
Collective Risk Estimating Method for Comparing Poly-Interval 
Objects in Intelligent Systems 
 

Gennady Shepeleva, Nina Khairovab 

 
a Federal Research Center ‘Computer Science and Control’ of Russian Academy of Sciences, Vavilova Str., 44, 

Bld. 2, Moscow, 119333, Russian Federation 
b National Technical University ‘Kharkiv Polytechnic Institute’, Pushkinskaya Str., 79/2, Kharkiv, 61002, 

Ukraine 

 

 

Abstract  
Problems of comparing poly-interval alternatives under risk in the framework of intelligent 

computer systems are studied. The problems are common in many areas of human activities. 

Collective risk estimating method was chosen to compare. Another method, “mean-risk” one, 

which focuses on estimating of a different kind of risk, was discussed earlier. Both methods 

complement each other in the problems of choosing the preferred poly-interval alternative 

under risk and it is advisable to use the methods together. Approaches are proposed to obtain 

analytical expressions for indicators of preference and risk of the collective risk estimating 

method. The expressions are obtained for indicators of the method with using different 

defuzzification procedures for different configurations of poly-interval alternatives in their 

compared pairs. The reasons are discussed for diversity of the results for different 

defuzzification procedures. The results may be used in intellectual decision support systems.  
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1. Introduction 

A significant part of artificial intelligence research is connected with development of intelligent 

computer systems theory and practice. Problems of comparing different genesis alternatives by the 

effectiveness in turn play an important role in the framework of this problematic. Due to the varying 

degrees of uncertainty of the problems being solved, the quality indicators of alternatives compared in 

terms of effectiveness can be endowed with estimates of a wide spectrum, - from point to mono-interval 

and poly-interval estimates. In the latter case, knowledge about the parameters of the problem is 

expressed by a set of mono-intervals, which characterizes the uncertainty of expert knowledge about 

the length and location of mono-intervals-estimates of quality indicators. Here with each of the mono-

intervals of the set describes the analyzed indicator of the problem with varying degrees of confidence. 

A peculiarity of the similar comparison tasks is the fact that along with the indicator characterizing the 

preference of alternatives should be considered on a parity basis an indicator of the objectively existing 

risk that the alternative recognized as the best at the time of comparison will not be such later, after its 

completion.  

Two main directions can be distinguished in the poly-interval approach: description using the 

apparatus of fuzzy sets and using the formalism of generalized interval estimations. Comparison of such 

“interval” alternatives requires the development of special methods. This is especially true in the poly-

interval case.  
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In practice, one has to compare alternatives with different types of interval quality indicators. 

Moreover, for the comparability of the results, the comparison should be made using the same, 

sufficiently universal, methods. Such rather universal methods are the “mean - risk” method [1, 2] and 

the collective risk estimating method [3].These methods are focused on assessing different types of risk 

that arise in the process of comparing interval alternatives by effectiveness. Among them the risk as the 

possibility of obtaining a real outcome that differs from the desired predicted result (including the risk 

of losses), as well as the risk that the alternative estimated at the time of comparison as effective in their 

presented set will not be such at the moment of removing the uncertainty. The “mean - risk” method is 

used to estimate the risk of the first type and the collective risk estimating method for the risk of the 

second type. 

Each interval alternative is considered in the “mean-risk” method separately, independently of the 

others. Estimates of preference and risk indicators in the method do not depend on the context, i.e. the 

presence of other comparable alternatives and the influence of this fact on the comparison results. This 

is the disadvantage of the method and at the same time its advantage since calculations of estimates of 

preference and risk indicators are here simpler than in the method of collective risk estimating. The 

dependence of both preference of interval alternatives and associated risk on the context, that is, on a 

specific set of compared objects, is taken into account in the collective risk estimating method. The 

chances of the plausibility of the hypothesis that the analyzed alternative will be preferable to the other 

compared ones are selected here as a measure of preference, and the chances that in reality at least one 

another alternative will be preferred as a measure of risk. The method has the advantage that it allows 

to evaluate the “collective” risk, the value of which can significantly exceed the value of risk in case of 

pairwise comparison. The disadvantage of the method is a consequence of the fact that it compares only 

the relative effectiveness of interval alternative. That is the alternative recognized as effective in such 

comparing may in itself be ineffective (unprofitable). 

The main difficulty in transferring the “mean – risk” method to the case of poly-interval alternatives, 

especially to fuzzy ones, was associated with the lack of a regular method for finding one-numerical 

estimates for interval, generally speaking, estimates of preference and risk indicators used in the 

method, namely, mathematical expectation and mean semi-deviation [4]. The procedure for finding 

such one-numerical estimates was proposed in [5]. Namely for fuzzy objects it was proposed to use the 

simplest defuzzification method by averaging the contributions of mono-intervals that form their set in 

the object and the center of gravity method. One-numerical estimates of the method indicators were 

obtained in these papers for triangular and trapezoidal membership functions of the fuzzy theory. 

In the case of the generalized interval estimations approach when they are presented in the form of 

a probabilistic mixture on a mono-interval of maximum range in a set of mono-intervals forming a 

generalized interval object, analytical relations for calculating the indicated method indicators were 

established for the so-called generalized uniform distribution of chances. If the expressions for 

preference indicators of the “mean – risk” method are the same for both types of poly-interval 

alternatives, then the expressions for the risk indicators are significantly different. All other things being 

equal, the value of the calculated risk in the approach of generalized interval estimates exceeds the 

value of the risk for the corresponding fuzzy objects. 

The relations for the preference and risk indicators in the case of the collective risk estimating 

method significantly depend on the localization of interval alternatives (configurations) in their 

compared pair. Big differences in the approach to comparing fuzzy and generalized interval objects are 

showed namely in this method. This affects the structure of relations for preference and risk indicators 

for these objects. 

This difference is most clearly manifested when we wish to implement a numerical procedure for 

calculating effectiveness indicators by the method of statistical tests. If we have deal with fuzzy objects, 

it is sufficient in each “history” of the statistical test method to play one value of α for the specification 

of the α-cut and, therefore, to choose the compared mono-intervals that form the poly-object for both 

poly-alternatives at once [6]. For generalized interval objects the value of α is played out independently 

for each compared alternative in their pair and, thus, with this approach to comparing of mono-intervals 

that form poly-objects the point of view on the comparison process as a “game with nature” is more 

fully realized. 

Since all the considered approaches to comparing interval alternatives have and advantages and 

disadvantages, own for each of the approaches, and the methods for calculating indicators of preference 



and risk in approaches complement each other, it seems reasonable to combine the advantages of both 

approaches in a procedure of their joint using. 

Since method “mean – risk” was considered by us earlier [5], the purpose of this paper is to develop 

the method of collective risk estimating to a poly-interval case. 

2. Method of Collective Risk Estimating  

Compared interval alternatives are considered within the framework of the method of collective risk 

estimating as a set of interrelated objects. The method takes into account that the risk of choosing the 

“best” interval alternative depends, among other things, on the number of objects being compared: if 

other things are equal, the more of objects in the system the greater the risk. Interval alternatives are 

compared “as a whole” [3]. This is due to the collective effect that is typical for many natural systems, 

when the properties of the system may differ significantly from the properties of its components.  

Let there are 𝐾 alternatives 𝐼𝑖, 𝑖 = 1,2, … , 𝐾 and let 𝐶(𝐼𝑖 ≻ (𝐼1, 𝐼2, … , 𝐼𝑖−1, 𝐼𝑖+1, … , 𝐼𝐾)) is the 

dimensionless quantity that describes the degree of confidence (chances) in the truth of the tested 

hypothesis that interval alternative 𝐼𝑖 is preferable to all other compared interval alternatives in their 

existing set (𝐼1, 𝐼2, … , 𝐼𝑖−1, 𝐼𝑖+1, … , 𝐼𝐾). Let ≡ and ∧ are equivalence and conjunction symbols, 

respectively. Then the term is preferable to “all others” means that 

𝐼𝑖 ≻ (𝐼1, 𝐼2, … , 𝐼𝑖−1, 𝐼𝑖+1, … , 𝐼𝐾)  ≡ (𝐼𝑖 ≻ 𝐼1) ∧ (𝐼𝑖 ≻ 𝐼2) ∧ 
∧ (𝐼𝑖 ≻ 𝐼3) ∧ … ∧ (𝐼𝑖 ≻ 𝐼𝑖+1)  ∧ … ∧ (𝐼𝑖 ≻ 𝐼𝐾). 

 

The risk that 𝐼𝑖  will not be actually preferred is measured by 𝑅𝑠(𝐼𝑖 ≻ (𝐼1, 𝐼2, … , 𝐼𝑖−1, 𝐼𝑖+1, … , 𝐼𝐾)) , 

the quantity, which complements the chances 𝐶(𝐼𝑖 ≻ (𝐼1, 𝐼2, … , 𝐼𝑖−1, 𝐼𝑖+1, … , 𝐼𝐾)) to one. This quantity 

measures the chances that at least one alternative would be preferable to 𝐼𝑖. Using the entered quantities, 

the nature of the collective effect can be described by the following relations [9]: 

𝐶(𝐼1 ≻ (𝐼2, 𝐼3, … , 𝐼𝐾)) + 𝐶(𝐼2 ≻ (𝐼1, 𝐼3, … , 𝐼𝐾)) + 

+𝐶(𝐼3 ≻ (𝐼1, 𝐼2, 𝐼4, … , 𝐼𝐾))+. . . +𝐶(𝐼𝐾 ≻ (𝐼1, 𝐼2, … , 𝐼𝐾−1)) = 1, 

 

𝑅𝑠(𝐼1 ≻ (𝐼2, 𝐼3, … , 𝐼𝐾)) + 𝑅𝑠(𝐼2 ≻ (𝐼1, 𝐼3, … , 𝐼𝐾)) + 

+𝑅𝑠(𝐼3 ≻ (𝐼1, 𝐼2, 𝐼4, … , 𝐼𝐾))+. . . +𝑅𝑠(𝐼𝐾 ≻ (𝐼1, 𝐼2, … , 𝐼𝐾−1)) = 𝐾 − 1. 

 

Here the next important question arises: is the ordering of interval alternatives on preference 

different for comparing “as a whole” from the results of pairwise comparison? The answer to this 

question is negative: the order determined by pairwise comparison coincides with the results of the 

comparison “as a whole”. However, only the comparison “as a whole” gives an idea of the true 

magnitude of the risk. Analytical relations for calculating the value of the preference criterion with a 

small number of compared mono-interval alternatives (two, three) were obtained in [3, 6] under the 

assumption that the chances distributions given on the compared intervals are uniform. For a larger 

number of interval alternatives these relations can be obtained numerically by statistical test method. 

For poly-interval estimates only the most important case of pairwise comparison is practically 

realizable. Namely this case is considered further for the two main directions of the poly-interval 

approach – the description by means of the fuzzy sets apparatus and with the help of the general interval 

estimations formalism. 

As for the mono-interval case, the expressions for the chances of the preference 𝐶(𝐼1 ≻ 𝐼2) of the 

interval alternative 𝐼1 compared with 𝐼2 depend on the relative position of the compared alternatives, 

i.e. on their configurations. If for a mono case there are, up to a permutation, only four configurations 

of compared interval alternatives – right-shift configuration, nested intervals, coinciding and non-

intersecting intervals, and only two first configurations with non-zero intersection of estimates are of 

main interest, in the case of poly-interval alternatives a number of configurations for pairs of 

intersecting estimates are significantly richer.  

We will show that, up to a permutation of poly-interval objects in their compared pair, there are six 

different configurations of intersecting interval alternatives for triangular membership functions of the 

fuzzy theory and for triangular poly-interval estimations of the general interval formalism.  

Each of the two compared objects is defined by three corner points of triangle, which was mentioned 

above: 𝐿𝑖 < 𝑇𝑖 < 𝑅𝑖, 𝑖 = 1, 2. It is convenient to classify configurations by the number of intersections 

of the left 𝑙𝑖 and the right 𝑟𝑖 sides of the triangles. One may see that 



𝑙𝑖(𝛼) = (1 − 𝛼)𝐿𝑖 + 𝛼𝑇𝑖, 𝑟𝑖(𝛼) = (1 − 𝛼)𝑅𝑖 + 𝛼𝑇𝑖.  
In the future, we will need the coordinates 𝛼𝑗 of the intersection points of 𝑙𝑖 and 𝑟𝑖. Let us assume 

that the hypothesis is being tested that the first poly-interval object 𝐼1 is preferable to the second 𝐼2.  

If 𝑇2 < 𝑇1 (configurations 1 and 2). Configuration 1: 𝑙1 once intersects only 𝑟2, and 𝐿2 < 𝐿1 < 
< 𝑅2 < 𝑅1. Line 𝑙1 intersects only 𝑟2 once; there are no other intersections of 𝑙𝑖  and 𝑟𝑖. Intersection 

point coordinate is 𝛼1 = (𝑅2 − 𝐿1) (𝑅2 − 𝑇2 + 𝑇1 − 𝐿1).⁄  

Configuration 2: 𝑙1 and 𝑟1 once intersect 𝑟2, and 𝐿2 < 𝐿1 < 𝑅1 < 𝑅2. Intersection points of 𝑙1 and 𝑟1 

with 𝑟2 have coordinates 𝛼1 and 𝛼2 = (𝑅2 − 𝐿1) (𝑅2 − 𝑇2 + 𝑇1 − 𝑅1).⁄  

If 𝑇2 > 𝑇1 (configurations 3 and 4). Configuration 3: 𝑙1 and 𝑟1 once intersect 𝑙2, and 𝐿2 < 𝐿1 < 
< 𝑅1 < 𝑅2. Intersection points of 𝑙1 and 𝑟1 with 𝑙2 are 𝛼3 = (𝐿1 − 𝐿2) (𝑇2 − 𝐿2 − 𝑇1 + 𝐿1),⁄  

𝛼4 = (𝑅1 − 𝐿2) (𝑅1 − 𝐿2 + 𝑇2 − 𝑇1).⁄   

Configurations 4 and 5: 𝑙1 intersects 𝑙2, 𝑟1 once intersect 𝑙2 and 𝑟2, besides 𝐿2 < 𝐿1 < 𝑅2 < 𝑅1. The 

difference between these configurations lies in the location of the intersection points. Their coordinates 

are set by already known points 𝛼2, 𝛼3, 𝛼4. However, in configuration 4 𝛼2 > 𝛼3, and in configuration 

5 𝛼2 < 𝛼3. One can see that configuration 4 takes place, if ∆2> ∆1, and configuration 5, if ∆1> ∆2, 
where ∆1= 𝑅1 − 𝐿1, ∆2= 𝑅2 − 𝐿2. 

If 𝑇2 = 𝑇1 (configuration 6). There are no intersections of the sides, and 𝐿1 < 𝐿2 < 𝑅2 < 𝑅1. 

3. Collective Risk Estimating: Fuzzy Alternatives  

When comparing two interval alternatives 𝐼1 and 𝐼2 by the collective risk estimating method, the 

values of the preference criterion are calculated as well as the values of the risk size criterion. The value 

of 𝐶(𝐼1 ≻ 𝐼2), i.e. the chances that 𝐼1 is preferable to 𝐼2, is chosen as the first criterion and as the risk 

size criterion is chosen an indicator 𝑅𝑠(𝐼1 ≻ 𝐼2) = 1 − 𝐶(𝐼1 ≻ 𝐼2) = 𝐶(𝐼2 ≻ 𝐼1), i.e. an indicator of the 

possible error of the decision on choosing the alternative 𝐼1 as the preferred one. 

To obtain one-numerical characteristics of fuzzy alternatives, which include such characteristics as 

𝐶(𝐼1 ≻ 𝐼2) and 𝑅𝑠(𝐼1 ≻ 𝐼2), the defuzzification procedure should be used. 

In the course of applying the procedure, one-numerical characteristics, such as 𝐶𝛼(𝐼1 ≻ 𝐼2), 
calculated on mono-intervals 𝐼(𝛼), are averaged over all 𝛼 with one or another weight, depending on 

the defuzzification method used. Here 𝐶𝛼(𝐼1 ≻ 𝐼2) are the preference chances of mono-intervals 

forming a poly-estimates for a given value of 𝛼. The choice of defuzzification method is determined by 

an expert. We will use two defuzzification methods in the continuous case. 

In the first of them, all 𝐼(𝛼), are considered in the process of obtaining the final defuzzified one-

numerical characteristic 𝐶𝐹(𝐼1 ≻ 𝐼2) in a parity basis (simple averaging). In the second, in the center of 

gravity method, the contribution of 𝐼(𝛼) to the one-numerical characteristic 𝐶𝐹𝐺(𝐼1 ≻ 𝐼2) increases with 

increasing 𝛼. 

𝐶𝐹(𝐼1 ≻ 𝐼2) = ∫ 𝑑𝛼𝐶𝛼(𝐼1 ≻ 𝐼2)

1

0

, 𝐶𝐹𝐺(𝐼1 ≻ 𝐼2) = 2 ∫ 𝑑𝛼𝛼𝐶𝛼(𝐼1 ≻ 𝐼2)

1

0

. (1) 

Since  0 < 𝛼 < 1, the center of gravity method reduces the contribution to the final indicator of 

mono-intervals of greater range (greater uncertainty and, therefore, a greater contribution to the risk of 

choosing the preferred alternative). Therefore, one might expect that for the same configurations of 

pairwise compared alternatives, the numerical estimates for the risk indicator calculated by the center 

of gravity method will be smaller, and the estimates of the preference indicator, respectively, will be 

higher than for the defuzzification method by averaging. Further, it will be shown that this is not so: the 

localization of alternatives in their compared pairs has no less influence on the value of the preference 

and risk criteria calculated by different defuzzification methods. Which of the estimates will be more 

(less) is determined by the geometry of each specific configuration, the central role is played by the 

relationships (>, <, =), between the upper corner points of the triangular membership functions of the 

compared alternatives. 

Recall that we restrict ourselves to considering triangular membership functions. Earlier, six 

different configurations of intersecting triangular membership functions were indicated, which, up to 

permutation, exhaust the possible configurations. The regions of integration in (1), due to the different 



geometry of the intersecting membership functions of the compared alternatives, are divided into 

several connected subdomains, each of which has its own function 𝐶𝛼(𝐼1 ≻ 𝐼2). 

Let us pay attention to the fact that for each of the above-mentioned connected subdomains, 

delimited by the upper 𝛼𝑢 and lower 𝛼𝑑  values of the parameter 𝛼, the conditions of equality to unity 

of the sum of the preference and risk indicators are not met. Instead, for each connected subdomain 

𝛼𝑑 < 𝛼 < 𝛼𝑢  for the corresponding chances 𝐶(𝐼𝑖 ≻ 𝐼𝑗|𝛼𝑑 , 𝛼𝑢) there is a relation that depends not only 

on the boundaries of the region, but also on the defuzzification method. 

So the equality 𝐶(𝐼1 ≻ 𝐼2|𝛼𝑑 , 𝛼𝑢) + 𝐶(𝐼2 ≻ 𝐼1|𝛼𝑑 , 𝛼𝑢) =  𝛼𝑢 − 𝛼𝑑 holds for defuzzification by 

simple averaging, and for defuzzification by the center of gravity method, a similar equality has the 

another form: 𝐶(𝐼1 ≻ 𝐼2|𝛼𝑑 , 𝛼𝑢) + 𝐶(𝐼2 ≻ 𝐼1|𝛼𝑑 , 𝛼𝑢) =  𝛼𝑢
2 − 𝛼𝑑

2. But in all such connected 

subdomains on separate mono-intervals that form a multi-interval estimate the relation 𝐶𝛼(𝐼2 ≻ 𝐼1) =
= 1 − 𝐶𝛼(𝐼1 ≻ 𝐼2) is preserved. The main reason for distinguishing between the indicated subdomains 

is the fact that the functions 𝐶𝛼(𝐼2 ≻ 𝐼1), included in (1), change when passing from one subdomain to 

another. 

Let us now turn to the derivation of analytical relations for the indicators 𝐶(𝐼1 ≻ 𝐼2) (preference) 

and risk 𝑅𝑠(𝐼1 ≻ 𝐼2) for all the above configurations. We will base on the formula (1). 

One can see that for triangular membership functions at 𝑇1 > 𝑇2 it is more convenient to look for 

the chances 𝐶(𝐼2 ≻ 𝐼1) and for 𝑇1 < 𝑇2 the chances 𝐶(𝐼1 ≻ 𝐼2). Indeed, the chances 𝐶(𝐼2 ≻ 𝐼1) are 

equal to zero in the subdomain of α values between the largest intersection point of the graphs of the 

membership functions of the compared alternatives and unity, in the first case. This simplifies the 

integration in (1) and in the second case the same is true for chances 𝐶(𝐼1 ≻ 𝐼2).  

For all configurations, we will connect preference indicators 𝐶𝐹𝐺(𝐼1 ≻ 𝐼2) or 𝐶𝐹𝐺(𝐼2 ≻ 𝐼1)obtained 

by defuzzification with the center of gravity method, and indicators 𝐶𝐹𝐺(), obtained with 

defuzzification by averaging, through the relation 𝐶𝐹𝐺() = 𝐶𝐹𝐺() + 𝐷𝐼𝐹, where the 𝐷𝐼𝐹 is function of 

the difference for the same-name one-numerical indicators obtained by the indicated defuzzification 

methods. 

Let us start with configuration 1. Here, as already noted, it is more convenient to look for the chances 

𝐶(𝐼2 ≻ 𝐼1). The subdomain where the preference 𝐼2 ≻ 𝐼1 is possible is limited by the band 0 < 𝛼 < 𝛼1. 

In the subdomain 𝛼1 < 𝛼 < 1 the chances of preference for 𝐼2 ≻ 𝐼1 are 0.  

The fact that the mono-intervals of both compared fuzzy objects nested in the graphs of the 

membership functions are compared for the same α-values and that on all (normal, not fuzzy) intervals 

𝐼(𝛼), corresponding to 𝛼-levels, uniform distributions are given is a distinctive significant feature of 

the comparison of fuzzy poly-interval objects [6]. Let 𝑖1(𝛼) and 𝑖2(𝛼) be the mono-intervals of the 

objects 𝐼1 and 𝐼2 respectively, corresponding to some admissible. One can see from the geometry of 

the configuration that in the subdomain of preference 𝐼2 ≻ 𝐼1 there are only mono configurations of the 

right shift, when 𝑖1(𝛼) are shifted to the right from 𝑖2(𝛼). This means that at every admissible 𝛼-level 

𝐶(𝑖2(𝛼) ≻ 𝑖1(𝛼)) = [(1 − 𝛼)(𝑅2 − 𝐿1) + 𝛼(𝑇2 − 𝑇1)]2 [2(1 − 𝛼)2∆1∆2]⁄ . (2) 

It follows from this that the possible values of chances lie in a certain interval of values in accordance 

with changing 𝛼. This also applies to other characteristics of fuzzy objects [12]. Communication with 

expert-practitioners is preferably carried out in their usual language. Namely therefore, it is advisable 

to move from such interval values to characterizing their one-numeric estimates. As already stated the 

defuzzification procedure is used for such transformation.  

In the first defuzzification method integrating (2) over 𝛼 from 0 to 𝛼1 we obtain for the risk indicator 

of the first configuration 𝑅𝑠𝐹1(𝐼1 ≻ 𝐼2) = 𝐶𝐹1(𝐼2 ≻ 𝐼1): 

𝑅𝑠𝐹1(𝐼1 ≻ 𝐼2) =
1

2∆1∆2

[(𝑅2 − 𝐿1)2 + 2(𝑅2 − 𝐿1)(𝑇1 − 𝑇2) + 2(𝑇1 − 𝑇2) × 

× (𝑅2 − 𝐿1 + 𝑇1 − 𝑇2) ln
𝑇1 − 𝑇2

𝑇1 − 𝑇2 − 𝐿1 + 𝑅2
]. 

(3) 

In the second defuzzification method integrating (2) over α from 0 to 𝛼1 with weight 2𝛼 we obtain 

an expression for the risk indicator of the first configuration 𝑅𝑠𝐹𝐺1(𝐼1 ≻ 𝐼2) = 𝐶𝐹𝐺1(𝐼2 ≻ 𝐼1). After 

some transformations and comparison of the resulting expression with (3), we have, in accordance with 

our agreement for the difference between the risk indicators for the two considered defuzzification 

methods 𝐷𝐼𝐹1 = 𝑅𝑠𝐹𝐺1(𝐼1 ≻ 𝐼2) − 𝑅𝑠𝐹1(𝐼1 ≻ 𝐼2): 



𝐷𝐼𝐹1 =
(𝑇1 − 𝑇2)

∆1∆2
{2(𝑅2 − 𝐿1) + [𝑅2 − 𝐿1 + 2(𝑇1 − 𝑇2)] ln

𝑇1 − 𝑇2

𝑅2 − 𝐿1 + 𝑇1 − 𝑇2
}. (3A) 

Let us show that for configuration 1 the variable 𝐷𝐼𝐹1 is negative, so that the risk indicator for 

defuzzification by averaging is greater than for defuzzification by the center of gravity method, and for 

the preference indicators we have, therefore, the opposite inequality. One can see that with a fixed 

alternative 𝐼2 and a given right border 𝑅1 of alternative 𝐼1, the values of risk indicators for both 

defuzzification methods and, therefore, the values of the difference 𝐷𝐼𝐹1 are determined by the position 

of the left border 𝐿1 of alternative 𝐼1. Let us examine the behavior of 𝐷𝐼𝐹1 when moving 𝐿1 within the 

first configuration (𝐿2 ≤ 𝐿1 ≤ 𝑅2). We rewrite the expression for 𝐷𝐼𝐹1 as 𝐷𝐼𝐹1 = 𝑆1𝐹1, where the 

value 𝑆1 = ∆𝑇 (∆1∆2)⁄  and ∆𝑇 = 𝑇1 − 𝑇2 T. The value 𝑆1 is positive and does not affect the sign of 

𝐷𝐼𝐹1. For 𝐹1 we have: 𝐹1(𝐿1) = 2(𝑅2 − 𝐿1) − (𝑅2 − 𝐿1 + 2∆𝑇) ln[1 + (𝑅2 − 𝐿1) ∆𝑇⁄ ].  
One can see that 𝐷1 = 𝜕𝐹1 𝜕𝐿1 = −(𝑅2 − 𝐿1) (∆𝑇 + 𝑅2 − 𝐿1)⁄⁄ + ln[1 + (𝑅2 − 𝐿1) ∆𝑇⁄ ], 𝐷2 =

𝜕2𝐹1 𝜕𝐿1
2 = −(𝑅2 − 𝐿1) (∆𝑇 + 𝑅2 − 𝐿1)2⁄⁄  and less than zero, that is on [𝐿2, 𝑅2] 𝐷1 is a decreasing 

function of 𝐿1. Since 𝐷1(𝐿1 = 𝑅2) = 𝐷2(𝐿1 = 𝑅2) = 𝐹1(𝐿1 = 𝑅2) = 0  and this is the only point on 
[𝐿2, 𝑅2] for which this condition is true, then 𝐷1 in the studied configuration is positive, and 𝐹1(𝐿1) is 

an upward convex increasing function of 𝐿1. This is only possible if 𝐹1(𝐿1), and therefore 𝐷𝐼𝐹1, are 

negative on [𝐿2, 𝑅2).  

Since 𝐷𝐼𝐹1 < 0, then 𝑅𝑠𝐹𝐺1 < 𝑅𝑠𝐹1 and therefore for the first configuration (with 𝑇2 < 𝑇1 the 

preference estimates obtained with the center of gravity defuzzification method are larger than with the 

first defuzzification method, the simple averaging method. 

In configuration 2, in addition to point 𝛼1, there is one more point of intersection of membership 

functions, 𝛼1. That is there are two subdomains of possible preference 𝐼2 ≻ 𝐼1. In the first of them, 

where 0 < 𝛼 < 𝛼2, 𝑖1(𝛼) are embedded in 𝑖2(𝛼). Therefore, for uniform distributions of the chances 

of preference 𝐶1(𝑖2(𝛼) ≻ 𝑖1(𝛼)) on mono-intervals in this subdomain, we have: 

𝐶1(𝑖2(𝛼) ≻ 𝑖1(𝛼)) = (2𝑅2 − 𝑅1 − 𝐿1) (2∆2) + 𝛼(𝑇2 − 𝑇1) [(1 − 𝛼)∆2]⁄⁄ . (4) 

In the second subdomain of possible preference 𝐼2 ≻ 𝐼1, for which 𝛼2 < 𝛼 < 𝛼1, right shift 

configurations arise for mono-intervals with mono-intervals 𝑖1(𝛼) shifted to the right relative to 𝑖2(𝛼). 

Therefore, for the chances of preference 𝐶2(𝑖2(𝛼) ≻ 𝑖1(𝛼)) in this subdomain we have a relation 

similar to relation (2). Integrating (4) over 𝛼 in the range from 0 to 𝛼2 and (2) in the range from 𝛼2 to 

𝛼1 and adding the results, after some transformations we get: 

𝑅𝑠𝐹2(𝐼1 ≻ 𝐼2) =
2(𝑅2 − 𝑇2 + 𝑇1) − 𝐿1 − 𝑅1

2∆2
+

𝑇1 − 𝑇2

∆2
[ln

𝑇1 − 𝑇2

𝑇1 − 𝑇2 − 𝑅1 + 𝑅2
+  

+
𝑇2 − 𝑇1 − 𝑅2 + 𝐿1

∆1
ln

𝑅2 + 𝑇1 − 𝑇2 − 𝐿1

𝑇1 − 𝑇2 − 𝑅1 + 𝑅2
]. 

(5) 

This configuration was studied in [8] in relation to the comparison of investment projects by 

efficiency. 

Again, integrating (2) and (4) over 𝛼 with weight 2𝛼 in correspondence with limits, for the difference 

between the risk indicators for the two considered defuzzification methods, we obtain: 

𝐷𝐼𝐹2 = 𝑅𝑠𝐹𝐺2(𝐼1 ≻ 𝐼2) − 𝑅𝑠𝐹2(𝐼1 ≻ 𝐼2), where 

𝐷𝐼𝐹2 =
(𝑇1 − 𝑇2)

∆2
[2 + ln

𝑇1 − 𝑇2

𝑅2 − 𝑅1 + 𝑇1 − 𝑇2
+

𝑅2 − 𝐿1 + 2(𝑇1 − 𝑇2)

∆2
ln

𝑅2 − 𝑅1 + 𝑇1 − 𝑇2

𝑅2 − 𝐿1 + 𝑇1 − 𝑇2
]. (5A) 

It can be shown that in this configuration, as in configuration 1, the difference function 𝐷𝐼𝐹2 of the 

risk indicators calculated by two defuzzification methods is negative. Let us note that in general, all 

𝐷𝐼𝐹 functions considered here are negative. However, hereinafter, we will not do required proofs for 

𝐷𝐼𝐹 functions, given that, as can be seen from the corresponding simplest proof for 𝐷𝐼𝐹1, these proofs 

are quite long. They will be given in another publication. Recall that the condition 𝑇1 > 𝑇2 serves as a 

feature that combines configurations 1 and 2. 

In configuration 3, for which 𝑇2 > 𝑇1, 𝐿2 ≤ 𝐿1 < 𝑅1 ≤ 𝑅2, there are two new points of intersection 

of the membership functions 3 and 𝛼4, which determine the limits of integration. In this case, two 

subdomains of possible preference 𝐼1 ≻ 𝐼2 arise: 0 < 𝛼 < 𝛼3 and 𝛼3 < 𝛼 < 𝛼4.  

Since in the subdomain 𝛼4 < 𝛼 < 1 the function 𝐶(𝐼1 ≻ 𝐼2|𝛼4, 1) = 0, in this configuration it is 

more convenient to calculate directly the chances of preference 𝐶(𝐼1 ≻ 𝐼2) for both defuzzification 



methods. In the subdomain 0 < 𝛼 < 𝛼3 𝑖1(𝛼) are embedded in 𝑖2(𝛼), and in the subdomain 

 𝛼3 < 𝛼 < 𝛼4 the mono-intervals 𝑖2(𝛼) are shifted to the right with respect to 𝑖1(𝛼). Hence 

𝐶𝛼(𝐼1 ≻ 𝐼2|0 < 𝛼 < 𝛼3) = (𝑅1 + 𝐿1 − 2𝑅2) (2∆2) +⁄ 𝛼(𝑇1 − 𝑇2) [(1 − 𝛼)∆2]⁄ , (6) 

𝐶𝛼(𝐼1 ≻ 𝐼2|𝛼3 < 𝛼 < 𝛼4) = [(1 − 𝛼)(𝑅1 − 𝐿2) + 𝛼(𝑇1 − 𝑇2)]2 [2(1 − 𝛼)2∆1∆2]⁄ . (6A) 
Acting as above, in configuration 3 for the preference indicators 𝐶𝐹3() and 𝐶𝐹𝐺3() we obtain: 

𝐶𝐹3(𝐼1 ≻ 𝐼2) =
𝑅1 + 𝐿1 − 2(𝐿2 − 𝑇2 + 𝑇1)

2∆2
+

𝑇1 − 𝑇2

∆2
(ln

𝑇2 − 𝑇1

𝑇2 − 𝑇1 + 𝐿1 − 𝐿2
+  

+
𝑇2 − 𝑇1 + 𝑅1 − 𝐿2

∆1
ln

𝑇2 − 𝑇1 + 𝐿1 − 𝐿2

𝑇2 − 𝑇1 + 𝑅1 − 𝐿2
). 

(7) 

𝐷𝐼𝐹3 = 𝐶𝐹𝐺3(𝐼1 ≻ 𝐼2) − 𝐶𝐹3(𝐼1 ≻ 𝐼2), 

𝐷𝐼𝐹3 =
𝑇2 − 𝑇1

∆2
[2 + ln

𝑇2 − 𝑇1

𝐿1 − 𝐿2 + 𝑇2 − 𝑇1
+

𝑅1 − 𝐿2 + 2(𝑇2 − 𝑇1)

∆1
ln

𝐿1 − 𝐿2 + 𝑇2 − 𝑇1

𝑅1 − 𝐿2 + 𝑇2 − 𝑇1
]. 

(7A) 

It is again more convenient to calculate the chances 𝐶(𝐼1 ≻ 𝐼2). in configurations 4 and 5. The limits 

of integration are set by the already known points 𝛼2, 𝛼3, 𝛼4. However, in configuration 4 𝛼2 > 𝛼3, 

and in configuration 5, 𝛼2 < 𝛼3. One can see that configuration 4 occurs if ∆2> ∆1, and configuration 

5 if ∆1> ∆2, however, in both configurations, the expressions 𝐶(𝐼1 ≻ 𝐼2) for the chances obtained by 

defuzzification do not differ. Therefore, we can restrict ourselves to considering configuration (4). 

In the case of this configuration, there are three sub-domains where 𝐼1 ≻ 𝐼2  is possible. This is a 

subdomain 𝐴1, where 0 < 𝛼 < 𝛼3, 𝐴2 for 𝛼3 < 𝛼 < 𝛼2, and a subdomain 𝐴3 with 𝛼2 < 𝛼 < 𝛼4. In 

subdomain 𝐴1 the mono-intervals 𝑖1(𝛼) are shifted to the right relative to 𝑖2(𝛼), so that for 

𝐶1 = 𝐶𝛼(𝐼1 ≻ 𝐼2|0 < 𝛼 < 𝛼3) we have: 

𝐶1 = 1 − [(1 − 𝛼)(𝑅2 − 𝐿1) + 𝛼(𝑇2 − 𝑇1)]2 [2(1 − 𝛼)2∆1∆2]⁄ . (8) 
The mono-intervals 𝑖2(𝛼) are embedded in 𝑖1(𝛼) in the subdomain 𝐴2, so that for preference 

indicator for mono-intervals 𝐶2 = 𝐶𝛼(𝐼1 ≻ 𝐼2|𝛼3 < 𝛼 < 𝛼2) we obtain:  

𝐶2 = (2𝑅1 − 𝐿2 − 𝑅2) (2∆1) +⁄ 𝛼(𝑇1 − 𝑇2) [(1 − 𝛼)∆1]⁄ . (8A) 
The mono-intervals 𝑖2(𝛼) are shifted to the right with respect to 𝑖1(𝛼) in the subdomain 𝐴3, so that 

for 𝐶3 = 𝐶𝛼(𝐼1 ≻ 𝐼2|𝛼2 < 𝛼 < 𝛼4) we obtain the relation 

𝐶3 = [(1 − 𝛼)(𝑅1 − 𝐿2) + 𝛼(𝑇1 − 𝑇2)]2 [2(1 − 𝛼)2∆1∆2]⁄ . (8B) 
After integrating, adding the results for the indicated subdomains and simplifying the resulting 

expression, we have: 

𝐶𝐹4(𝐼1 ≻ 𝐼2) = 1 +
(𝑅2 − 𝐿1)[2(𝑇2 − 𝑇1) + 𝐿1 − 𝑅2]

2∆1∆2
+

𝑇2 − 𝑇1

∆1
(ln

𝑇2 − 𝑇1 + 𝐿1 − 𝐿2

𝑇2 − 𝑇1 + 𝑅1 − 𝑅2
+  

+
𝑇2 − 𝑇1 + 𝑅1 − 𝐿2

∆2
ln

𝑇2 − 𝑇1 + 𝑅1 − 𝑅2

𝑇2 − 𝑇1 + 𝑅1 − 𝐿2
+

𝑅2 − 𝑇2 + 𝑇1 − 𝐿1

∆2
ln

𝑇2 − 𝑇1

𝑇2 − 𝑇1 + 𝐿1 − 𝐿2
). 

(9) 

After using the center of gravity defuzzification, integrating and transformations of resulting 

expressions we obtain for 𝐷𝐼𝐹4 = 𝐶𝐹𝐺4(𝐼1 ≻ 𝐼2) − 𝐶𝐹4(𝐼1 ≻ 𝐼2): 

𝐷𝐼𝐹4 =
𝑇2 − 𝑇1

∆1∆2
{2(𝑅2 − 𝐿1) −

𝑇2 − 𝑇1

2
ln

𝑇2 − 𝑇1

𝐿1 − 𝐿2 + 𝑇2 − 𝑇1
+ [𝑅1 − 𝐿2 + 2(𝑇2 − 𝑇1)] × 

× ln
𝑅1 − 𝑅2 + 𝑇2 − 𝑇1

𝑅1 − 𝐿2 + 𝑇2 − 𝑇1
+ ∆2 ln

𝐿1 − 𝐿2 + 𝑇2 − 𝑇1

𝑅1 − 𝑅2 + 𝑇2 − 𝑇1
}. 

(9A) 

The region of possible preference of 𝐼1 ≻ 𝐼2 covers in configuration 6 the entire region 0 < 𝛼 < 1, 

mono-intervals 𝑖2(𝛼) are embedded in 𝑖1(𝛼), and the corner point 𝑇 is common for membership 

functions. One can see then that 𝐶(𝐼1 ≻ 𝐼2|𝛼) = (2𝑅1 − 𝑅2 − 𝐿2) (2∆1)⁄  for all 𝛼, i.e. does not depend 

on 𝛼. Therefore, integration over α results in unity for both defuzzification methods and 

𝐶𝐹6(𝐼1 ≻ 𝐼2) = 𝐶𝐹𝐺6(𝐼1 ≻ 𝐼2) = (2𝑅1 − 𝑅2 − 𝐿2) (2∆1)⁄ . (10) 
We now note two facts, firstly, when the upper corner points of the membership functions coincide 

(𝑇1 = 𝑇2 = 𝑇) the functions 𝐶𝛼(𝐼1 ≻ 𝐼2) do not depend on 𝛼 as can be seen from relations (2, 4, 6, 8), 

and therefore the indicators of preference and risk coincide in this case for both defuzzification methods 

for all configurations. Secondly, the negativity of the functions 𝐷𝐼𝐹 for all considered configurations 

leads to opposite conclusions for relative values of the preference and risk indicators obtained by 

different defuzzification ways. If the preference indicators obtained with the center of gravity 

defuzzification method are larger than with the first defuzzification one in the first two configurations 



(with 𝑇2 < 𝑇1), then the preference estimates obtained with the center of gravity defuzzification method 

are less than with the first defuzzification one in the next three configurations (with 𝑇2 > 𝑇1). 

Thus, the decisive role in this behavior of indicators in each specific configuration is played by the 

relations (>, <, =) between the upper corner points of the triangular membership functions of the 

compared fuzzy objects.  

4. Collective Risk Estimating: Generalized Interval Approach  

The general interval estimations approach is a direct generalization of the mono-interval approach 

to the poly-interval case. In the first of them, to take into account the uncertainty of knowledge about 

analyzed parameter, its initial point estimate is “blurred”, not necessarily symmetrically, filling in a 

certain interval of possible values of the parameter. To describe the chances of implementation of 

possible point realizations 𝑥 of the parameter, the apparatus of distribution functions is used. It is 

specified on carrier interval by the density of the chances distribution function 𝑓(𝑥). 

The interval 𝐼𝑢 = [𝐿𝑢, 𝑅𝑢] serves as the initial estimate in the general interval approach and it is 

already blurred, again not necessarily symmetrically, giving, as a final parameter estimate, a system of 

intervals with a maximum length interval 𝐼𝑑 = [𝐿𝑑 , 𝑅𝑑].Which intervals will be included in the resulting 

system, delimited by 𝐼𝑢 and 𝐼𝑑, is determined by the form of the so-called poly-interval estimate (PIE), 

i.e. by a curvilinear trapezium containing all the intervals included in their system. To specify chances 

of implementation of the intervals forming the system, a random variable 𝛽 is inserted, placed on the 

ordinate axis of the two-dimensional plane and having a density of chance distribution 𝑓1(𝛽). The 

variable of 𝛽 serves as a label for the intervals included in their system. The chances of implementations 

of possible point realizations 𝑥 on each of the intervals with label 𝛽, placed on the x-axis of a two-

dimensional plane, are described by a conditional distribution function with a density 𝑓2(𝑥|𝛽). Thus 

general interval estimation is PIE and 𝑓(𝛽, 𝑥) = 𝑓1(𝛽) 𝑓2(𝑥|𝛽) , density of joint distribution function, 

which is given on the PIE. We will further assume that the sides of the PIE are straightforward, the 

estimate is normalized so that 0 < 𝛽 < 1, the label 𝛽 = 0 corresponds to the interval [𝐿𝑑 = 𝐿, 𝑅𝑑 = 𝑅], 
𝛽 = 1 to the interval [𝐿𝑢, 𝑅𝑢], and 𝐿𝑑 < 𝐿𝑢 < 𝑅𝑢 < 𝑅𝑑. Such configurations most often arise when 

expert knowledge of the parameters of the analyzed problems is presented as generalized interval 

estimations. 

Let the PIE has a triangular shape, as in the considered above case of fuzzy objects with triangular 

membership functions, and be given by three corner points such that 𝐿 < 𝑇 < 𝑅. This corresponds to 

the situation when the initial point estimate 𝑇 is replaced by the interval system. Chance distributions 

𝑓1(𝛽) and 𝑓2(𝑥|𝛽) can be any.  

Let, however, for simplicity, the distributions of chances on the coordinate axes of the PIE are 

uniform. Then, integrating over all 𝛽 and taking into account triangular form of the joint distribution 

function on the PIE, we obtain on the interval [𝐿, 𝑅], with the label 𝛽 = 0 the density of the marginal 

chances distribution function 𝑓(𝑥), or the density of the generalized uniform distribution (GUD). GUD 

on [𝐿, 𝑅] is a probability mixture of the distributions 𝑓2(𝑥|𝛽) with the mixing function 𝑓1(𝛽). The 

properties of the GUD for trapezoidal and, as a special case, for triangular PIE have been studied by us 

earlier [9]. 

Using these results we have for the density 𝑓(𝑥) of GUD on PIE of a triangular shape: for < 𝑥 < 𝑇 

𝑓(𝑥) = 𝑓𝑙(𝑥); for 𝐿 < 𝑥 < 𝑅 𝑓(𝑥) = 𝑓𝑟(𝑥), where 𝑓𝑙(𝑥) and 𝑓𝑟(𝑥) are the left and right branches of 

the density distribution of the GUD: 

𝑓𝑙(𝑥) = ln[(𝑇 − 𝐿) (𝑇 − 𝑥)⁄ ] (𝑅 − 𝐿); ⁄ 𝑓𝑟(𝑥) = ln[(𝑅 − 𝑇) (𝑥 − 𝑇)⁄ ] (𝑅 − 𝐿)⁄ . (11) 
Let us turn to relations for the chances of preference and risk in the general interval formalism. It 

was noted above that in the case of general interval estimations it is possible to transform poly-interval 

estimates into mono-interval ones by passing to probabilistic mixtures. Namely, the system of chances 

distributions on general interval estimation intervals can be replaced by distribution set on the interval 

of the greatest extent (base interval) of general interval estimation. This distribution is a probabilistic 

mixture of chances distributions of the system. The configurations of poly-interval objects defined 

above are transferred to the configurations of mono-interval objects with preservation of the relationship 

<> for corner points 𝑇𝑖 after such a replacement. Specifically, configurations 1 and 4 are transferred to 

configuration of the right-shift for a pair of mono-interval objects (the estimate 𝐼1 is shifted to the right), 



configurations 2 and 3 are transferred to the configuration of nested intervals (the estimate 𝐼1 is 

embedded in 𝐼2), configuration 6 passes into the configuration of nested intervals (estimate 𝐼2 nested in 

𝐼1).  

Previously, using simple geometric considerations, relations for chances of preference and 

corresponding risks were obtained for uniform [6] and triangular distributions of chances on compared 

mono-interval estimates. We used above such relations for uniform distributions in the process of 

comparing fuzzy objects. However, distribution (11) differs significantly from uniform one. Thus, we 

need now the similar relations for arbitrary chances distributions. We will use for this purpose the 

“integral” comparison method, originally proposed in [10] and developed by us for application to 

arbitrary distributions. 

Let us demonstrate the features of its application for the first configuration of pairs of compared 

alternatives. In the configuration under consideration, we are dealing, as was indicated above, with a 

right shift situation for mono-interval estimates. Let 𝑖𝑗 be the current point realizations of the values of 

the quality indicator 𝐼𝑗, 𝑖𝑗 ∈ 𝐼𝑗, 𝑗 = 1,2. In the case of a right-shift configuration, it is easier to distinguish 

events that favor the hypothesis 𝐼2 ≻ 𝐼1 from the complete system of events. These are events in which 

point implementations lie in the area (𝑖1 ∈ [𝐿1, 𝑅2]) ∩ (𝑖2 ∈ [𝐿1, 𝑅2]). Then  

𝐶(𝐼2 ≻ 𝐼1) = ∫ 𝑓1(𝑥1) ∫ 𝑓2(𝑥2)𝑑

𝑅2

𝑥1

𝑅2

𝐿1

𝑥1𝑑𝑥2.  

We consider here the case 𝐿2 < 𝑇2 < 𝐿1 < 𝑅2 < 𝑇1 < 𝑅1 from all the possible options of the 

relative positions of 𝐿1 and 𝑇2, 𝑅2 and 𝑇1 in the first configuration. Recalling expressions for the GUD 

density for a triangular PIE, when for 𝐿 < 𝑥 < 𝑇 𝑓(𝑥) = 𝑓𝑙(𝑥) and for < 𝑥 < 𝑅 𝑓(𝑥) == 𝑓𝑟(𝑥), 

we have: 

𝐶(𝐼2 ≻ 𝐼1) = ∫ 𝑓1𝑙(𝑥1) ∫ 𝑓2𝑟(𝑥2)𝑑

𝑅2

𝑥1

𝑅2

𝐿1

𝑥1𝑑𝑥2.  

Integrating, we get  

𝐶(𝐼2 ≻ 𝐼1) = [
(𝑅1

2 − 𝑇1
2)

2
ln

𝑇1 − 𝑅1

𝑇1 − 𝐿1
−

(𝑅1 − 𝐿1)(𝐿1 + 2𝑇1 + 𝑅1)

4
+ 

+ ∫ 𝑑𝑥(𝑥 − 𝑇2)

𝑅2

𝐿1

ln
𝑥 − 𝑇2

𝑅2 − 𝑇2
ln

𝑇1 − 𝑥

𝑇1 − 𝐿1
] (∆1∆2)⁄ . 

(12) 

Taking in parts, this integral can be simplified to ∫ 𝑑𝑥
ln(𝑎𝑥+𝑏)

𝑥

𝑑

𝑐
. However, the indefinite integral 

appearing here cannot be expressed in finite form through elementary functions. If to specify concrete 

general estimations parameters, values for the chances of preference and the corresponding risks can be 

obtained by taking this integral by numerical methods. 

It might be appropriate to discuss here some aspects of connection between fuzzy theory and general 

interval approach in interval alternatives comparing. We already noted that the differences in the 

approaches are that in the case of fuzziness mono-interval comparisons are made for identical α-levels 

[6], and in the general interval case, due to mixing the component distributions on the base interval of 

PIE, for arbitrary permissible (“mixed”) values of α. This leads to lower values of the risk indicator for 

fuzzy objects in comparison with general interval ones. So for an example of the configuration, which 

we just analysed, for 𝐿1 = 2; 𝑇1 = 4; 𝑅1 = 5; 𝐿2 = 1; 𝑇2 = 1.5; 𝑅2 = 3;  

𝑅𝑠𝐹 = 0.15, and 𝑅𝑠𝐹𝐺𝐸 = 0.275. Thus, the use of the general interval approach leads to more careful 

estimates. 

Let note another significant fact. One can show that relations (11) for the distribution density of the 

GUD, 𝑓𝑙(𝑥) and 𝑓𝑟(𝑥) in the general interval approach, are obtained by defuzzification of distributions 

on 𝛼–levels of fuzzy objects by the first defuzzification. Indeed, density 𝑓𝑈(𝛼) of distributions on 𝛼–

levels is 𝑓𝑈(𝛼) = 1 [(1 − 𝛼)∆]⁄ . We have for chances densities 𝑓1(𝑥) and 𝑓2(𝑥) (for 𝐿 < 𝑥 < 𝑇 and 

𝑇 < 𝑥 < 𝑅 respectively), averaged by the first method of defuzzification: 



𝑓1(𝑥) = ∫ 𝑑𝛼

(𝑥−𝐿) (𝑇−𝐿)⁄

0

[(1 − 𝛼)∆]⁄ , 𝑓2(𝑥) = ∫ 𝑑𝛼

(𝑅−𝑥) (𝑅−𝑇)⁄

0

[(1 − 𝛼)∆]⁄ .  

One can see that 𝑓1(𝑥) = 𝑓𝑙(𝑥), 𝑓2(𝑥) = 𝑓𝑟(𝑥) from (11). Using different methods of defuzzification 

it can receive different general chances distributions corresponding to fuzzy objects. In particular, 

integrating the above relations for 𝑓1(2)(𝑥) with a weight of 2𝛼, we obtain the densities of the chances 

distributions 𝑓1𝐺(2𝐺)(𝑥), corresponding to defuzzification by the center of gravity method. 

𝑓1𝐺(𝑥) =
2

∆
(ln

𝑇 − 𝐿

𝑇 − 𝑥
−

𝑥 − 𝐿

𝑇 − 𝐿
) , 𝑓2𝐺(𝑥) =

2

∆
(ln

𝑅 − 𝑇

𝑥 − 𝑇
−

𝑅 − 𝑥

𝑅 − 𝑇
).  

It means that when comparing the comparison results for fuzzy and generalized interval objects, one 

should pay attention to what method of defuzzification was used in both cases.  

One should mention that connections of fuzzy concept and probability theory was outlined in other 

works [11, 12].  

5. Conclusion  

Decision-making problems under uncertainty is an established scientific direction, the results of 

which have numerous practical applications. This direction received a new development with the advent 

of fuzzy theory and theory of possibilities (Lotfi A. Zadeh, D. Dubois, H. Prade), the rough sets 

approach (Z. Pawlak [17]), the theory of NON-factors (Narinyani A.S [18]), the theory of evidence 

(Dempster A., Shafer G. [19]), soft sets (D. Molodtsov [20]), the approach of generalized interval 

estimates (Shepelev G.). 

One of the branches of this direction is the problematic of comparing by effectiveness of alternatives 

with interval quality indicators. Natural way these studies are associated with filling the theory of 

information granules and granular computations with mathematical content [13-16]. 

Numerous, sometimes contradictory, comparison methods for comparing fuzzy objects have been 

developed earlier [21, 22]. However, due to the need to compare dissimilar objects under conditions of 

uncertainty, it is advisable to use universal comparison methods, such as the “mean-risk” method and 

the collective risk estimating method. Since the indicators of these methods calculate risks of different 

types and these methods complement each other in the process of evaluating alternatives, their joint 

consistent use increases the validity of decisions. 

The results obtained can be used in solving various practical problems. These include, in particular, 

the problems of analyzing the effectiveness and risk of investments [6, 8].  

Bearing in mind that the results of comparing poly-interval objects can find application in intelligent 

computer systems, research on the development of methods for their comparison needs further 

development. In particular, the extension of the proposed approaches to objects with trapezoidal 

membership functions of comparing fuzzy objects, as well as to generalized interval objects deserves 

attention. In addition, since each of the indicators characterizing an interval object is associated with 

two criteria, namely, with preference and risk, it is advisable to study the problem of multi-criteria 

comparison of poly-interval objects with several quality indicators. 
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