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Abstract  

The repetition characteristic v(t) introduced by F. Golcher is calculated for single natural 
texts in different languages and random Miller’s monkey texts. It is shown that the saturated 
v(t) value v0 obtained at the largest times t is not governed by single-character information 
entropy and parameter of semantic load of a text. The parameter v0 manifests intra-language 
variations comparable with inter-language ones. In a slightly modified calculation regime, it 
provides a powerful tool for detecting even small repeated textual fragments. 
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1. Introduction 

Nowadays statistical linguistic methods offer useful and practical solutions for many important 
problems of natural language processing. The examples are Zipf and Heaps laws for the word 
statistics of texts [1–8], intermittance of words [7, 9, 10], correlation properties and fluctuation effects 
[9, 11–13], word networks [14], and the methods for extracting keywords in natural texts based upon 
different statistical characteristics [15–20]. 

It is well known that ‘static’ statistical regularities like the Zipf rank-frequency dependence do not 
embrace many key properties of real natural language. Moreover, it turns out that these regularities of 
natural texts can be similar to those of the simplest stochastic models like a Miller’s monkey text [21–
23]. This should imply that a true theoretical model of a human language must involve not only a 
specific character of frequencies of linguistic elements but also their order in a text. In this relation, 
repetitions in texts represent an important matter (see, e.g., Ref. [8]). 

In 2007, F. Golcher has introduced an interesting textual characteristic associated with repetitions 
of symbols in a text (or a corpus of texts), which is considered as a formal symbolic sequence in 
(discrete) time t [24]. Golcher’s v(t) characteristics, as a function of current position t of symbol in a 
text, represents in fact the number V of completed repetitions occurring for the first time, divided by t: 

v(t) = V(t)/t. (1) 

In other words, the V parameter concerns the ‘types’ rather than ‘tokens’ of the repeated n-grams, i.e. 
it counts a size of ‘vocabulary’ of the completed repetitions of n-grams having arbitrary lengths. It has 
been empirically demonstrated [24] that, at moderately small t’s (in practice, at t > 104 characters or 
so), the v(t) function begins to ‘saturate’, and there is an equilibrium limiting v0 value (of the order of 
½) for the combined natural-text corpora written in a number of Indo-European languages. The exact 
v0 value has been found to depend on both the language and the writing system. On the contrary, the 
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v0 limit can hardly be observed for artificial or random texts of several types (e.g., for computer 
program codes or Miller’s monkey texts with the sizes of alphabet compatible with that of human 
languages). As a consequence, the behavior of v(t) and the v0 value itself can be used as an indirect 
criterion for distinguishing semantically loaded natural texts from artificial texts and semantically 
empty random symbolic sequences. 

The next, larger-scale studies on the subject [25, 26] have extended the scope of languages 
(including Chinese and Japanese) and the corpus lengths (up to 109 characters). They have been 
mainly involved in searching for a so-called ‘constancy measure’, which is invariant for a given text 
and does not depend on its length, at least at the lengths t larger than a certain threshold, with possible 
applications in author identification and stylometry. The results [25, 26] testify that the v0 value 
remains invariant for the corpus lengths as large as 107 characters, although there are doubts that v0 
represents a constancy measure for still larger corpora (t ~ 107−109 characters). Besides, a modified 
version of the approach [24] has been applied to quantize stylistic similarity of texts [27]. 

We think that the behavior of repetition characteristic in natural and random texts deserve its 
further theoretical and empirical investigations. Our arguments are as follows:  

• It would be worthwhile to concentrate on single texts only rather than corpora. Even in the 
first study [24] is has been admitted that merging of different texts can produce ‘bumps’ in the v(t) 
function. The influence of this effect on the v0 has not been studied and we cannot exclude that, in 
general, it would be better to consider v(t) as a characteristic of a single text but not a corpus or a 
language as a whole. 

• It has been stated in the work [25] that the v0 value can be somehow linked with the 
redundancy of language or writing system. This raises the question: Can the repetition parameter v0 be 
dependent on the information entropy governing distribution of character frequencies? 

• It would be tempting to find another quantitative characteristics, e.g. the characteristics 
associated with semantic load of a text, which could somehow predict the v(t) behavior or, at least, 
correlate with the equilibrium v0 value. 

• It is interesting whether modified definitions of repetition characteristic can be of some use. 
• Finally, we wish to study the resources of v(t) functions in detecting artificial repetitions in a 

text, i.e., a kind of self-plagiarism in it (see also the discussion [24]). 

2. Materials and Methods 

2.1. Texts 

We studied three types of texts: 50 natural texts in English and 34 natural texts in the human 
languages belonging to different families (taken from the source [28]), as well as random Miller’s 
monkey texts. All of the natural texts were literary fiction, except for ‘The Origin of Species’ by 
C. Darwin and ‘Relativity: The Special and General Theory’ by A. Einstein. The languages included 
Germanic, Romanic, Slavic and Ugro-Finnic languages, as well as Arabic, Chinese and Japanese. 

All the texts were in *.txt format, with UTF-8 coding. The sizes of English texts varied from 70 kB 
to 2.4 MB, with the mean size tmax ≈ 630 kB and the standard deviation 450 kB (in UTF-8, the same 
figures describe the numbers of characters, including spaces). The texts in different languages were 
characterized by the mean size 330 kB and the standard deviation 170 kB. The natural texts were 
preprocessed such that the difference between lowercase and uppercase letters was disregarded, while 
the numerals, special characters and punctuation were eliminated. This was done for correct comparison 
of repetitions in the natural texts with those occurring in the random monkey texts since, by 
construction, the latter texts included no numerals, special characters and punctuation. 

By definition, monkey texts are random sequences of letters and spaces, in which all the letters have 
the same frequency. Besides of these texts, we also constructed ‘generalized’ Miller’s monkey texts, in 
which different letters are chosen at random though they could have different frequencies. Here we 
considered the simplest case when the rank-frequency dependence had a linear character. This case can 
be exhaustively described by a single parameter, a gradient b = fmax/fmin, where fmax and fmin are 
respectively the maximal and minimal frequencies of letters. Then the common monkey texts are 
recovered in the limiting case fmax = fmin, i.e. b = 1. We studied different alphabet sizes M = 2, 5, 10 and 



20. For each of these M’s, we chose particular cases of b = 1, 10, 50, 100 and 300. Note that the gradient 
b typical for the natural texts is not too far from the value b = 300, although the rank-frequency 
dependence is logarithmic rather than linear. In order to reduce potentially enormous size of monkey 
texts measured in words, we used a relatively high frequency of space as a word separator, 2.0_ =f . 

This frequency is close to that typical for the natural texts in English. In other terms, our texts were not 
‘true’ monkey texts, for which all the characters should have the same probability, including the 

separator of words. All of our 24 monkey texts had a fixed size, 6105.2 ⋅ characters. 

2.2. Calculation of repetition characteristic 

To illustrate better the essence of the repetition characteristic v(t), we consider a simple ‘text’ 
ISN’T_IT_FUNNY taken from the work ‘Winnie-the-Pooh’ by A. A. Milne (see Ref. [24]). The ordered 
list of completed n-grams, which are repeated at least once in the text, is as follows: I, T_, _ and N. 
Here the term ‘completed’ implies that the algorithm counts the repeated n-gram only if there is no 
longer continuing repeated n-gram ahead. The n-grams I, T_, _ and N are counted respectively at the 
positions t = 8, 10, 10 and 13 in the text, and the v(t) values at these positions are equal to 1/8, 3/10 
and 4/13 (see formula (1)). Figure 1a shows a more detailed v(t) plot. Here the descending regions in 
the v(t) curve appear since the V parameter remains the same (i.e., no new completed repetitions 
occur), while the current time t in denominator of formula (1) increases. 

Since the number of n-grams of arbitrary lengths increases according to a power law with 
increasing length of symbolic string, calculation of the number of repeated n-grams requires huge 
computational and storage facilities. This problem can be solved and the v(t) dependences can be 
calculated, using a standard Ukkonen’s algorithm for finding suffix trees [29]. It enables one to 
compute the repetition characteristic linear in time. The relevant procedures are illustrated by the 
suffix tree in Figure 1b. It has been built with an online visualization facility [30]. Since we work with 
relatively short single texts rather than large corpora, there is no need in recoursing to smarter 
algorithms like the construction of suffix arrays (cf. with Ref. [25]). 

 
(a) 

(b) 
Figure 1: (a) v(t) dependence for the text ISN’T_IT_FUNNY and (b) visualization of the Ukkonen’s 

algorithm for finding the corresponding suffix tree [30]: the completed repeated n-grams 

correspond to internal nodes of the trie, while the symbol “$” indicates end of the text 

 
To probe possible practical resources of the repetition characteristic v(t), we generalized it 

according to three different ways: 
• A text can be analyzed on the linguistic levels of characters, as originally meant by Golcher 

[24], or on the level of words (see also Ref. [26]). This results in the two alternative calculation regimes.  



• In the original algorithm, each repetition in a text is scored as a single point, irrespective of 
the length n of repeated n-gram. However, one may be interested in progressive scoring of longer 
repetitions, e.g. with the aim of finding easier longer repetitions. As a result, we compare the two 
alternative regimes in which a repeated n-gram is scored as either 1 point or n points. 

• Originally, the Patricia suffix tree algorithm implies searching for the internal nodes of the 
trie, which corresponds to scoring only the first repetitions or, quite equivalently, scoring n-gram 
‘types’. However, it would be interesting to estimate the overall scope of repetitions in a text, which 
requires a regime of scoring each repetition, i.e. counting each of repeated ‘tokens’ of a given n-gram. 

Since the three regimes described above can be combined independently, we arrive at eight 
different regimes for the calculations of v(t) parameter. These extended calculations have been 
performed for 10 natural texts written in English. 

2.3. Information entropy of character distribution 

It is known (see, e.g., Ref. [31]) that a message coded in some language can be viewed as an inform-
ation flow and its expected rate measured in bits per character is given by the Shannon entropy H: 

∑−= i ii ppH 2log . (2) 

Here i = 1÷N, N denotes the size of alphabet, and the probability ip  of a character i is estimated by its 
relative frequency fi. In other words, we have pi = fi, with fi = Fi/tmax, Fi being the absolute frequency 
of character and tmax the total text length. Note that we leave aside a more complex definition of the 
entropy based upon conditional entropy and n-gram representation [32], because this definition 
demands much more computational efforts. Then the measure (2) is in fact a unigram-based entropy 
estimated from a finite-size probability mass function { ip } (see also the work [33]). 

The main idea underlying the entropy calculations is finding its possible correlation with the 
repetition parameters (see also Section 1). 

2.4. Parameters evaluating a semantic load of text 

It is known that semantically poor stopwords are ‘stochastically uniformly’ distributed in a text, 
while semantically richer content words and, especially, keywords manifest a so-called effect of 
intermittance (or clusterization) [9, 10]. This can easily be quantized through introducing a parameter 

iiiR ττ /∆= , where iτ  and iτ∆  imply respectively the average waiting time and its standard 

deviation for a given word i in text. Here the waiting times of a word represent discrete time intervals 
(i.e. numbers of another words happening in text) between two neighboring occurrences of this word 
(see, e.g., Ref. [10]). As a matter of fact, we have 1~iR  for most of the words in texts and 1>>iR  

for only some of them which are keywords, while the situation 1<iR  is typical maybe for the words 
with the lowest absolute frequencies Fi, which lack satisfactory statistics. Let us introduce the 
parameter iRR =  averaged over all the words satisfying the condition minFFi ≥  (see also the work 

[34]). Considering typical sizes of our texts, we adopt 10min =F  in the present work. It can be easily 
proved that R as a parameter of whole text is somewhat larger than unity, R > 1, while the appropriate 
standard deviation R∆  remains large enough ( 1<∆R  or 1~R∆ ). This refers only to meaningful 
natural texts, whereas the relations 1≈∆R  and 1<<∆R  are typical for the meaningless random 
character sequences [35], because those ‘texts’ have no ‘keywords’. Put another way, one can consider 
R and R∆  as characteristics of a given text, which represent cumulative measures of its semantic load. 

Note that we have also tried to employ more refined techniques for extracting keywords, which 
reveal some advantage over the Ri parameter (see, e.g., Ref. [36] and references therein). However, 
the data obtained by us on this basis are qualitatively similar. Ascribing a weight to the Ri parameter 
of each word proportional to its frequency in text, when finding the average R value, is another 
possible improvement of the method. Still, it has not been able to provide radically different results. 

 



3. Results and Discussion 

3.1. Monkey texts 

The examples of v(t) dependences for the generalized Miller’s monkey texts are illustrated in 
Figure 2a−e. The v(t) functions for larger M’s reveal more and more intense oscillations at the largest 
times, so that it becomes somewhat problematic to find the exact saturated value v0, which has to be 
treated rather as a mean value (see also [24, 25]). These oscillations are the best seen when the abscissa 
scale is logarithmic. Note also that increase in the gradient parameter b decreases the oscillation 
amplitude (not shown in Figure 2). This finding can help in developing consistent theoretical models 
that explain the reasons for a stable (or oscillatory-like) asymptotic behavior of the v(t) function. 

 

(a) (b) (c) 

(d) (e) 

 
(f) 

Figure 2: Dependences of repetition characteristics v(t) for generalized monkey texts: (a) M = 2 and 

b = 1, (b) M = 2 and b = 300, (c) M = 5 and b = 10, (d) M = 10 and b = 50, and (e) M = 20 and b = 100. 

Panel (f) shows a dependence of saturated v0 value on the alphabet size M: circles correspond to 

empirical data and line to power-law fitting 

 
The second important fact seen from Figure 2 is a decrease in the (approximate) v0 value occurring 

with increasing alphabet size M. This fact is readily understood from the combinatoric argumentation, 
because combinations of larger number of elements would imply a less number of random repetitions. 
It is interesting that even such a drastic change in the ratio fmax/fmin as 300:1 does not affect the v0 value 
(cf. Figure 2a and Figure 2b). Indeed, all the differences among the saturated v0 parameters calculated 
for different gradients b at the same alphabet sizes M are typically less than 0.001. This testifies that 
the b parameter is of no importance in what the v0 value is concerned. This is a striking fact since, 
e.g., the monkey text at M = 2 and b = 300 is very ‘close’ to the text at M = 1 which reveals 
essentially larger v0 than 0.78 (not shown in Figure 2). However, we still observe the same saturated 
repetition parameter as for the case b = 1.  

As a consequence, our calculations have also demonstrated that the v0 value does not depend at all on 
the single-character entropy H of the random texts. In particular, the H parameter calculated according 
to formula (2) changes by almost 70% (from 0.47 to 0.96) in the case of monkey texts with M = 2 and 
different b’s, although the repetition parameter remains essentially the same. Eventually, this fact is also 
true for the natural texts analyzed in Subsections 3.2 and 3.3. Moreover, it agrees indirectly with the 



other known fact that randomization of natural texts changes the v0 parameter substantially [24, 26], 
although the initial and randomized texts have the same single-character entropy H.  

A lack of relations between v0 and H hardly conforms to assumption that the v0 parameter can be 
linked with the redundancy of language associated with the number of ‘units’ of the writing system. It 
would be natural to suppose that a similar situation occurs for the ‘true’ entropy defined through 
conditional probabilities (i.e., through n-grams), which governs the ‘true’ redundancy of language. 
This conclusion has far-reaching consequences. So, it is known that different concisenesses of 
languages can be consistently interpreted in terms of their different information entropies or, in a 
slightly simplified manner, in terms of different slopes of their rank-frequency dependences for the 
letters [33]. However, it is not the case for the repetition parameter: it would have been hasty to suggest 
that different languages differ by their v0 values (see the data [24]) due to different Shannon entropies of 
the corresponding codings. Something subtler must be at work, which awaits its further investigations. 

Finally, the dependence of v0 value on the alphabet size M is displayed in Figure 2f. Among the 
simplest functions, the best fit is provided by the inverse power law: 

BAMv −
=0 , (3) 

where A = 0.977 and B = 0.370. The quality of this fit is quite satisfactory: the Pearson coefficient of 
the linear fit performed in the log-log scale amounts to −0.995. Nonetheless, larger-scale studies on 
the subject are necessary. 

3.2. Natural texts in English 

Examination of different natural texts written in the same language aims at fixing a variable 
associated with the writing system and studying instead whether (and why) these texts manifest different 
repetition rates. Here all of the finer points linked with local v(t) bumps for individual texts, especially in 
the region of initial t’s, are of no importance, hence the linear abscissa scale in Figure 3a−d. 

 

(a) (b) (c) 

(d) 
 

(e) 
 

(f) 

Figure 3: Examples of dependences of the repetition characteristic v(t) for the natural texts in English: 

(a) ‘Don Quixote of la Mancha’ by M. Cervantes, (b) ‘Moby Dick’ by H. Melville, (c) ‘The Jungle Book’ by 

R. Kipling, and (d) ‘The Origin of Species’ by C. Darwin. Panels (e) and (f) show correlations of saturated 

v0 values with the semantic load parameters R and ΔR for 50 English texts 

 



The analysis of empirical data, including the data presented in Figure 3, demonstrates that the v(t) 

dependence begins to saturate roughly at 410 characters. Introducing a conditional time t0 after which 

the total v(t) changes do not exceed 4%, one obtains 4
0 10)52( ⋅−≈t characters. However, the curve 

v(t) ‘converges’ only after t0 ~ 105 for a couple of texts. The v0 data for different English texts are 
scattered in the region from 0.49 to 0.55, with the relative changes amounting approximately to 12%, 
so that the notion of ‘converging repetition parameter’ for a given language, which is implicitly 
exploited in the works [24, 25], is rather conventional (see also the discussion [26]). 

Since it is known that randomization (i.e., shuffling) of natural texts decreases the saturated 
repetition parameter v0 [24, 26] and, at the same time, decreases the R and R∆  parameters [35], it seems 
promising to study a possible link of v0 with R and ∆R. However, the results gathered in Figure 3e, f 
and Table 1 imply that these parameters are not correlated. It is even more so because R and R∆  
themselves are highly correlated (r = 0.75 for the English texts and r = 0.83 for the texts in different 
languages – see Subsection 3.3), although the correlation coefficients for the dependences v0(R) and 
v0(∆R) have the opposite signs for the English texts (see Table 1). 

Trying to be cautious in discussing a possible correlation between v0 and R (or R∆ ), one can 
suppose that the two latter parameters are influenced by some additional factors, which do not affect v0. 
In particular, it is our experience that R and ∆R can differ for the texts of different sizes. However, the 

effect is the most pronounced for small text lengths only ( 43
max 1010~ −t characters), which is not our 

case. The Pearson coefficients for the dependences R(tmax) and ∆R(tmax) are relatively low for our texts 
(0.24 and 0.21, respectively). Therefore, we are not in a position to find some factors which can 
overshadow a possible relationship of the semantic load and the saturated repetition parameter. We 
therefore are forced to admit that this link hardly exists. This also agrees with the fact that, in spite of 
notably different v0’s, the monkey texts have almost the same R parameter, 1≈R . 

 
Table 1 

Pearson coefficients for the correlations between saturated v0 value and parameters of semantic 

load R and ΔR for the natural texts under study 

Texts under study Dependence Pearson coefficient r 

50 English texts v0 vs. R 0.181 

50 English texts v0 vs. ΔR −0.04 

34 texts in different languages v0 vs. R 0.132 

34 texts in different languages v0 vs. ΔR 0.185 

3.3. Natural texts in different languages 

To study inter-language differences in the repetition characteristic, we have examined single natural 
texts in 34 languages. Examples for two languages are depicted in Figure 4a, b. Note that the saturated 
values v0 found for Ukrainian and its predecessor language of Old Rus’ are only 1% different.  

The main features of the v(t) functions for the languages under test are similar to those found for 
the English texts. The only notable difference is Chinese and Japanese, for which the v0 values are 
significantly less than those for the rest of languages. These results agree perfectly with the data 
derived in the work [25].  

Let us put aside the data for Chinese and Japanese, which correspond to a completely different 
script. Then one can state that the interval of changes ∆v0 is about 25% for the languages that share 
what can be termed as, more or less, a common script. Moreover, the smallest value 44.00 ≈v  

obtained for the Arabic text is not reliable enough due to its insufficient size (tmax ~ 4105.1 ⋅  
characters). Dropping this data point, we obtain a notably less value, ∆v0 ≈ 15%. It is not too larger 
than that found for different texts in English (see Subsection 3.2). In other terms, the intra-language v0 
variation makes up a significant fraction of the corresponding inter-language variation. This fact must 
be properly taken into account when building a consistent model of the repetition characteristic. 

 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Examples of dependences of the repetition characteristic v(t) for the natural texts in 

different languages: (a) ‘Zakhar Berkut’ by I. Franko (in Ukrainian) and (b) ‘The Tale of Bygone Years’ 

(in the language of Old Rus’). Panels (c) and (d) show correlations of saturated v0 values with the 

semantic-load parameters R and ΔR for the texts written in 34 languages 

 
Similar to the data for the English texts, the idea of explaining variations of the v0 parameter by 

varying semantic load of different texts seems to be not fruitful. As seen from Table 1, the Pearson 
coefficients of the corresponding correlations (Figure 4c, d) are low enough. Summing up the results 
of Subsections 3.2 and 3.3, one cannot state that differences in the semantic load can trigger in some 
way the appropriate differences in the repetition parameter v0.  

3.4. Different v(t) regimes 

To analyze the main features of different calculation regimes for the repetition characteristic, we 
have chosen 10 natural texts in English. Figure 5 displays exemplifying plots for one of these texts. 
The v(t) function seems to be bounded in the repetition-counting regime “n-gram type” (Figure 5a, c, 
e, g). It is clearly unbounded in the alternative “n-gram token” regime (Figure 5b, d, f, h). These 
conclusions are valid irrespective of the mode accepted for scoring each repetition (1 point or n points 
per repeated n-gram). It looks like the combined regime “n points and n-gram types” (Figure 5c, g) is 
somewhat trivial. Namely, the v(t) function tends to the unit limit, i.e. the total number of repetitions 
approaches the current time: V = t. The only difference of the regimes “characters” and “words” is a 
slower rate of this process in the latter regime. 

One can see that a change in the linguistic unit (character or word) yields in quantitative rather 
than qualitative differences. Passing to “words” from “characters” affects both the saturated v0 value 
and the corresponding characteristic time t0 in the calculation regime “1 point and n-gram type”. For 
all of the texts, we have v0 ~ 0.20−0.25 and t0 > 105 words. As a result, the saturation region is 
reached only for half of the texts, while the rest of them turn out to be too short to see this region 
(including the text ‘Don Quixote of la Mancha’ by M. Cervantes in Figure 5e). In general, a less v0 



value for the regime “words” is quite natural, since the repetition rate on this linguistic level is lower. 
In this respect, the situation with ‘delayed’ v(t) saturation is less obvious. 

 

(a) (b) (c) 

(d) (e) (f) 

 
(g) 

 
(h) 

Figure 5: Dependences of repetition characteristic v(t) for the text ‘Don Quixote of la Mancha’ by 

M. Cervantes calculated in different regimes: (a) characters, 1 point, n-gram types, (b) characters, 

1 point, n-gram tokens, (c) characters, n points, n-gram types, (d) characters, n points, n-gram 

tokens, (e) words, 1 point, n-gram types, (f) words, 1 point, n-gram tokens, (g) words, n points, n-

gram types, and (h) words, n points, n-gram tokens 

3.5. Probing ‘self-plagiarism’ in texts 

Of course, repetitions are a necessary aspect of a text. However, it can happen that a text manifests 
‘too many’ repetitions, e.g. when the author deliberately repeats some textual fragments, especially 
long enough ones. Although this cannot be necessarily qualified as a negative (in some sense) fact, we 
would term, rather conveniently, this situation as a ‘self-plagiarism’ phenomenon. This ambiguous 
expression is used only because we found it difficult to pick up a more specific and relevant term.  

Irrespective of the exact terminology, it seems important to develop a method for detecting this 
phenomenon. For instance, ‘self-plagiarism’ can be caught when checking dynamics of word 
vocabulary growth, since the vocabulary does not increase inside the region where a repeated textual 
fragment is available. However, the accuracy of this approach becomes sufficient only when the 



above fragment constitutes a considerable fraction of the text itself. On the other hand, one can hope 
that calculating the repetition characteristics v(t) in different regimes can offer a ready solution. 

To examine the potential of the v(t) function, we have taken the text ‘The Jungle Book’ by 
R. Kipling. Then two textual fragments with the lengths 695 words (or 3758 characters, including 
spaces) and 70 words (or 367 characters) have been copied from this text. These fragments amount 

respectively 5% and 0.5% of the total text size ( 4
max 107 ⋅≈t characters). We have inserted them into 

the text at the position tsp = 7003 words (or tsp = 35750 characters – see Figure 6).  
 

(a) (b) (c) 

(d) (e) (f) 

 
(g) 

 
(h) 

Figure 6: Dependences of repetition characteristic v(t) for the text ‘The Jungle Book’ by R. Kipling 

with ‘self-plagiarism’ fragment (0.5% from the total text length), as calculated in different regimes: 

(a) characters, 1 point, n-gram types, (b) characters, 1 point, n-gram tokens, (c) characters, n points, 

n-gram types, (d) characters, n points, n-gram tokens, (e) words, 1 point, n-gram types, (f) words, 

1 point, n-gram tokens, (g) words, n points, n-gram types, and (h) words, n points, n-gram tokens. 

When it is not evident, arrows indicate the position tsp where the fragment is inserted into the text 

 
Figure 6 shows the dependences of repetition characteristics v(t) calculated in different regimes in 

the case of second (shorter) ‘self-plagiary’ fragment. First of all, we stress that detection of this 
fragment relies upon local v(t) behavior rather than its global trend or the v0 value. Then, it is evident 
that the regime “n-gram tokens” can hardly detect the phenomenon (Figure 6a, c, e, g). This does not 
depends on the other modes used (“characters” or “words” and “1 point” or “n points”). The above 



conclusion would be particularly relevant if the fragment were located somewhere in the beginning of 
text, where relatively large local v(t) irregularities dominate. 

 
Table 2 

Sensitivity of v(t) characteristic to ‘self-plagiarism’ in different calculation regimes 

v(t) regime Relative jump δv, % 

Characters, 1 point, n-gram types  1.1 

Characters, 1 point, n-gram tokens 91.0 

Characters, n points, n-gram types 0.6 

Characters, n point, n-gram tokens 42.2 

Words, 1 point, n-gram types  3.0 

Words, 1 point, n-gram tokens 78.5 

Words s, n points, n-gram types 1.0 

Words, n point, n-gram tokens 28.8 

 
On the contrary, the calculation regime “n-gram tokens” provides a very high sensitivity to the 

‘self-plagiarism’. This is testified by Figure 6b, d, f, h and Table 2, where the relative jumps δv in the 
v parameter occurring at the insertion position tsp are gathered. The repeated fragment can be easily 
detected by any of the alternative regimes “characters” or “words” and “1 point” or “n points”. The 
mode combining the options “1 point” and “n-gram tokens” reveals better resources that the mode 
“n points” and “n-gram tokens”. This finding is surprising enough, since one might hope that scoring 
more points for every repetition must have ‘amplified’ the effect of numerous repetitions and 
provided their better account. Another nontrivial result is that the sensitivity of the calculation regime 
“characters” is slightly higher that that of the regime “words”. This refers to the both alternative 
combined modes “1 point and n-gram tokens” and “n points and n-gram tokens” (see Table 2). 

In general, one can state that the sensitivity of the best versions of our detection technique is huge. 
As a further example, we ascertain that the maximal absolute jumps ∆v of the repetition parameter in 
case of the larger-scale (5%) ‘self-plagiarism’ are equal to 185 (in the regime “characters”) and 32 (in 
the regime “words”). In other words, all of the other details in the v(t) plot are simply lost, except for 
the ‘self-plagiarism’. As a matter of fact, the sensitivity of this method is high enough to enable 
detecting reliably so small-scale repetitions which can hardly be qualified as manifestations of a ‘self-
plagiarism’. 

4. Concluding Remarks 

Let us sum up the main results of the present work. We have studied the statistical characteristic 
v(t) of textual repetitions known from the earlier literature, focusing on natural and artificial single 
texts rather than large corpora. The reason is that we treat the latter linguistic objects as 
‘inhomogeneous’ mixtures of single texts, with pronounced boundary effects present where the texts 
are joined together. We deem in this relation that the v(t) characteristic, which still lacks a solid 
theoretical background, should be examined for as simple objects as possible. 

It has been demonstrated that the saturated v(t) value for a symbolic sequence, v0, achieved at 
moderately large times t is not correlated with its single-character entropy. This casts doubt upon a 
possible link of v0 with the ‘true’ information entropy and redundancy of text as an information 
message. Similarly, the v0 parameter is not linked with the total semantic load of text, which is 
quantized conventionally by the clusterization parameter averaged over all the words in a given text. 
Finally, comparison of v(t) curves obtained for different languages shows that intra-language v0 
variations comprise a notable fraction of the corresponding inter-language variations. All the above facts 
have to be taken into consideration when developing a proper model of the repetition characteristic. 

A number of modified regimes have been advised for calculating the repetition characteristic, 
which result in essentially different v(t) functions. One of these modes, a regime of scoring each 
repetition instead of only the first one, proves to be ideal for detecting repeated fragments in texts. It 



manifests a huge sensitivity, which is enough to detect not only the ‘excessive’ repetitions that include 
relatively long duplicated fragments (‘self-plagiarism’) but the repetitions of much shorter lengths. 

Emphasizing the important remaining problems on the subject, we state first of all that the 
repetition characteristic needs a solid mathematical ground, at least for the simplest case of null 
hypotheses or stochastic language models, e.g. the random monkey texts. One can hope that these 
models can be examined in the frame of probability theory and yield analytical results. For proper 
comparison of these results with empirical data, it would be necessary to smooth numerous 
irregularities present in the region of initial times for any real texts. This can be done while applying a 
standard algorithm of sliding window to v(t) calculations. In particular, the studies mentioned above 
would aid in understanding the nature of converging property of the v(t) function at relatively small 
alphabet sizes M – or lack of this property at larger M. It is interesting in this respect that the natural 
languages with clearly pronounced v(t) converging property correspond just to the latter case of larger 
M’s. The other effect in need of study is a mysterious randomization-induced generation of v(t) 
oscillations, which imply transition to a non-stationary process. 
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