand, a relational language gives you means to write your ideas explicitly, by extending
the members of the set, for example:

[
{"shots" [1 2]}
{"misses" [3 4]}
]

now the inner sets can not be flatten with the outer set; not technically, nor semantically; members of
inner sets differ in type from the members of the outer set.

Nevertheless a meaningful analogue of flattening is still possible, we can expand this “aggregated”
set into:

[{"shots" 1} {"shots" 2} {"misses" 3} {"misses" 4}]

Thus both flat and compact forms are legal and all the meaning is preserved (“despite” prohibition of
sets of sets). In this light the abstract set of sets seems a mere artefact of a language, nothing more than
a distinction between a NULL pointer and an empty array
Example depth reduction
Apparently nested tuples can express important meaning (as structuring a datum)

{"nominee" {"John Doe" 1976} 2020}

in this example the dates member in different tuples – they are dates of different things, say a birth date
and a nomination date.

Opposite to that, there exists meaningless configuration of nested tuples:

{"John Doe"}
{{"John Doe"}}
{{{"John Doe"}}}

Adding depth without adding attributes does not add any new information to the original tuple.
Therefore we perform automatic reduction of depth in this easily detectable case. In return this
simplification gives us two neat features:

• We can extract (with projection) individual elements (say a scalar) from deeply nested relations,
loosing the depth information (i.e. a scalar will appear as a scalar regardless of the depth it was
extracted from.

• We can re-use the tuple constructor for type casting, since enveloping a datum into a tuple does
not increase the depth, we can re-envelop a tuple into a tuple of different type to the effect of
type casting (see 5.3.2).

5.2. Lexic

The language is based on the following 11 lexemes: 7 literals, 4 pairs of brackets; and 2 separators.
Spaces and linebreaks are separators. Brackets separate lexemes too. A lexeme, unless quoted, can

not contain separators or brackets. Beginning of an operator terminates the previous lexeme. No other
separators exist.

5.2.1. Literals

Identifiers aka names, are used to designate types (among which are all relations (among which are
all functions)). They are classical names with lowercase initials.

NAME = [a-z][a-zA-Z0-9_]*

Nominators (formerly known as variables) to designate named data objects. They are classical names
with uppercase initials.

VAR = [A-Z][a-zA-Z0-9_]*

Numerals, that represent constants of numerical types. They traditionally bear digit initials. Under-
scores are allowed to group digits.

NUM_DECIMAL = [0-9.][0-9._]*
NUM_BASE2TO9 = [2-9]#[0-9._]*
NUM_BASE10TO37 = [1-9][0-9]#[0-9a-zA-Z._]*
NUM_FLOAT = [0-9.][0-9.]*[Ee][+-][0-9][0-9]*

// 1984
// 2#100.000101
// 16#EF11_8766_AB00_001C
// .5e-189
// it is debatable if we should allow the leading "."
// mandating a leading 0 would FREE the "." for some other purpose.

Text literals in double quotes with traditional backslash escapes.

TEXT = "[^"]*" // with backslash escapes (not shown here)

Date, time, and interval literals, in “graves” without escaping. Easily distinguishable from both
numerals and texts by the leading character. The use of a quotation technique allows for spaces to be
used in date-time formats.

TIME = `[^`]*`

// `1984` // it is now a year not an integer
// `456BC`
// `+ 2days 7hours 11minutes`
// `2021-02-20 18:41`

The temptation was strong to avoid keywords completely, still there are two words that are absolutely
reserved forever and ever:

BOOL = true | false

Operators are brief cryptic names for frequently used functions. They must have a non-alphanumeric
initial that is not a quote-mark nor a bracket, they might contain letters, but not digits. This distinctive
shape allows them to appear on a non-leading position in a s-expression, without being confused with
arguments.

OPERATOR = [!@#\$\%\^\&\?~*+=<>:;,|\\/-][a-zA-Z_!@#\$\%\^\&\?~*+=<>:;,|\\/-]*

5.3. Syntax

In order to focus on the data sublanguage we omit for now the definition of a program in the proposed
language. Defining that, including the command grouping and structuring into transactions and routines
would be premature at this point, since the big picture of the workflow is not complete yet.

On the other hand we attempt to define as clear as possible how does the language specify data
structures and data access. Keeping in mind that all these “constructs” should be equally applicable to
remote and local data, and equally palatable for a language with shared state data objects, as well as a
language without state sharing.

Typographic Convention:
We will type literal value of terminals in ”doublequotes”.
We will type names of terminals UPPERCASE, if their value is variable.
We will give lowercase names for non-terminals.
For brevity of lists definitions we extend our BNF-like notation with symbols: ::=... and ::=0...
meaning arbitrary repetition of right-side, at least 1 or at least 0 times respectively.

5.3.1. Data definition

definition ::= "relation" { NAME domains }
definition ::= "domain" { NAME domains }
domains ::=... domain
domain ::= NAME:type // you can give names to domains
domain ::= type // domains may bear type-names
type ::= BASIC_TYPE_NAME
type ::= RELATION_NAME

There are three classes of relations: ordinary 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑑𝑜𝑚𝑎𝑖𝑛, 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 – all of them are first-class
relations in every respect. A 𝑑𝑜𝑚𝑎𝑖𝑛 always contains all its possible tuples, similarly to a user-defined

type in procedural languages, although from our vantage point a 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is also a user-defined data type
of equal rights and opportunities, the only difference is that 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 represents a user-defined subset of
its type (i.e. requires a set of tuples to be 𝑎𝑑𝑑𝑒𝑑) and contains only those tuples that were 𝑎𝑑𝑑𝑒𝑑 by a
user.

A 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is a relation that contains only tuples defined by the given expression (i.e. calculated).
The additional difference is that you can explicitly specify its co-domain to be some arbitrary projection
of the complete domain – i.e. a function represents a “shorter” type (The explicit split of the formal
“relation domain” into “argument type” and “result type” also reflects the fact that in general a function
specified as a computation procedure can not be reversed, thus making regular “selects” (potentially
retrieving values of “arguments”) impossible, whereas the “result” alone retains full “selectability”),
similarly to “return type” of a function in a procedural language. For the sake of completion, here is
how we define functions:

definition ::= "function" { NAME domains -> domains } heads
definition ::= "fold" { NAME domains -> domains / init} heads
definition ::= "operator" { OPERATOR FUNC_NAME }
heads // to be defined later
init // to be defined later

A 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 that receives a set of its arguments automatically “maps” itself, producing a set of results.
To cover the opposite behaviour a 𝑓 𝑜𝑙𝑑 is introduced. A “folding” function (although enjoying equal
rights and opportunities) if given a set of arguments always folds this set and produces a single result.
𝐹𝑜𝑙𝑑𝑠 are to be used in aggregates. The 𝑖𝑛𝑖𝑡 condition contains a definition and an initial value of the
accumulator that passes the fold state between iterations. It is not supposed to be accessible from a call
to a 𝑓 𝑜𝑙𝑑, a 𝑓 𝑜𝑙𝑑 participates in a program as a 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 with the specified domain and co-domain.

An open question is: (a) do we make a function’s domain type accessible by a name derived from the
function name? (b) do we require explicit names for the domain and co-domain types to be defined
prior to the function definition, so that a function always refers to named types (for an example usecase
of type names see 5.3.2)?
Example
Let there be a tiny library:

𝑔𝑒𝑛𝑟𝑒 𝑏𝑜𝑜𝑘 𝑤𝑟𝑖𝑡𝑒𝑟
𝑏𝑜𝑜𝑘_𝑔𝑒𝑛𝑟𝑒 𝑎𝑢𝑡ℎ𝑜𝑟

𝑑𝑒𝑝𝑎𝑟 𝑡𝑚𝑒𝑛𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

The definition of this library will look like:

domain {name first:text middle:text last:text}
relation {book title:text ISBN:text}
relation {writer name:text birthdate:time}
relation {genre text}
relation {department text}
relation {author book writer}
relation {book_genre book genre}
relation {available book department}

Now let us illustrate another usecase for 𝑑𝑜𝑚𝑎𝑖𝑛 definition:

domain {point2d x:real y:real}
domain {circle radius:real center:point2d}
relation {my_circle circle}

In the example above circle is a set of all possible circles. Domains play a role of complex types.
While my_circle is a set of user defined circles –- a user himself controls which tuples belong to the set.

5.3.2. Constructors

We construct a tuple simply by listing all its components in special brackets designating this is a
tuple.

constructor ::= { tuple }
tuple ::=... value
value ::= expression
value ::= label:expression
label ::= TYPE_NAME
label ::= NAME
expression // to be defined later

Tuples are allowed to have explicitly or implicitly named elements – exactly the same as in a definition
of a relation. Elements will be referred to by their labels, either arbitrary names or their respective type
names, for the purpose of unification (as in Prolog [15] and Erlang, but greatly enhanced with the tuples
having named elements). This allows us to abandon all traces of positional referencing in all contexts.
Tuples are still ordered but this order only manifests in its useful aspect: establishing correspondence
between elements of two tuples, and this is achieved with the aid of 𝑙𝑎𝑏𝑒𝑙𝑠 – the rest of the information
that an order of elements contains is not important for a user, and removed out of sight.

In addition to that, you can ensure “compatibility” of a newly constructed tuple with a predefined
type:

constructor ::= { TYPE_NAME tuple }

If the given tuple fails to unify with the given type the constructor returns an error. Apart from type
assurance this form adds human readability in certain cases.

On top of it (due to automatic depth reduction) you can use the same type assuring tuple constructor
for type casts:

A := {int 1984}
B := {text A} // result "1984"
C := {time B} // result `1984`

The second necessary constructor is a set. We construct a set by simply listing its elements in brackets
designating a declaration of a set.

constructor ::= [set]
set ::=0... expression

Our sets are relations, so that they imply that all their elements are of the same type. In order to
make this requirement more clearly visible we allow type assurance for sets as well. This constructor
will apply the type assurance to each element of the given set:

constructor ::= [TYPE_NAME set]

Counter-example
Let us highlight the importance of explicit tuple constructors by looking at SQL, which is built around

tuples but lacks syntax for constructing tuples. This situation leads to queries like that:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary);

it says:

x over w, y over w, z over w

because there is no way to say:

{x y z} over w

5.3.3. Basic set operations

A relational language can not survive without the basic set operations: Cartesian product and union
– being as easily available as arithmetic operations.

product ::= { expressions }
union ::= [expressions]
expressions ::=... expression

We use the same brackets here, respectively. A [] designates a set. A {} designates a tuple. It must
be obvious from the definition that the similarity goes beyond the syntax: a tuple constructor performs
Cartesian product of its elements, and a set constructor performs a union of its elements – there is no
need so far to invent any distinctions. Of course you can specify type assurance too.

5.3.4. Unification

The type assurance, and function calls, and the pattern matching in selections (see 5.3.6), are based
on 𝑢𝑛𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛. Our unification procedure utilizes both labels and types of the tuple, ignoring the order,
and in some cases ignoring arity.

domain {name first:text middle:text last:text}
// unifies with:
{first:"John" middle:"Enoch" last:"Doe"}
{first:"John" last:"Enoch" middle:"E."}
{first:"John" middle:"Enoch" "Doe"} // the last is implied
{"Doe" first:"John" middle:"Enoch"} // the last is still implied

domain {point x:real y:real name:text}
// unifies with
{x:10 {real "19"} "point 10;19"} // type matters
{x:"10" y:"19" "point 10;19"} // but labels take precedence

// abbreviations are allowed
{name f:"John" l:"Doe"} // is valid
// as long as abbreviations are unambiguous

Label abbreviations are possible because of the very narrow scope of the labels, ambiguity is easily
detectable. Since labels are used profusely, this feature becomes extremely time-saving. At the same
time it allows to avoid abbreviating “field names” at the definition phase. You can afford names as
verbose as necessary without cluttering the text of a program referring to verbose names.

The unification algorithm

Elements are consumed in the order from the highest to lowest priority:
Label and Type match exactly
Label match exactly and type casts
Label abbreviates and Type matches
Label abbreviates and Type casts
Label empty and Type matches to a single element
Label empty and last element and Type casts to the last remaining element.

Error is thrown:
more elements in the given pattern than in the target
a label in the pattern does not match nor abbreviate any target
a label matches and the type fails to cast

5.3.5. Nominators

Giving names to subselects is a massive convenience, so much so SQL is developing this aspect for its
entire history up to the “WITH” control structure. We decide from the start to structure the language
is such a manner that a sequence of “assignments” is legal without any special tricks excusing such
“assignments” from a context that prohibits them.

assignment ::= NOMINATOR := expression

Example

MYlist := [1 9 8 17]
MYtuple := {"John" "Doe"}
B := (book title:"1984") // B now represents this selection

After these assignments (within their visibility scope) you can treat the nominators 𝑀𝑌 𝑙𝑖𝑠𝑡, 𝑀𝑌 𝑡𝑢𝑝𝑙𝑒,
𝐵 as the objects they represent and put them in any appropriate context.

An assignment sentence DOES NOT necessitate execution of the right-side expression! The compiler
knows if and when the assignment is used, keeping in mind the transactional context of the runtime,
the necessity to execute anything occurs at well defined moments.

For purely aesthetic purposes, in case programs in our language eventually grow a habit for large
multiline expressions, we must keep in mind the possibility to add postfix assignments:

postfix_assignment ::= expression =: NOMINATOR

In a lengthy statement such assignment allows to put the 𝑁𝑂𝑀𝐼𝑁𝐴𝑇𝑂𝑅 on the very last line where
it is most relevant for reading the text right below.

case of
a very lengthy

expression
that itself
could be a control structure
that returns a result
and you want this result to be named
and by the time
you finished reading
this expression
the variable name it is assigned to
goes far above...
INSTEAD

you can provide this name
right AFTER the present expression
exactly at the moment
when you finished learning
the result of this expression
and so timely you learn the name too

end-case =: MYresult

B := (foo MYresult)

5.3.6. Selection

When you write:

SELECT * FROM book;

What information exactly does this sentence contain? The right answer: 𝑏𝑜𝑜𝑘 – nothing else. In this
sentence you point to a certain relation by name (the result could be directed to the output or another
select, but this information is not contained within the sentence itself)

Since we know the information content of this sentence, we know how to say it in our language:

(book)

This is how you access a relation – you simply call it by its name. Parenthesis here makes it an
expression that is a data object as opposed to a type object.

selection ::= (NAME)
selection ::= (NAME pattern)
pattern ::=... filter
filter ::= conjunction
filter ::= disjunction
filter ::= value
filter ::= func
value ::= LABEL:expression
value ::= expression
func ::= LABEL:curry
curry ::= (FUNCTION args)
args ::=... value
conjunction ::= { pattern }
disjunction ::= [pattern]

A pattern attempts to match against the elements of the relation. If a value is provided it matches
with the corresponding field iff equal. If a function is provided it matches if computes to true, but this
function must be curried down to the arity 1, and return boolean result. A set of filters matches as “OR”.
Whereas a tuple of filters matches as “AND”.

example

Dawkins := (writer {first:"Richard" last:"Dawkins"})
John_OR_Mary := (person first:["John" "Mary"])
Elder_J_OR_M := (John_OR_Mary birthdate:(earlier than:`1990`))
// same as
Elder_J_OR_M := (person first:["John" "Mary"] birthdate:(earlier than:`1990`))

X := (person [{first:"John" birthdate:(earlier than:`1990`)} {first:"Mary"}])
//same as
X := [(person first:"John" birthdate:(earlier than:`1990`)) (person first:"Mary")]

// provided a predefined BIF
function {earlier x:time than:time -> bool} ((x - than) < 0)

A 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 must represent a volume in the domain space of the given relation. A selection expression
returns all the elements that happen inside this volume. The simplest form of a 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (apart from the
empty pattern) is a tuple. A tuple-pattern unifies with some elements of relation, these elements will
be returned. A complete tuple of the relation-type represent a point in the domain space and unifies
with 1 or 0 elements. A tuple of a single element represents a hyperplane. A tuple of multiple elements
represents an intersection of hyperplanes. Whereas a set within a pattern represents a disjunctive
match (analog of SQL’s: “OR“, “IN”).

An important class of shapes can be expressed by means of adding up and intersecting such volumes –
those boundaries can utilize indexes. It is huge class covering almost all usecases of a typical bureaucratic
database, However, it is far from being complete, for example this selection can not express a half
plane on a real plane that is bounded by 𝑥 + 𝑦 = 𝑐𝑜𝑛𝑠𝑡. This problem is still solvable, because there
is no compulsion to put everything inside a “where” clause. You can define a function that computes
𝑥 + 𝑦 = 𝑐𝑜𝑛𝑠𝑡 (or any other hyperplane for that matter) taking the entire relation as an argument.

relation {plot x:real y:real}
function {foo p.plot -> plot c:real} {p (+ p.x p.y)}

F := (foo (plot))
HALFPLOT := (F c:(greater than:0))

5.3.7. Data management

command ::= "add" content
command ::= "remove" content
command ::= "abolish" content
command ::= "update" content replacement
content ::= constructor
content ::= selection
replacement // to be defined later

This weird triviality comes from the fact that a constructor specifies type – so that the relation to
which the command is issued is known from the type. In case a given tuple (say, passed from some
previous routine) is not labeled with a type, it is always possible to do inline by wrapping it into a
type-assuring constructor. Therefore the syntax of the command itself does not need to mention the
type, it is either known or can be made known by treating the argument of the command.

And of course, a set is acceptable argument.
And of course, a command returns a result: the affected subset of the affected relation.

B := add {book title:"1984" isbn:"094885858"}
G := add [genre {"fiction"} {"sci-fi"} {"memoir"} {"documentary"} {"bore"}]
PEOPLE := [{first:"George" last:"Orwell"} {first:"Richard" last:"Dawkins"}]
W := add {writer PEOPLE} // adds all people as writers
A := add {author B (W last:"Orwell")}
S := add {book title:"The Selfish Gene" isbn:"098765"}

Similarly, a 𝑟𝑒𝑚𝑜𝑣𝑒 command needs to know “which records”, and since there is no preference as to
how exactly they must be specified, as long as the provided datum unifies with the relation... The most
straightforward way is to specify a selection.

TRACE := remove (author (name [first "Mary" "Jane"]))
// removes all authors with first names "Mary" OR "Jane"

𝑎𝑏𝑜𝑙𝑖𝑠ℎ is a recursive version of 𝑟𝑒𝑚𝑜𝑣𝑒. It removes members of relations referring to removed
members, instead of throwing an error.

The 𝑢𝑝𝑑𝑎𝑡𝑒 is exceptionally cluttered and burdensome with all its references to 𝑛𝑒𝑤 and 𝑜𝑙𝑑. By no
means the proposed syntax is final. Please consider it as a suggestion.

command ::= "update" content replacement
replacement ::= constructor
replacement ::= expression_with_special_namespace

Example

update (writer {name last:"Dawwkins"}) {name last:"Dawkins"}
// only the unified elements get replaced

// referring "old"
update (writer birth:(earlier than:1500)) {writer birth:(+ `13 days` <birth old>)}

5.3.8. Projections

Projections are also brackets. In the simplest case:

projection ::= < fields expression >
fields ::=... field
field ::= NAME
// where expression is typically a selection

Unlike other brackets, unlike selections themselves, the subject expression enters a projection at the
last position. Is it inconsistency? No! In a selection the first word within its bracket designates the
type of the result. Same with constructors, the type enters in the first position. A projection effectively
alters the type of the subject expression, and the formulation of this new type is written in the 𝑓 𝑖𝑒𝑙𝑑𝑠
clause. So that in the proposed syntax of projections the type again is the leading member within the
bracket. That adds some regularity for the reader, a human reader.

B := (book title:"1984")
W := <writer (author book:B)>
N := <name W> // the type is now {name first middle last}

T := {x:10 y:19 name:"point" ref:`1546-12-12AD`}
P := <x y name T> // dropped the "ref" field

// nesting
F := <first <name <writer (author book:B)>>>

// more complex
K := {name f:"J" m:"J" l:"Doe"}
Q := {x:10 y:19 who:K} // type is {real real {text text text}}

// let's extract x and m (from name)
Mpart := <m <who Q>>
Xpart := <x Q>
R := {x:Xpart m:Mpart}
// pretty complicated

In order to fight this complication it is enough to allow the 𝑓 𝑖𝑒𝑙𝑑 specifications within projections to
refer to subtype labels:

projection ::= < fields expression >
fields ::=... field
field ::= NAME
field ::= NAME.field
// where expression is typically a selection

So the last example (that explicitly flattens a nested-tuple type) will look like:

K := {name f:"J" m:"J" l:"Doe"}
Q := {x:10 y:19 who:K}
R := <x name.m Q>

There is nothing wrong with the dot-notation for nested namespaces. Also we allow abbreviations in
this context too.

5.3.9. Grouping and aggregation

If you aggregate something in SQL and forget to “GROUP” unaggregated fields, it will very precisely
report an error: “the fields x y z are not aggregated and should be grouped”. It knows exactly what
fields must be grouped!!! Therefore, we must pursue some aggregation and grouping notation that does
not demand this redundancy from a user.

It turns out, grouping snugs comfortably into the projection context.

grouping ::= < fields \ fields expression >

We simply specify two subsets of fields: first those being grouped, then those that group them. From
the information content perspective, we specify a subset of fields (same as in projection) plus a single
split among them. The question which part of the slit should come first in the notation is open.

domain {my_book title:text year:int author:writer}
[my_book
{t:"a book 1" 2021 (writer "Dawkins")}
{t:"a book 4" 2024 (writer "Dawkins")}
{t:"a book 5" 2025 (writer "Orwell")}
] =: B
G := <title year \ author.name.last B>
// [
// { [{t:"a book 1" 2021}
// {t:"a book 1" 2024}
//] "Dawkins"
// }
// { [{t:"a book 5" 2025}
//] "Orwell"
// }
//]

Since we successfully grouped certain projections into sets, and we already have folding functions,
then an aggregation is merely an application of a folding function to certain elements of a grouping
result. It can be done by means of regular function calls and does not require any special syntax.

5.3.10. Connections

Instead of useless joins, we offer so called 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 – a way of writing a selection from a whole
hierarchy of relations, without explicitly mentioning each of them. The opportunity stems from the
fact that the data scheme already contains all the information how relations relate to each other, how
they are connected.

connection ::= (RELATION -><- selection)

It results in a subset of the given relation, but the selection criteria are formulated for another relation
(implied in the given selection). The system scans the data scheme to find a path between two relations
involved. And then connects the elements of the given selection with the elements of the queried
selection along the found path.

W := (writer -><- (genre "bore"))
// all writers connected to the given genre
// same as
G := (genre "bore")
B := <book (book_genre G)> // projecting book_genre on book
A := (author B) // author is a relation between book and writer
W := <writer A>

5.3.11. Expressions

Finally. For a good closure.

expression ::= CONST
expression ::= NOMINATOR
expression ::= selection
expression ::= projection
expression ::= connection
expression ::= constructor
expression ::= arith
expression ::= funcall

5.3.12. Composite types

On one hand, having strictly typed functions makes perfect sense in a language where all data objects
are strictly typed. When we query a book:

(book title:"1984")

we know the record type we got – the same knowledge of the type when querying a function is
convenient. On the other hand a function does not always return a result, could be an error. Setting
aside the exceptions (which remain an open question), we still need some means of handling non-
exceptional results...

Since our functions return tuples, it is always sufficient to return a type such as

domain {foo_result result:int error:text}

Although being sufficient and very convenient in certain cases of error-prone function calls, such as
calls to a filesystem that potentially return plentiful non-exceptional errors, this solution entails the
burden of repetitive projections, e.g. always extracting the actual result from a return-tuple

<result (foo arg)>

a return-tuple can not be used in its raw form.
For example Erlang (despite the capability of returning tuples!) utilizes untyped functions for

returning error values: a function can return a result of some known type or an error of another distinct
type, the type of the result tells the fact of error.

Without forcing our users to adopt either strategy we may make both of them implementable in
our language, by introducing composite types, a type that represents a union of several other types.
Such a type represents a compromise between strict typisation and the Erlangish approach. Such
a disjunctive type remains strict, it predicts exactly the variety of expected results, still it allows to
transcend pre-existing types.

type ::= "domain" {NAME domains} // a tuple of its domains
type ::= "domain" {NAME [domains]} // either one of the domains
domains ::=... domain
domain ::= TYPE
domain ::= LABEL:TYPE

For example a value of the type 𝑝𝑜𝑖𝑛𝑡 can be either a 2D or 3D point:

domain {point2d x:real y:real}
domain {point3d x:real y:real z:real}
domain {point [point2d point3d]}

In a less abstract venue, it allows us cater to some very practical usecases:

domain {birthdate [date text]} // date OR text
relation {person name:text birthdate}
add {person "John Doe" `1976-01-01`}
add {person "Ali ibn Hattab" "the user refused to reveal his birthdate"}

Although this example puts another important nail in the NULL’s coffin, still more practical usecases
are possible:

relation {prose_genre text}
relation {poetry_genre text}
domain {literature_genre [prose_genre poetry genre]}

This example strikingly resembles PostgreSQL’s inheritance [9]. Although in Postgres it is defined in
reverse order, a supertype first. You can clearly see that a composite type can be a supertype in the exact
same sense as in Postgres. And thus it covers all the legitimate usecases for Postgres’s inheritance and
subtypes. And we only assumed here that Postgres along with Oracle share some strong meaningful
real-life motivation to invent supertypes and squeeze them into their existing RDBMs.

6. In the conclusion’s stead

We have got a world’s first language with pragmatic typisation – the types represent your domain
knowledge, and refuse to represent memory management – a choice of a type is solely dictated by a
given problem but not the implementation of the data storage.

The language handles sets of tuples as first class data objects (as “variables” in archaic terms) and
supports set operation as fluently as arithmetic operations. The operations of tuple composition and
decomposition can be expressed in the same manner (basic arith). And to achieve that we cleansed the
language from any traces of positional referencing – all tuple entries are named.

Let’s summarize the secondary features of the language so far described.

• Full utilization of the information provided by the data scheme (see 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 5.3.10)
• Concise formulations of queries
• Textual compatibility of relational data manipulations with general purpose functional languages
• Higher-order relations not requiring any special treatment, nor causing any confusion
• Comfortable and straightforward laziness
• Bare minimum of syntax constructs: re-using and re-using “homomorphic” structures for “homo-
morphic” purposes

• Bare minimum of basic types
• Comfortable handling of types of arbitrary complexity
• Named parameters, free from positional references, name abbreviations
• Same full toolbox for querying and constructing “Local” and “Temp” data, using the predefined
data scheme

• The SQL’s basic operations decomposed into more basic parts and reorganized more logically
• Several improvements were made in general readability (see postfix assignments)

Many questions remain open. Is there a way to economize bracket types and reduce the zoo by one
animal? Perhaps a bracket role can be unambiguously told by the first member class (e.g. a type as
opposed to a nominator, etc)? There is room for ambiguity in unification of patterns containing curried
functions. We have not defined any control structures, not even decided about grouping of commands.
There must be subprograms, call them procedures or routines, or “saved transactions” if you will, as
opposed to already defined functions that are pure. The type of the connection operation is not yet
settled, it could be anything from the type of the queried relation to the Cartesian product of all types
along the connecting path.

References

[1] Edgar F. Codd, ”A Relational Model Of Data For Large Shared Data Banks”, IBM Research Lab, 1970,
URL: https://cs.uwaterloo.ca/d̃avid/cs848s14/codd-relational.pdf

[2] Edgar F. Codd, ”Relational Completeness Of data Base Sublanguages” IBM Research Lab, 1972, URL:
https://www.rjerz.com/c/infosys/support/Codd-Relational_Completeness_Article.pdf

[3] Edsger W. Dijkstra, ”On The Foolishness Of Natural Language Programming”, 2005, URL:
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD667.html

[4] Michael Sperber et al, ”Revised6 Report on the Algorithmic Language Scheme”, 2007, URL:
http://www.r6rs.org/final/r6rs.pdf

[5] T.R.N.Rao, ”The Panini-Backus Form in Syntax of Formal Languages”, 1998, URL: https://www.in-
finityfoundation.com/mandala/t_es/t_es_rao-t_syntax.htm

[6] ISO/IEC 9075-14, ”XML-Related Specifications (SQL/XML)”, 2011, URL:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53686

[7] Math Online, ”The Density of the Rational/Irrational Numbers”, URL: http://mathonline.wiki-
dot.com/the-density-of-the-rational-irrational-numbers

[8] PostgreSQL documentation, ”The Oversized-Attribute Storage Technique (TOAST)”, URL:
http://www.postgresql.org/docs/8.3/static/storage-toast.html

[9] PostgreSQL documentation, ”Inheritance”, URL: https://www.postgresql.org/docs/9.1/tutorial-
inheritance.html

[10] PostgreSQL documentation, ”Date And Time Types”, URL: https://www.post-
gresql.org/docs/9.1/datatype-datetime.html

[11] Oracle documentation, ”Collections”,
URL: http://docs.oracle.com/cd/B10501_01/appdev.920/a97269/pc_18col.htm

[12] TIOBE index, URL: https://www.tiobe.com/tiobe-index/
[13] The Definitive Glossary Of HigherMath Jargon, ”A Relation: Formal Definition”, URL: https://math-

vault.ca/math-glossary/#relation
[14] Infogalactic, ”Map (A Higher-Order-Function)”, URL: https://infogalactic.com/info/Map_(higher-

order_function)
[15] ”Unification in Prolog”, URL: https://cse3521.artifice.cc/prolog-unification.html

	1 Introduction
	2 State of the art
	2.1 The multitude of rivalling representations
	2.2 The price of tables

	3 Multitable index
	4 The paradigm shift
	5 The language
	5.1 Type system
	5.1.1 Automagic: mapping, flattening, tuple simplification

	5.2 Lexic
	5.2.1 Literals

	5.3 Syntax
	5.3.1 Data definition
	5.3.2 Constructors
	5.3.3 Basic set operations
	5.3.4 Unification
	5.3.5 Nominators
	5.3.6 Selection
	5.3.7 Data management
	5.3.8 Projections
	5.3.9 Grouping and aggregation
	5.3.10 Connections
	5.3.11 Expressions
	5.3.12 Composite types

	6 In the conclusion's stead

