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Abstract  
Thesis deals with the translation module development which automates corpus-based 

translation. The translation module is a part of an adaptable corpus tool and is implemented 

as a separate microservice. This translation module provides for the linguist and translator the 

ability to translate texts with conveying their style. The translation module is domain-specific 

oriented which allows to convey text style better than public cloud translation services. In 

this research religious and historical texts were analyzed. Neural machine translation method 

was justified and used. Sequence to sequence Transformer model as a neural network model 

was chosen. All stages of text processing by the Transformer model which based on the 

Multi-Head Attention mechanism were analyzed. Software libraries and toolkits for the 

Sequence to sequence Transformer model were analyzed and chosen. Based on chosen 

software libraries implemented own Transformer model implementation. Developed model 

comprises text preprocessing and neural network model implementation. Cost-efficient 

computer system which comprises hardware and software components for neural network 

model training was configured. Based on heuristic approach by carrying out computational 

experiments neural network model hyper-parameters were chosen and justified. Loss 

function, learning rate, perplexity and BLEU as a key model training criterion were analyzed 

and applied. Training and test samples of text data sets were prepared. Training and test data 

sets comprise language pairs of Ukrainian text fragments and their English equivalents. 

Configured neural network model was trained and tested. Automatic assessment approach of 

trained model which based on semantic closeness was suggested and tested.   
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1. Introduction 

There are many common and routine tasks in translation studies which arising today. Finding-out 

domain-specific terminology by translation material analysis, translating material from source language 

to one or more other target languages, creating or choosing appropriate specialized dictionaries, 

proofreading of translated texts are just a few of them. Nowadays all these tasks could be automated or 
fully resolved by means of semi or fully automated CAT tools. Important role among these techniques 

play corpora and corpus-based translation approach. Corpus linguistic technologies allow to simplify, 

clarify and increase the quality of the translation process. Corpus-based translation approach becomes 
increasingly accessible through advances in computer technologies. This approach implementation 

involves the use of computational linguistics, machine learning, deep learning, big data mining and 

other related information technologies. Researchers developed corpus tool [1-4] which allows to: 

 ingest text data and preprocess it by making tokenization, POS- and syntactical tagging; 
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 build frequency dictionaries; 

 find and extract collocations with frequencies; 

 find semantically close words and texts; 

 find the most important concepts and related terms and documents; 

 find importance of the terms for different documents; 

 provide ability to work with parallel texts in different languages: there are equivalent text pairs 

English-Ukrainian, Russian-Ukrainian, English-Russian and also French, German and Italian texts 
are ingested. 

This corpus-tool text data processing workflows are based on different natural language processing 

methods, statistical methods and machine learning techniques in particular Latent Semantic Analysis 
[5]. Thus, developed a corpora data platform – web-tool for a linguist and a translator which provides 

multiple corpora capabilities: data processing engine for extract transform and load text data into 

parallel corpora and user interface to make queries and to search. This research covers the process of 

extending this corpus data platform tool by implementing own text translation module for text 
translation in some narrowly specialized subject areas with a higher level of translation accuracy and 

cost efficiency than public cloud services. 

2. Objectives of corpora-tool translation module development 

For translation of ingested to corpora texts could be applied Google Translator or Microsoft 
Translation Service which successfully used for some common subject areas’ texts, but there are few 

drawbacks of this approach: 

 for some texts, especially in religious or historical domain this can cause style mismatching; 

 in some cases, the language of the investigated texts is outdated or ancient; 

 for some cases special dictionaries maybe needed. 

This module should be able to translate custom thematically related texts, in particular: 

 to convey the meaning of the text; 

 to translate from ancient languages; 

 to translate old dialects and dialects; 

 to take into account stylistics of the translated text. 
All these criteria could be fulfilled by using adaptable translation tool. The main objectives of this 

findings are focused on: 

 choosing the most efficient machine translation (MT) method; 

 finding computational time and memory efficient methods to represent words as a vector of 

numbers (semantic vectors); 

 choosing the most accurate and efficient language models which could be implemented in 
machine translation methods; 

 preparing testing text data samples; 

 implementing the translation module as a software; 

 verifying suggested approach. 

While implementing this translation module the main translation quality criteria we are trying to 

achieve are:  

 adequacy – is a criterion which depicts if all the meaning was expressed from the source to the 

target language; 

 fidelity – is a criterion which reflects the accuracy of the source text meanings translation; 

 fluency – is a criterion which shows grammatical correctness and how easy to interpret them.  

3. Justification of machine translation method for corpus tool 

Nowadays such methods of MT are used [6]: Rule-based MT (RBMT), Statistical MT (SMT) [7], 

Neural MT (NMT) [8,9] and hybrid (combines two of these methods). 



Machine translation method choice based on developed corpus-tool and appropriate corpora data 
platform peculiarities:  

1. rather small text datasets; 

2. lack of good dictionaries in a few cases; 

3. bilingual texts are partially available; 
4. limited human resources; 

5. highly specialized; 

6. method conveys the text stylistics. 
Now described above corpus tool was used for religious and historical texts analysis, so translation 

module should properly handle this text style. 

The RBMT method requires good dictionaries, but sometimes task of the linguist is to build the 
dictionary based on the investigated text. So, criterion 2 is not always achievable. Also, RBMT 

requires manually set large number of rules and its configuration takes too much time, which is not 

comply with the criterion 4. Despite other advantages, like domain-independency, reusability of rules 

for new languages and unnecessity of bilingual texts, this method cannot be used in our case. 
The SMT [7] method requires less manual work from linguist and provides more fluent translation 

if language model chosen properly. In addition, this method requires parallel texts, which are 

sometimes not available, and to ensure the appropriate level of statistics, we must provide a large 
number of texts. Therefore, according to criteria 1 and 3, this method can be partially used. However, 

this method meets criteria 2 and 4. 

The NMT [8] method conform to criteria 1, 4, 5 and partially 2 and 3, but this method has its own 
drawbacks [9]. While develop our translation module we propose our own solutions to overcome 

some of these method issues. And some of these issues are not important in our case. We have to 

consider few of them: 

The first issue “NMT systems have lower quality out of domain” [9] caused by training datasets 
variety used to train NMT models. The issue concerns Google Translate, Microsoft Translate and 

other general-purpose mass MT systems. Our corpora data platform is domain specialized, so training 

data and processed by trained model texts will be of the same domain and will have very similar 
stylistics.  

The second issue states that small datasets can cause “Under low resource conditions, NMT 

produces fluent output unrelated to the input.” These issues could be fixed only by proofreading and 

developed corpus tool provides additional tools to help linguist fix these possible issues. 
The third issue concerns with the problem of rare words translation. If NMT does not find the 

target string, then term should be transliterated.  Because, if in a language the form or ending of some 

words depends on the way in which they are used in sentences, we can obtain unpredictable results. 
Such problems can arise in highly-inflected languages (e.g. Latin, Polish, and Finnish) and could be 

partially resolved by using of byte-pair encoding.  

The fourth issue – very long sentences translated with lower translation quality. This issue 
appeared on the sentences with more than 60 words. This problem could be solved by using attention 

mechanism [10]. Text sequence length depends on hardware architectural peculiarities, as usual 

vectors have sizes of 512. Too long vectors could cause performance degradation. 

The fifth issue concerns with the usage of attention model which “does not always fulfill the role 
of a word alignment model”. Very good option of corpus tool is ability to do alignment of a parallel 

texts – assigning to all of the words in the source text – equivalents in the target language. This 

problem directly related to the training data set and generated dictionary. Partially using of multi-head 
attention allows to increase translation accuracy. 

The sixth problem caused by multiple translations of the same word. MT have weighted words for 

translation, but sometimes proper choice of this target word is questionable, because there is no strict 
assessment that this translation is good and that one is not. This issue also could be resolved in the 

proofreading stage. So, evident to use elements of SMT approaches when the linguist or translator are 

performing machine translations proofreading. 

Despite possible mentioned issues NMT method can reduce the amount of the translator’s routine 
work by full draft translation of the document. In this case the role of translator should be shifted from 

a translator to a proofreader and an expert in translation quality assessment. 



4. Translation module development 

Translation module of adaptable corpus tool could be treated as a Computer Aided Translation tool 

(CAT). Development of the modern CAT tool comprises multiple different aspects, but in this 

finding, we are focusing only on the implementation of text translation functionality and development 
of user interface will not be covered. Translation module implemented as a microservice which 

receives API request over HTTP with the texts in the source language and returns HTTP responses 

with the texts in the target language. This microservice is implemented as a Docker container (Fig.1).  
 

 
Figure 1: Translation module in the corpus data platform [3] 

 

As shown above NMT method is the most suitable for our case. Also, previously developed corpus 
tool [1-3] will be partially used to provide some SMT features in the proofreading stage. So, to meet a 

specific requirements of this NMT-based CAT tool the following tasks should be resolved: 

1. Training and test data sets preparation. 
2. Text feature extraction and encoding. 

3. Neural network model choosing, justification and implementation. 

4. Chosen neural network model training with appropriate hyper-parameters to achieve sufficient 
translation accuracy level. 

5. Developed translation module testing.  

4.1. Training data set preparation 

In this and previous findings [1-3] adaptable corpus oriented on the processing of historical and 
religious texts which have specific language style. Developed corpus tool was tested on different 

editions of the Bibles in different languages: English, Ukrainian, Russian, German, French and  

Italian [2]. These data sets described in [2,3]. In this research devoted to the translation module of 

adaptable corpus tool English [11] and Ukrainian Bibles [12] translations were used. For the training 
purposes 28474 pairs of Ukrainian equivalents in English text fragments were extracted and prepared. 

The size of this fragments was usually 1-3 sentences long. The size of the fragment is limited by 

computer system hardware capabilities of GPU [13]. These text fragments were semantically related. 
In this research only Ukrainian to English translation direction is demonstrated. Other directions and 

languages also were analyzed. 



4.2. Text feature extraction and encoding 

At the beginning of the text processing sentences from the source text by sentence tokenization 

[14] will be extracted. Sentences are treated as translation units. An equivalence of the source and 

target texts by these cognitive units could be established. Also, sentence will be tokenized into the 
terms (words). Thus, after tokenization, the sequence of terms with special tags which point on the 

beginnings and endings of the sentences will be obtained. 

The second stage of text preprocessing is subword tokenization to eliminate rare word translation 
problem which was mentioned earlier in this finding. This issue will be resolved by byte pair 

encoding (BPE)[14]. By using this approach common pairs of consecutive characters will be replaced 

with a bytes that does not appear in that text data. The rare word will be split up into more frequent 

subwords. For example, word “counterattacked” appeared in the [11] HCSB Bible only once. But 
words “attacked”, “attack” appeared 50 and 40 times respectively. Also, there are another words 

“counteract”, “counter” and “act”. 

The third stage is vectorization – conversion text to vectors of numbers, due the fact that neural 
networks work only with numbers. So, in the first step text to number vector encoder was used. This 

task could be resolved in different ways [15-18]. In this context we are talking about vector semantics 

which are based on embeddings. Embeddings take into account word meanings and based on text 

distributions. Vectorization provides contextualized word representation. For resolving this task 
algorithm with common name word2vec will be used. Word embedding [16-18] is a text strings’ 

(words or phrases) conversion to be amenable to processing by learning algorithms. 

4.3. Analysis of a neural network model  

The next step is choosing of neural network model for translation of the source text sequences 

embeddings into target text sequences. The right choice of a neural network architecture is crucial 

because source and target texts semantic equivalency depends on it. Neural network architecture 

should take into account few main characteristics of the language, such as: 

 sequential structure of the language: the meaning of a word depends on the context, namely the 
previous and subsequent words. 

 in the text an idea or a concept is represented by a word or a group of words. The same ideas in 

different languages could be represented with different number of the words in different orders. 

Thus, neural network model should take into account these peculiarities. NMT accuracy depends 
on using of a proper language model – a statistical model where probabilities are assigned to words 

and sentences. This approach allows to predict the next word in the text sequence. Sequential 

structure of the language could be represented with a Sequence to sequence class [19] of neural 

networks models – models which allow to convert sequences from one domain to sequence of another 
domain. In our case sentences in source and target languages will be treated as two sequences. And 

processor of source sentence will be act as encoder and target sentence processor as decoder. As 

encoders and decoders widely used Recurrent Neural Networks (RNN) [14, 20]. But, for cases which 
require learning long-term temporal dependencies training of the standard RNN is rather difficult. 

Due to the vanishing gradient problem - the loss function gradient decays exponentially with time. 

Long Short-Term Memory (LSTM) or Gated Recurrent Unit as RNN subtypes for resolving this 
problem could be used. But, the main disadvantage of RNN models is their inability for 

parallelization due its sequential structure. To provide higher translation quality of the neural network 

model a large corpus of parallel texts for its training should be used. So, these models training are too 

expensive in a sense of computational time consumption. 
The Transformer [10, 21, 22] is a neural networks model which represents sequential language 

structure and allows to parallelize the training process. Another advantage of this model that in 

translations for some specific domains it outperformed Google Neural Machine Translation model. 
Transformers are a complex multi-component model, each component of which in itself is a model 

with a certain neural network architecture or machine learning tool. Therefore, each of these 

components may have its own parameters that directly affect the accuracy of the translation and the 



model learning process performance. Consider the components of the model and their parameters 
which are used in this study.  

Transformer model as a sequence model comprises two main connected blocks: encoders and 

decoders stacks. In our implementation two stacks of six identical encoders and six identical decoders 

were used. The input of the first encoder of the encoders stack is a set of the sentences in the source 
language represented as a list of word embeddings. So, it is the list of 512-dimensional vectors. To 

provide correct order of the words in the target sentence to each of these embeddings will be added 

positional encoding vector of the same size. These vectors will be updated through the training 
process and provide distances between the words in the sentence. Calculation of positional encoding 

based on using sinusoidal function. 

The output of the last decoder from decoders stack is the vector of floating numbers which will be 
mapped into words of the target language sentence. 

Consider encoders stack. Each encoder contains layer of self-attention [10] mechanism and feed-

forward neural network. The input of each encoder is the output of previous encoder: a list of 512-

dimensional (in the Euclidean space) vector, except first encoder which input is the list of word 
embeddings with the positional encoding. The size of this list is the model hyperparameter and in our 

case was chosen equal to the longest sentence size of training data. The main advantage of the 

transformer model is that each term on its position flows through encoders by its own path. On the 
self-attention layer there are dependencies but on the feed-forward layer these dependencies are 

absent. This advantage provides ability to parallelize text data processing in the neural network.  

Self-attention [10] mechanism allows to find relevancy between current processing word and other 
words in the sentence. Calculation of self-attention for the i-word in the sentence comprises follow 

steps: 

1. Obtaining Query, Key and Value matrices Q, K, V of size 64×n, where n – is the number of the 

words in the sentence. Value n equals to the size of the longest sentence. Rows of each of these 

matrices are the vectors of size 64: 𝑞𝑖, 𝑘𝑖, 𝑣𝑖 Components of Q, K, V calculation could be written 

as follows: 

{

𝑞𝑖 = 𝑥𝑖 × 𝑊𝑄

𝑘𝑖 = 𝑥𝑖 × 𝑊𝐾

𝑣𝑖 = 𝑥𝑖 × 𝑊𝑉

, 𝑖 ∈ [1, 𝑛), 𝑛 ∈ ℤ, (1) 

where 𝑥𝑖 – the 512-dimensional vector which is the input of the encoder: at the first encoder it is a 
word embedding and at the next encoders it is the output of the previous encoder; all words of the 

sentence form matrix X of size 512 × 𝑛. 𝑊𝑄, 𝑊𝐾, 𝑊𝑉 – are the trained matrices of size 512×64. 

Initial values of these matrices are random. 

2. Calculation of the score as a softmax function of 𝑞𝑖 and 𝑘𝑖 vectors dot product divided by √𝑑𝑘 

(d – dimension). This division by √𝑑𝑘 provides more stable gradients and normalized values in the 

range [0,1) by the softmax function. Then this normalized score multiplied by Value vector. Scores 

obtained between all of the words in the sentence to provide relations between them, so vector 𝑞𝑖 

will be multiplied by 𝑘1 … 𝑘𝑛 . The vectors  𝑣1 … 𝑣𝑛 will be summed up into one result vector 𝑧𝑖 

which will be the output of the self-attention layer for the word 𝑥𝑖. 

𝑧𝑖 = ∑ (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑞𝑖×𝑘𝑗

√𝑑𝑘
) × 𝑣𝑗)𝑛

𝑗=1 , 𝑖 ∈ [1, 𝑛), 𝑗 ∈ [1, 𝑛), (2) 

where 𝑑𝑘 is the Key-vector dimension, so square root of it equals to 8. Also, self-attention calculation 

for the whole sentence could be written in the matrix form: 

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄×𝐾𝑇

√𝑑𝑘
) × 𝑉, (3) 

To provide higher accuracy transformer model using multi-head self-attention mechanism which 

means that input sentence processing which was described above will be calculated 8 times 

independently and in parallel with different weight matrices which also will be trained independently. 

Than will be obtained 8 result matrices 𝑍0 … 𝑍7 - attention heads. To provide single output matrix 

from self-attention layer 𝑍0 … 𝑍7 matrices will be concatenated together into one matrix and 

multiplied by the weight matrix  𝑊𝑂. 𝑊𝑂 is the matrix of size 512×64 will also be trained: 

𝑍 = 𝑍𝐽𝑜𝑖𝑛𝑒𝑑
0…7 × 𝑊𝑂, (4) 



where 𝑍𝐽𝑜𝑖𝑛𝑒𝑑
0…7  - the result of 𝑍0 … 𝑍7 matrices joining. Also these operation could be efficiently 

parallelized. 

Thus, Z – is the output of the self-attention layer which will be the input of the next encoder’s 

layer which is the feed-forward neural network. These feed-forward network is identical on all of the 

layers but has different parameters on the different layers. The input and the output of the fully 
connected neural network have dimensionality of 512. The hidden layer dimensionality is 2048. 

Neural network provides two linear transformations with ReLU activation function. 

Also each of the encoder’s sub-layer followed by add and normalize step with the residual 
connections: LayerAddNorm(X+Z) after self-attention sub-layer and LayerAddNorm(Z+FFNN) after 

feed-forward neural network. 

Consider decoders stack. Decoding process begins after the encoding process finishes. The results 

of the encoding process (Key and Value vectors) from the encoders stack and Query vector from the 
previous decoder are used on each decoder’s encoder-decoder attention sublayer of the decoders’ step. 

Output of each decoding process step is a value which represents a word in the target language text 

sequence. This process finishes after reaching special symbol. Each decoder’s phase output is a vector 
which represents a word of the target sequence. After each decoder’s phase this output will be send to 

the first decoder. Also, on decoder’s input will be send positional encoded embeddings. 

Decoder’s self-attention layer can focus only on previous positions from the output sentence by 
masking all of the next positions after the current (before Softmax calculation in sub-layer self-

attention calculation). 

Output of the decoder’s stack is the floating numbers vector. Linear layer and Softmax function are 

used to convert this vector into sequence of translated words. Linear layer is a fully-connected neural 
network which maps decoder’s output vector into larger logits vector. Logits vector size equals to the 

size of our training corpus dictionary – each element of this vector represents coefficient of one 

unique word. The softmax layer translates logits vector into the probability. The softmax regression is 
a form of logistic regression that normalizes an input value into a vector of values that follows a 

probability distribution whose total sums up to 1. The word which corresponds to the highest 

probability will be the translated word in the output sequence. 
In the stage of conversion between neural network (softmax layer) output numbers into target text 

words beam search algorithm was used. The values of beam size equal to 4 and length penalty equal 

to 0.6 were chosen. 

Thus, text vector embeddings flow in the trained model will be the same like in the model at the 
training process except the input of the decoder’s stack, which during the training process takes 

translated text into its input. Trained model takes into the input (embedding positional encoder and 

then first encoder of encoders stack) text in the source language and return translated from the output 
(last decoder output and then linear with softmax layers transformations). 

4.4. Neural network model training 

To train sequence to sequence transformer model training text data set – the corpus of historical 

and religious texts was used. To provide sufficient level of translation accuracy the model should be 
properly evaluated during the training process. Key problems which could arise and which should be 

avoided are overfitting and underfitting. Also important is the cost of model training, thus 

computational time of the training process should be considered To achieve maximum efficiency and 

also sufficient translation accuracy some trade-offs between all these criteria were used. 

4.4.1. Choosing and preparing training and test data sets 

To achieve sufficient level of translation accuracy appropriate training data sets should be used. To 

train developed neural network training data set should fulfill further requirements: 

 language pairs of texts: in the source and in the target language equivalents (reference 
translation); 



 size of each pair must be in the range between 20 to 30 (60) words. It could be one, two or three 

logically and semantically connected sentences. 

 it is desirable that the training data sets size be greater as possible. 
To train designed neural model the texts of Bibles [11, 12] described in [2, 3] were used. System 

could be trained only on relatively short fragments of the texts (no more than 30 terms or 1-3 

sentences). This size is chosen due to computational complexity and is the model peculiarity. The 

correctness of these text fragments were reviewed by the linguist. 

4.4.2. Training model accuracy 

Evident that translation metric quality depends on the quality of the neural model training. During 

the training process key criteria which should be in our focus: loss function, learning rate, perplexity 
and translation quality. 

Loss function criterion 

Loss function – is the function which allows to calculate the model error: how trained function or 

candidate (set of neuron weights) referred to the objective function. The loss function is calculated as 
the cross-entropy of the probability distributions of the trained model output - q and the predicted 

value – p. Cross-entropy was obtained by calculating the Kullback–Leibler divergence [23, 24]: 

𝐷(𝑝|𝑞) = ∑ 𝑝

𝑁

𝑖

(𝑥𝑖) ⋅ (𝑙𝑜𝑔𝑝(𝑥𝑖) − 𝑙𝑜𝑔𝑞(𝑥𝑖)) (5) 

This value shows exactly how much information is lost when we approximate one distribution 

with another, thus the larger loss function value is worst. 

Learning rate criterion 
Learning rate – is a hyperparameter that determines how much of the model weights should be 

updated at each subsequent training epoch. It is one of the most important hyperparameters of the 

model. The learning rate value is in the range [0,1). Too low learning rate value has impact on the 

training time, but too large learning rate value can cause unstable training process. Also, reasonable to 
change this value during the training process. In our research adaptive learning rates were used. In this 

research Averaged Stochastic Gradient Descent method was used (pytorch.optim.ASGD 

implementation). So, when during the training process this value becomes smaller and combination of 
other metrics (translation accuracy, perplexity, loss function) indicates sufficient quality of trained 

model the training process could be finished. 

Perplexity criterion 
Perplexity – is a language model intrinsic evaluation metric of how well a probability distribution 

predicts a sample. The sequence W of N-words perplexity could be represented as the exponent of the 

cross-entropy: 

𝑃𝑃(𝑊) = 2𝐻(𝑊) = 2−
1

𝑁
𝑙𝑜𝑔2𝑃(𝑤1,𝑤2,…,𝑤𝑁)

 (6) 

It is the average number of words that can be encoded with H(W) bits. A low perplexity indicates 

good prediction. 

Neural network translation quality criterion 
The quality of NMT could be assessed by linguist expert. But due to multiple repetitions of neural 

network training (multiple epochs with multiple batches) and large amount of training data set 

assessment process should be automated by using MT quality metrics [25-27]. This quantitative 

characteristic directly related to human translation assessment. For training NMT used pairs in source 
and target languages. The simplest way to compare source and translation texts is to compare them by 

full text matching but this approach contradicts with multiplicity of translations. Thus, in this finding 

was used one of the MT quality metrics which highly correlate with human evaluation and takes into 
account morphology, synonyms and possibly different word order. By choosing any translation 

quality metric we have to keep in mind that it used to assess the quality of a developed model, but not 

the quality of translation. Among widely used MT qualitative metrics we focused in the few of them 
which in short will be considered and justified below. Also, few of these metrics (precision, recall, f-

score) are itself the components of other metrics (BLEU, METEOR, ROUGE-n). 



Precision is one of the simplest quality assessment approach, because it is taking into account the 
percentage of machine translation words that are correct. This metric doesn’t take into account 

relations of the words. 

Recall is a more precise metric because takes into account the percentage of reference translation 

words are transferred. 
F-score (harmonic mean) is the balance between precision and recall. 

WER (Word Error Rate)[26] is a word-based metric using Livenstein’s weighted distance which 

takes into account insertions, deletions and substitutions.  
TER (Translation Error Rate)[26] metric takes into account reordering of the text sequences (shift 

operations) and eliminate few WER disadvantages. 

METEOR (Metric for Evaluation of Translation with Explicit ORdering)[26, 27] recall oriented 
metric which score based on calculation of fragmentation penalty (number of short sequences of 

consecutive matches divided by the number of unigram matches) and harmonic mean of precision and 

recall. This metric doesn’t support direct exploitation from multiple reference translations. 

ROUGE-n (Recall-Oriented Understudy for Gisting Evaluation)[28] is oriented on evaluation 
automatic summarization models. It is a system of metrics which comparing model produced 

translation against a set of reference translations. 

BLEU (Bi-Lingual Evaluation Understudy) [25, 26] precision-oriented metric based on comparing 
n-grams’ number in MT system output that matches reference translation texts and numbering this 

matches without taking into account their positions. BLEU is a measure of fluency rather than 

semantic similarity between machine and reference translations.  
NIST (metric from US National Institute of Standards and Technology) metric based on the BLEU, 

but calculates informativeness of each n-gram by adding weights. Sometimes these weights could be 

questionable and also while using this criterion higher than in BLEU computation complexity should 

be taken into account. 
Between considered metrics the most suitable are BLUE, METEOR and ROUGE. Due to language 

independency, wide adoption and low calculation complexity the BLUE metric was chosen. This 

metric is widely used because it highly correlate with human assessment, has several variants and 

supports multiple references. The BLEU metric based on modified precision 𝑝𝑛 which represents 

adequacy and fluency of translation and used for the n-grams of length n. In a general form it could be 

written as follows: 

𝑝𝑛 =
∑ 𝑚𝑖𝑛𝑁

𝑖=1 (Count_any_rt,𝑚𝑎𝑥(cnt_rt1,cnt_rt2 ,…,cnt_rt𝑚))
𝑖

∑ Count_mt𝑖
𝑁
𝑖=1

, 𝑛, 𝑚, 𝑖 ∈ ℤ, (7) 

where N – number of n-gram i in machine translation candidate; 

Count_any_rt - maximum number of times n-gram i from machine translation candidate occurs in 

any single reference translation; 

cnt_rt𝑚 - number of n-gram i in reference translation m;  

Count_mt𝑖 - number of n-gram i in machine translation candidate. 

In this research only one reference translation was used for BLEU calculation, so formula (7) 
could be rewritten in a form: 

𝑝𝑛 =
∑ cnt_rt𝑖

𝑁
𝑖=1

∑ Count_mt𝑖
𝑁
𝑖=1

, 𝑛, 𝑚, 𝑖 ∈ ℤ, (8) 

To decrease the impact of too short translations and to compensate the absence of recall metric, 𝑝𝑛 

multiplied by (exponential) brevity penalty (BP): 

𝐵𝑃 = {
1, 𝑤𝑐𝑚𝑡 > 𝑤𝑐𝑟𝑒𝑓

𝑒(1−𝑤𝑐𝑟𝑒𝑓 𝑤𝑐𝑚𝑡⁄ ), 𝑤𝑐𝑚𝑡 ≤ 𝑤𝑐𝑟𝑒𝑓

, 𝑤𝑐𝑚𝑡 ∈ ℤ, 𝑤𝑐𝑟𝑒𝑓 ∈ ℤ, (9) 

where 𝑤𝑐𝑟𝑒𝑓 – reference translation word count, 𝑤𝑐𝑚𝑡 – machine translation word count.  

Thus, BLEU metric could be calculated by the formula: 

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ⋅ 𝑒𝑥𝑝(∑ 𝑤𝑛

𝑁

𝑛=1

⋅ 𝑙𝑜𝑔𝑝𝑛) (10) 

where 𝑤𝑛 – weight of each modified precision (if N = 4, 𝑤𝑛 = ¼ = 0.25). 



Usually unigrams, bigrams, trigrams and fourgrams in BLEU metric are analyzed. In this case, the 

geometric mean of 𝐵𝐿𝐸𝑈𝑛 scores will be considered as an overall BLEU score. The BLEU score 

could be represented in the range [0, 1] or could be scaled to the range [0, 100] (in our finding we are 

using this range): 

 scores over 30 generally indicate understandable translations; 

 scores over 50 usually indicate fluent and good translations.  

Thus, MT output will be checked on matching the reference translations by the length, by properly 
chosen words and by word order. 

4.4.3. Computer system implementation details 

Based on cost and computational efficiency software and hardware components of the computer 

system were chosen. 

Hardware components 

It is important to notice that for neural model training process needed much higher computational 

resources than for using a trained model. Also, due to building an adaptable corpus tool, we have to 
take into the need of retraining the neural network. Theoretically neural networks can be trained on 

any hardware, but in practice even for small data sets computer equipped with the GPU and sufficient 

amount of memory is needed. In other case we will not obtain results in a reasonable amount of time. 
Minimal system requirements are 64 GB of memory and NVIDIA GPU[13] with at least 8GB of 

memory and no specific requirements for the processor. 

There are two choices: using on-premise or cloud solutions. Computer system power consumption 

is not higher than two or three usual desktop personal computers so was not taken into account. Cloud 
hardware instances equipped with appropriate GPU accelerators of Amazon Web Services, Google 

Cloud Platform and Microsoft Azure were analyzed by authors. By the cloud provider’s prices 

analysis the cost-effectiveness of on-premise solution was indicated. Thus, the on-premise solution 
with the characteristics shown in the table 1 have been chosen. 

 

Table 1 
Hardware components of the computer system for training the neural network model 

Hardware component type Vendor Amount, pcs 

Motherboard 
MSI B450-A Pro Max Socket 

AM4 
1 

Videocard 
EVGA GeForce GTX 1080 Ti SC 

Black Edition Gaming, 11GB 
GDDR5X 

4 

CPU AMD Ryzen 3 3100 1 
RAM DDR4 16GB/3200 Team Elite 4 
Case GameMax ET-212-NP-U3 1 

Power Supply Asus ROG Thor 1200W 1  

 
Software components 

While developing the NMT module was used the most popular language in the data science 

domain – Python, because it has a large number of different libraries for text processing. Nowadays 
the most popular toolkits for deep learning are PyTorch[29] and TensorFlow with Keras [30]. These 

toolkits are backend parts of multiple different Python NLP deep learning libraries. There are a few 

implementations of the transformer approach which are based on these toolkits. Among these 
Transformer implementations the most suitable for our use are: 

 Fairseq developed by Facebook AI Research and based on PyTorch [31]; 

 Tensor2Tensor developed by Google Brain Team and based on Tensorflow[32]; 

 OpenNMT developed by Harvard NLP Project and as a backend can use Lua, PyTorch and 

Tensorflow [33]; 



 AllenNLP developed by AI2 (Allen Institute for AI) and based on PyTorch[34]. 

Also there are frameworks: PaddlePaddle (PArallel Distributed Deep Learning developed by 
Baidu)[35], Sockeye (based on Apache MXNet)[36], Lingvo (based on Tensorflow) and others. 

To resolve the main goal of our work Fairseq framework was used. It allows linguists and 

computational linguist experts to train custom models for translation, summarization, language 

modeling and other text generation tasks. The main advantage of this framework is possibility of full 
implementation of the ideas described in [10]. Other advantages of this framework are higher ability 

for configuration and easy use for production purposes. Among other advantages of this framework it 

is possibility to be executed on computational clusters equipped with multiple GPUs which allows to 
process large datasets. 

Thus, our corpus tool [2,3] was used for text preprocessing. The tasks of useless characters 

filtering, sentence extraction, POS-tagging, feature extraction and few other tasks related machine 
learning are implemented using Java, Apache Spark, Stanford Core NLP, LanguageTool and other 

libraries. And NMT module was implemented with Python and Fairseq framework. Fragment of 

Transformer’s encoder stack structure implementation is depicted in Figure 2. 

 

 
Figure 2: Transformer’s Encoder layer implementation with Fairseq 

4.4.4. Training process 

The training process comprises: 

 preparing training and test data sets with the same texts in the source and in the target 
languages; 

 configuring hyper-parameters of the model; 

 estimating the accuracy of the training model during the training process to avoid underfitting 

or overfitting; 

 assessing the quality of translation after the model was trained. 



Translation module text preprocessing was implemented with a Python language, NLTK toolkit 
and other Python NLP libraries. Also for text data ingestion and preparation developed corpora-

tool [2,3] was used. After reading and preprocessing of the input data set it was divided into train and 

test samples. Each of these samples contain Ukrainian-English pairs of texts.  

Sequence to sequence Transformer neural network model was implemented with a Fairseq toolkit 
which was described above and shown in Figure 2. 

Training process was performed using configured computer system (Table 1) and its fragment is 

shown below (Fig. 3, Fig. 4). 
 

 
Figure 3: Neural network model training at epoch 2 

 

 
Figure 4: Neural network model training at epoch 42. Data validation stage. 

 

The training process is subdivided into the epochs. During each of these epochs neural network 

model weights are updated by backpropagation to provide higher model accuracy and translation 
quality in general. The size of input data is too large to perform one epoch per one iteration, so epoch 

subdivided into batches. Sizes of batches depends on GPU [13] capabilities and in our case it was 

2048 sentences on Figure 5 “bsz” parameter.  
 

 
Figure 5: Neural network model training at epoch 1384. Model is overfitted. 

 

To estimate computer system throughput during the training process, the number of sentences per 
second could also be analyzed: 

sentences_per_second =
𝑤𝑝𝑠

𝑤𝑝𝑏
⋅ 𝑏𝑠𝑧 (11) 



In Figure 5 the follow training process characteristics were shown: 

 loss – loss function (5); 

 bsz – batch size; 

 gnorm – L2 norm of the gradients; 

 ppl – perplexity (6); 

 lr – learning rate; 

 wps – target words per second; 

 ups – updates per second; 

 wpb – words per batch; 

 bleu – BLEU metric (10). 
To finish the training process the follow rules were used. If during 4-5 epochs: 

 the values of the loss function (5) and perplexity (6) are the same or change no more than by 0.01; 

 the value of adaptive learning rate also is too small; 

 the value of the BLEU metric (10) is not changing. 

The computational experiment of the model training was performed several times. Based on 

described above criteria, using configured computer system with prepared data set, after 100-120 
epochs training process was interrupted. It took about 2.5 days per one model training. 

Also for computation experiment purposes was achieved overfitting of the model (Fig.5). This 

overfitting experiment took about 7 days. 

The output of the training process are the model with indexed trained data terms and binary file 
with the weights and model states. This output is used to provide translation candidates. 

4.4.5. NMT model translation quality assessment 

Different religious texts were used to test trained model in particular the Apocrypha. The resulting 

translations convey the meaning and correspond to the style of the Bible. Testing of implemented 
model is shown in Figure 6. 

 

 
Figure 6: Translation of any text with trained model 

 

To assess quality of translation was made assumption, that text from machine translation and text 
from translated test sample data set should be very semantically close and sometimes these texts 

should be identical. The follow approach was used: based on described above encoders text data were 

converted to vector space (text embeddings) and cosine similarity between these two vectors was 
calculated. The value of this metric is in the range [0, 1] and shows semantic similarity between 

machine translation and reference: 0 — semantically not close and 1 — identical strings. Example of 

this assessment in the Figure 7 is shown. 



 
Figure 7: Semantic similarity between machine and reference translations assessing 

 
Thus, obtained results could be treated as a metric of translation quality. Implementation of this 

approach in the Figure 8 is shown. 

 

 
Figure 8: Approach of translation accuracy assessment implementation 

 
Thus, to implement translation module for adaptable corpora-tool neural model was chosen and 

justified, configured with optimal parameters, trained and tested. 

5. Conclusions 

Developed translation module for corpora tool based on the neural network approach. Supervised 
learning for neural machine translation was used. Transformer sequence to sequence neural network 

for neural machine translation was chosen. Based on heuristic approach during computational 

experiments optimal architecture and hyper-parameters of the model were found and applied. 

Software tools and software libraries to implement translation module were chosen and justified. 
Optimal architecture of computer system for the model training in terms of the training time and the 

total cost of the system was proposed. 

In about 100-120 epochs for model was trained. The method to automate translation quality 
assessing was suggested. 

Thus, adaptable corpus tool equipped with translation module which allows to automate corpus-

based translation and the tasks of linguistic research. This tool allows translators to load and translate 



texts with different supplement features provided by the corpora tool. This finding focusing on 
shifting the role of a translator from a translator to an assessor, a language expert and a proofreader. 
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