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Abstract  
One of the most effective ways to get information about Internet users is to analyze User-Agent 
request header, because it contains information about the user's browser. Quick methods are 
needed for multi-pattern matching to instances of User Agents. The article considers the 
algorithm of patterns matching with input strings to determine the capabilities of the browser. 
The input strings are the headers of User-Agent queries, and strings with special wildcards 
represent search patterns. The developments in the field of solving the problem of comparing 
search templates with input lines are considered and analyzed. A new algorithm for solving the 
problem is proposed. The steps of the algorithm are given and the time complexity of the 
algorithm for the problem is analyzed. Comparisons of the performance of the received 
program with analogues are made and the advantage of the offered approach is shown. The 
program implementation was compared with the most prominent analogues and the advantage 
of the proposed approach has been shown in terms of execution speed. 
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1. Introduction 

Nowadays, when many companies operate on the Internet, the need to identify user information is 
very acute. One of the most effective ways to obtain such information is to analyze the User-Agent 
request HTTP header, which identifies the program making a request to the server and requesting access 
to the website. The User-Agent request header contains specific information about the hardware and 
software of the device making the request. This information typically includes information about the 
browser, web visualization mechanism, operating system, and user’s device, including iPhone, iPad or 
other mobile device, tablets, desktop computers. Web servers use User-Agent to maintain different web 
pages in different browsers in case of not adaptive web design, display different content for different 
operating systems, collect statistics that reflect the browsers and operating systems used by visitors. 
Web crawling bots also use User-Agent. 

The data specified in the User-Agent request HTTP header [1] describes browsers (Chrome, Firefox, 
Internet Explorer, Safari, BlackBerry, Opera), search engines (Google, Google Images, Yahoo), game 
consoles (PlayStation 3, PlayStation Portable, Wii, Nintendo Wii U), offline browsers (Offline 
Explorer), links (Link Checker, W3C-check link), electronic readers (Amazon Kindle), validators, 
cloud platforms, e-mail libraries, scripts. By User-Agent, you can define functions that are supported 
by a web browser, such as JavaScript, Java Applet, cookie, VBScript, and Microsoft ActiveX.  
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The User-Agent string is used to match the content when the source server selects the appropriate 
content or operating parameters to respond to the received user request. Thus, the concept of adapting 
content to the needs of users is realized. The User-Agent string is one of the criteria by which search 
engines can be excluded from accessing certain parts of the website using the robot exclusion standard 
(according to the robots.txt file). Information about users has obvious applications in the advertising 
sector, namely in cases where the user's device can operate as a criterion for determining the user's 
affiliation to the target market. Web analysis is an equally important use case. Due to the availability of 
information about customers, further analysis can significantly improve the decision about the 
published content; increase the conversion of the site by turning site visitors into real customers. 
Analyzing User-Agent request headers that are constantly updated also means that businesses will be 
aware of the emergence of new devices that visit their resource, and therefore related problems will be 
identified at an early stage. However, parsing the User-Agent request header is not a trivial task. Many 
software libraries are used to solve this problem by balancing between accuracy and speed of obtaining 
results. There are services that provide definition and analysis of the User-Agent request header, in 
particular, deviceatlas.com. The accuracy problem can be solved by using open lists of User-Agent 
templates, which are constantly updated. There are more than 62 million User-Agent strings [1], so 
existing solutions cannot quickly work with all of them. The speed of response to the client is another 
important indicator for business. Therefore, quick methods of analyzing these patterns are needed. 
These are methods for matching a large number of search patterns to User-Agent instances. The 
development of algorithms based on which libraries will be created to determine the capabilities of 
browsers is an urgent and necessary task for any web service. 

The purpose of the research is to develop an algorithm for multi-pattern matching with wildcards to 
be able to detect browser capabilities based on browscap.org data [2]. The library should work faster 
than its alternatives − the speed should be comparable to libraries that use simplified (inaccurate) 
methods to detect browser capabilities. Browscap is an open project dedicated to collecting and 
disseminating a database of browser capabilities, actually a set of different files describing browser 
capabilities. Browscap has built-in support for using these files. 

To achieve this goal we need to solve the following tasks: 
• figure out browscap.org data structure and similarities between different user agents of the same 
family; 
• review and analyze existing studies that solve the problem of multi-pattern matching with 
wildcards 
• develop an algorithm for multi-pattern matching with the best known lower bound time 
complexity for determining the browser capabilities; 
• develop software implementation of the algorithm and compare the speed of the proposed 
algorithm with analogue libraries, which give approximate results. 

2. Problem Statement 

Let the set of search patterns },...,,{ 21 mpppP =  be input to the search engine. Each search pattern 

mipi ,1 , =  is a string of characters that belong to the alphabet Σ . Each pattern contains special 
characters "?" and "*", that do not belong to this alphabet, and are called wildcards. The character "?" 
corresponds to any single character in the alphabet Σ , the character "*" corresponds to any string of 
characters in the alphabet Σ , including the empty string. The search pattern mipi ,1 , =  can be 
represented as a string *...2211 ijijiiiii kckckcp = , where ijc  is the j -th wildcard character for the i -th 

pattern, ijk is a keyword from a dictionary of unique keywords W , that is, a string of characters in the 

alphabet Σ . There is an additional condition for the wildcard character 1ic : it can be either skipped or 
equal to the character "*". 

Input requests are in the form of a string nisS i ,1},{ == , consisting of n  characters in the alphabet 

Σ . It is necessary for each input string nisS i ,1},{ ==  to find all the search patterns from the set P  



that matches to the query string, i.e. get a set of patterns },...,,{
21 anslenaaa pppA = , where 

Sap  denotes 
the search pattern for the S -th request. The number of requests is not limited. Requests must be 
answered as they are received. 

One of the features of this task is that the set of search patterns is very large and is in the millions of 
copies. Query string sizes typically range from 100 to 200 characters. 

3. Related Works  

The main tasks of text string analysis that arise in the development of information verification tools 
in information retrieval systems include: 

• the task of matching text strings; 
• the problem of calculating the distance between text strings; 
• the problem of fuzzy match text strings; 
• the task of finding the longest repeating text substring. 
The algorithms for text string analysis are presented in the works of domestic and foreign 

researchers, in particular Stephen G.A., Knuth D.E., Morris J.H., Pratt V.R., Karp R.M., Rabin, M.O., 
Boyer R.S., Moore J.S., Fischer M.J., Hirschberg D.S., Hunt J.W., Szymanski T.G., Landau G.M., 
Vishkin U. Hamming R.W., Levenshtein V.I.  

The task of determining the browser capabilities based on the analysis of the User-Agent HTTP 
header is reduced to the task of matching text strings, which are used as search patterns and incoming 
requests. Algorithms for matching search patterns with input strings have many important applications 
and are used in antivirus software, systems for detecting various types of attacks and intrusion 
prevention [3], in-text compression, text search, data mining, programming grammar checking rules [4] 
etc. For example, different types of attacks can be defined using rules, which are regular expressions 
that match a set of possible strings. Algorithms for working with regular expressions require pre-
processing which is very memory-intensive and time-consuming. An example of the application of the 
algorithm for matching search patterns with input strings is the study of DNA sequences, where 
wildcards are used as a replacement for some components of protein sequences. 

Research on the problem of comparing search patterns with text can be classified in the following 
areas: 

• the case of one pattern and one string; 
• the case of patterns with a fixed number of wildcards or additional restrictions on the number 
of patterns; 
• the case of patterns with the possibility of a flexible task of wildcards, for example, the task of 
the minimum and maximum break length. 
In the general case, the task of matching text strings requires localizing all occurrences of a pattern 

in the text. In paper [5] the widely used multiple string patterns matching algorithms have been analyzed 
and discussed. The main algorithms for matching text strings include the Knuth-Morris-Pratt [6], 
Rabin-Karp [7] algorithms, the Boyer-Moore algorithm [8] and its variations. One of the most efficient 
algorithms for finding substrings in a string is the Aho-Corasick algorithm [9], which groups all strings 
from a dictionary into a prefix tree and then converts it into a finite state machine in which the search 
is performed. The operating time is proportional )( knmO ++ , where n  is the length of the pattern 
string, m  is the total length of the dictionary strings, k  is the length of the answer string, that is, the 
total length of occurrences of words from the dictionary into the pattern string. The Rabin-Karp search 
algorithm uses hashing to find words from the dictionary in the text. For text length n  and m  strings 
with length || P , execution time is |)|( PnO +  a memory cost )(mO . 

The Commentz-Walter algorithm [10] is used to search for multiple patterns at text, which combines 
the ideas of Boyer-Moore algorithms and Aho-Corasick. The time complexity of the search stage is 

)( maxnlO , where n  is the length of the string, maxl  is the length of the longest string from the 
dictionary. The Wu-Manber string-matching algorithm [11], based on the idea of the Boyer-Moore 
algorithm. The Wu-Manber algorithm is considered the fastest multi-pattern string-matching algorithm 
in practice. The main difference is that the algorithm does not consider individual characters, but blocks 



of characters of a given length. The disadvantage of this algorithm is the slowing down of its speed with 
the increasing number of strings in the dictionary.  

The Fischer-Paterson algorithm [12] for the string matching is based on the Fast Fourier Transform 
(FFT) [13] and has a time estimate of complexity )loglog( σmnO , where σ  is the size of the alphabet 
Σ . Indyk's randomized algorithm [14] uses FFT to calculate the convolution between the pattern and 
text with the time estimate )log( nnO . In [15], the optimal algorithm with time complexity 

)( occmnO ++  is proposed, where occ is the number of pattern’ occurrences in the text. Algorithms 
by K. Barton and K. Iliopoulos [16] use wildcards either only in the text or only in the patterns. The 

time complexity of the algorithms is defined as 


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where g  is the number of wildcards in the pattern. 
There are matching algorithms, which use bit parallelism to speed up the algorithm for text search 

patterns. Operations on the bits of the same machine word are performed in parallel. An example of 
using bit parallelism in search algorithms is the bitap algorithm (also known as the Shift-Or, Shift-And 
or Baeza-Yates–Gonnet algorithm) [17]. This algorithm is an approximate string-matching algorithm. 
The approximate equality of a substring to a given pattern is determined in terms of the Levenshtein 
distance. In [18], an algorithm for matching a pattern with a text, based on a directed acyclic word graph 
(DAWG) is described. A directed acyclic graph represents the suffixes of a given string in which each 
edge is labelled with a character. The characters along a path from the root to a node are the substring, 
which the node represents. An example of algorithms with several search patterns that have a fixed 
number of wildcard characters is an algorithm based on the Hamming distance [19] between bit vectors. 

In [20-22] algorithms have proposed that use a finite automaton according to the Aho-Сorasick 

algorithm and dynamic marking of ancestor nodes. The time complexity is )
)log(log

)log(|)||((|
k

ktPO + . The 

limitations of these algorithms are using one copy of the text, only wildcards of the form "*", and costly 
operations of construction and modification of automata. Algorithm [23] works with wildcards that 
specify a range of characters. It is based on the suffix tree. The estimation of the time complexity of 

this algorithm is 
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GinmnO , where n  is the length of the input text, m  is the number of search 

patterns, || Σ  is the number of characters in the alphabet Σ , iG  is the average length of the i -th range 
in the search pattern. The time complexity of this algorithm remains quite large and depends on the 
specified ranges of wildcards. 

Thus, the existing methods have a number of disadvantages, with a large number of search patterns, 
they work very slowly, poorly scalable for large templates and texts, which makes them unsuitable for 
solving the problem. 

4. Algorithm for matching search patterns with incoming query strings 
4.1. Description of the method for solving the problem 

To solve the problem of matching search patterns with input strings, an algorithm based on the prefix 
tree [24] as a data structure and a finite automaton built on a modified Aho-Corasick algorithm is 
proposed. The prefix tree is built based on input patterns according to the compressed prefix tree [25]. 
Each pattern is represented as a string of keywords and special characters "*" and "?" between them. 
Each edge in the prefix tree contains information about the transition keyword and a special character 
that precedes it. The tree is built only once when obtaining search patterns and is unchanged during the 
further operation of the algorithm. To reduce the memory consumption, each keyword in the set W  of 
all keywords in the set P of the patterns is assigned a character from the alphabet ∆ , i.e. there is a 
bijective mapping such that ;: jj wf →δ jjwg δ→: . 

An automaton built according to the Aho-Corasick algorithm is used to quickly search for keywords 
in the text of incoming requests. Terminal links are added to the automaton to speed up the search for 
keywords that are prefixes to other keywords. This allows you to find all keywords in the text S  within 



a linear time of the number of the keywords in the text. Links to nodes of the prefix tree will be added 
to the final states of the automaton, which may correspond to the beginning of some search pattern. 
This will cut off options that are not possible in advance. When a new string S  is received, it is scanned 
from left to right and at the same time, a set of prefixes of possible search patterns is constructed, using 
information about transitions in the prefix tree. 

4.2. Description of the data structure  

A prefix tree (trie) is a data structure in the form of a tree, in which the path from the root to leaf 
defines a string. The strings with the same prefixes have a common path from the root with the length 
of that prefix. The prefix tree allows you to store an associative array, the strings of which are the keys. 
Unlike binary trees, the key is not stored in the tree leaf. The key value can be obtained by looking at 
all parent nodes, each of which stores one or more alphabet characters. The root of the tree is associated 
with an empty string. An internal node will contain a key if that key is a prefix of some other key in 
that tree. The prefix tree can be compressed to optimize memory usage. Nodes that have only one child 
are compressed. In this case, the transitions can contain not one character, but a whole string that 
corresponds to the transition. 

Since prefix trees are built in such a way that all keys with a common prefix have common nodes 
that correspond to this prefix, this makes it possible to search without having a full key, but only its 
prefix. The result will be a set of possible keys that are stored in the tree. 

4.3. Practical implementation options 

The main difference between the implementations is the way of storing transitions between nodes. 
The chosen method depends on what needs to be optimized: runtime, memory consumption, or 
something else. For example, for a small alphabet, it may be advisable to store each node in an array in 
which the transitions for each of the characters in the alphabet will be recorded. This will make the 
access time to the next node as small as possible )1(O , but will increase memory consumption since 
not all characters of the alphabet will contain transitions. You can also use a red-black search tree [26], 
which will not increase memory consumption and will give a logarithmic access time )(log xO  to the 
next node. Another alternative is the use of a hash table, which makes it possible to perform an operation 
of accessing an element in time )1(O  with an asymptotic estimate of the total memory cost with an 
ordinary array. Although it is possible that the search operation will be performed on )(xO , which is 
influenced by the fullness of the table and the choice of hashing methods. 

4.4. Construction of the automaton based on the Aho-Corasick algorithm 

The Aho-Korasik algorithm is a string search algorithm that allows you to find the elements of a 
certain dictionary in an input string. The algorithm finds a match as it reads the input string and returns 
matches found. The algorithm does not need to know the whole string in advance. 

At the beginning of the algorithm, a finite state automaton is constructed based on strings from the 
dictionary. This automaton is a prefix tree with additional links, which are called suffix links. Such 
links indicate the longest suffix of the current state-string that exists in this automaton. The link 
indicates the initial state (root) in the absence of such suffix.  

The behaviour of the automaton can be described by three functions: the transition function, the 
failure function, the output function. The transition function for each next input character of the line 
indicates in what state the transition needs to be made or informs that there are no such transitions. The 
failure function is used if there are no transitions. This function works as follows: while there is no 
transition from the state to the transition function, we make transitions by suffix links. If necessary, 
these transitions with suffix links are repeated until the initial state is reached. The output function 
allows you to check the correspondence of each state of the automaton to a certain string in the 
dictionary and returns it as a result. 



Additional links (final or valid) can be added to speed up the search for dictionary strings in the 
input string. These links for each state of the automaton will point to another state, the string of which 
is the longest suffix of the current state-string that matching to some string in the dictionary. Suffix 
references can be pre-calculated during the construction of the automaton. This will allow you to find 
quickly all the words in the dictionary that are in the current input string and end with the given character 
while processing the next character. If the dictionary is known in advance, the construction of the 
automaton can be performed only once. The constructed automaton can be reused by transition to the 
initial state for each new input string. 

4.5. Description of algorithm steps 

The algorithm can be divided into two parts: the algorithm for pre-processing search patterns and 
the algorithm for processing incoming query strings. Consider the steps of the proposed algorithm. 

Step 1. Let's build a set of all unique keywords W . For each i -th search pattern ip  we add ijk to 

the set W : 
m

i
iijj ljkJjwW

1
},1|{}|{

=

==∈= . 

Step 2. Each keyword Ww j ∈  is matched with a number jδ  to obtain a bijective reflection: 

jjjj wgwf δδ →→ :;: . 

Step 3. Let's build a set Β  of converted search patterns, by replacing keywords in ip  with characters 
of the alphabet |||| : W=∆∆  and removing the character 1ic  in case of its presence: 

},1|)(...)({ 21 mikgckgb
iiliii ===Β . 

Step 4. Based on the set Β , we will construct a prefix tree T as follows. Each prefix )( ijkg will be 

considered as an ordinary symbol ijc  of the alphabet ∆ , if it is equal to "*" or absent. In this case, we 
will add an edge with a symbol to this prefix tree. Since the size of the alphabet can be quite large, in 
each of the nodes we will store a hash table with a list of edges, which are symbols )( ijkg , as a search 
key. This will allow you to quickly make transitions along specific edges, which are symbols of the 
alphabet ∆ . If symbol ijc  equal to "?", we will additionally notice such edges to distinguish them from 
ordinary edges. 

Step 5. Let's build a finite automaton according to the Aho-Corasick algorithm based on keywords 
from W . For each state that corresponds to a certain keyword jw , we will additionally save number 

jδ . Transitions for each of the states by alphabetic characters Σ  will be stored in the hash table. 
Step 5.1. Moving along the suffixed links, for all states of the automaton, we will preliminarily 

calculate the "final" links termLink  to the nearest of the states, from which it is possible to get to the 
state corresponding to a certain keyword from W . 

Step 5.2. For states of the automaton matching to a keyword jw  such that it is present in any search 
pattern at the first position and does not have a wildcard character that precedes it, we will store a link 
headLink to the corresponding node in the prefix tree T , which can be found by moving from the root 
of T along the edge )( jwg . 

Step 5.3. For states of the automaton matching to a keyword jw  such that it is present in any search 
pattern at the first position and has a wildcard character "*" that precedes it, we will additionally store 
a link inklooseHeadL  to the corresponding node in the prefix tree T , which can be reached by moving 
from the root T along the edge )( jwg . 

After performing pre-processing of the search patterns (the first five steps of the algorithm), the 
algorithm can accept text analysis requests − input string S . For each individual string, you need to do 
the following: 



Step 6. Create an empty array q  in which to store a pair of values: the index of string S , and the 
links to the trie T node. At the beginning of the operation, the state of the automaton corresponds to the 
root node rootStatecurState = . 

Step 7. Scan the string S from left to right. For the current character nidxsidx ,1, = , do the following: 
Step 7.1. Let's move from the current state of the automaton to the new one by symbol idxs , using 

the transition function in the Aho-Corasick algorithm, and update curState . 
Step 7.2. If the current state of the automaton matches some keyword jw and idxw j =|| , then add a 

pair of values ).,( headLinkcurStateidx  to the array q . 
Step 7.3. If the current state has a reference to inklooseHeadL , then add a pair 

).,( inklooseHeadLcurStateidx  to the array q . 
Step 7.4. If the current state of the automaton matches some keyword jw  and idxw j ≠|| , then 

|| jwidxlb −= . For all pairs from an array q such that lbidxqi ≤.  it is necessary to check up, whether 

the transition from a tree T node along an edge )( jwg . 
Step 7.4.1. If the transition exists and the edge is not marked with the symbol "?", make the transition 

on it, adding a pair idx and a node to the array q . 
Step 7.4.2. If the transition exists and the edge is marked with the symbol "?", we will additionally 

check that 1. −= lbidxqi and add the pair idx and the node to which we have passed, to the array q . 
Step 7.4.3. If a new pair of values has been added to q , check that the tree node in that pair matches 

some search pattern. If so, we will add this search template to the answer A . 
Step 7.5. If the current state has a link termLink , go to this link and return to step 7.3. 
Step 8. Return the set of found search patterns A and finish the algorithm. 
As you can see, in the process of the algorithm, we move all possible paths in the prefix tree T , and 

this ensures that all search patterns are found in the string S , because they are all in T . 

5. Test case 

Let there be an alphabet },,,,{ 54321 ccccc=Σ . The input is set },,,,,,{ 7654321 pppppppP = search 
patterns. Patterns are as follows: 3111 ** cccp = ; 12 *cp = ; 524213 * cccccp = ; 52431524 ** cccccccp = ; 

52452215 ** cccccccp = ; 521526 ** cccccp = ; 524527 * cccccp = . 
Select keywords from search patterns and get the set },,,,{ 54321 wwwwwW = of keywords as: 11 cw = ; 

212 ccw = ; 313 ccw = ; 524 ccw = ; 5245 cccw = . 
Let's build a set },,,,,,{ 7654321 bbbbbbb=Β  of converted search patterns based on keywords. The 

converted search patterns are of the form: 311 ** wwb = ; 12 *wb = ; 523 * wwb = ; 5344 ** wwwb = ; 

5425 ** wwwb = ; 4146 ** wwwb = ; 547 * wwb = . 
We construct a prefix tree T , using the set },,,,,,{ 7654321 bbbbbbb=Β  (figure 1). 

 
Figure1: Constructed prefix tree T  



Using a set of keywords },,,,{ 54321 wwwwwW =  and the prefix tree T , we construct a finite 
automaton according to the modified Aho-Corasick algorithm (figure 2). To simplify the image of the 
automaton, suffix links that lead to the initial state are not shown in the figure. 

 
Figure 2: Constructed automaton according to the modified Aho-Corasick algorithm 

 
Then comes the input string 52312524334215552 cccccccccccccccccS = . Let's start moving from left to 

right along the string S . Initially, the array q  is empty. The elements added to q  can be considered an 
implicit construction of the subtree of the prefix tree T , which for each subsequent character 

miSsi ,1, =∈  contains all the prefixes of the tree T . 
When reading the second character from the input string, we go into the state 7state  of the 

automaton, which corresponds to the keyword 4w . This keyword 4w  is labelled khasHeadLin , which 
means it can be the first keyword in the search pattern and must be at the beginning of the string S . 
Since the link to the corresponding node in the prefix tree T  was saved in the automaton, let's add the 
node 3v  to the array q : )},2{( 3vq = . 

 
Figure 3: Prefix tree after adding nodes to the array q  after processing the second character 

 
Consider the prefix tree after processing the fifth character. The automaton is in a state 1state  that 

matches the keyword 1w . This state has a final link nkterminalLi , the keyword has a label 
inklooseHeadL , and therefore can be the beginning of a search pattern in any part of the input string 

S . We will add a node 1v  that matches this initial keyword to the array q . As we see 1v corresponds to 
the full search pattern 2p . We will add it to the answer. We will also check the presence of transitions 
from the nodes added to the array q  by the keyword 1w . Since there is a transition from the node 3v  to 
the node 7v , add these nodes to array q  (Figure 4) and have the array in the form 

)},5(),,5(),,2{( 713 vvvq = . 

 
Figure 4: Prefix tree after adding nodes to an array after processing the fifth character  

 
When processing the last character of the string S , the automaton is in a state 8state that matches 

to the keyword 5w . Among the elements of the array q  is a node 8v , from which it is possible to go 
along the edge 5w  to the node 12v . The node 12v matches the search pattern 4p . Let's add this match 
to the answer. The state 8state has a final reference to the state 7state  that matches the keyword 4w . 



But among the elements q there is no node from which you can go along the edge 4w to a new, not yet 
visited node. At the end of the algorithm on the last character, the array q  looks like this (Figure 5): 

)},18(),,15(),,15(),,12(),,12(),,5(),,5(),,2{( 1284119713 vvvvvvvvq =  
As a result, five search patterns were found in the input string S : },,,,{ 41672 pppppA = . When 

executing the algorithm, we did not change the prefix tree, but only used information about the 
transitions. The automaton also remained unchanged, only the transition from state to state was 
performed. Since during the operation of the algorithm to find keywords in a string, an automaton is 
built according to the Aho-Corasick algorithm, this guarantees that all keywords are found, i.e. when 
parsing a string, we will not miss a single keyword. 

Because the Aho-Corasick algorithm is used to find keywords in the string S  when the algorithm is 
running, this guarantees that all keywords will be found, i.e. we will not miss a single keyword when 
parsing the string S . When processing a string S , we implicitly build a subtree of the prefix tree T , 
checking for each subsequent keyword the ability to increase the subtree by adding nodes that exist in 
T . In the process of the algorithm, we move all possible paths in the prefix tree T , and this ensures 
that all possible search patterns are found in the string S , because they are all in T . 

 
Figure 5: Prefix tree after adding nodes to the array q  as a result of processing the last character 

6. Analysis of algorithm execution time and memory consumption  

The assessment of the complexity of the algorithm can be divided into two parts: the assessment of 
the pre-processing of search patterns, which is performed only once when the program is initialized, 
and the assessment of the processing of the next string coming to the program during its operation. 

Consider first the stage of pre-processing of search patterns. Let's construct the set of all keywords 
in time |)(| MO , where || M  is the total length of all search patterns. Let K  is the total number of 
keywords. Then the complexity of constructing the set Β  at step 3 is |)|log|(| WKMO + . Building a 
prefix tree will take |)|log( WKO . Estimation of the time of construction of the finite automaton in 
step 5 is |)|log|(| ΣMO . That is, in general, given the relationships between variables, the total score 
will not exceed |)|log|(| WMO . In this case, the memory consumption is linear with respect to the 
total length of the search patterns, i.e. have an estimate |)(| MO . 

Now let us move on to evaluating the time and memory of processing a string S  that comes during 
program run. The algorithm goes through all the instances of the found keywords in the string. Let their 
number be equal occ . For each found keyword, we check all possible states in q , from which it is 
possible to navigate by this keyword. The number of such states is the number of prefixes in T  that 
were found in the part of the string preceding our keyword. That is, the time complexity of the algorithm 
can be estimated as )||log( anslenWprefnumoccO +×× . For the worst case, number of prefixes 
prefnum  can be estimated as |)(| TO  if we do not count duplicates in the algorithm as possible different 

answers. The bottom score in the case where there are no matches with the prefixes T is )(occΩ . We 
can conclude that the algorithm should work well for our data type, when the input strings S  are not 
overloaded with keywords, and the search patterns for the most part are not subsequences of each other. 



During the pre-processing of search patterns at the first and second steps, memory is spent |)(|WO
on building keywords. At the third step, memory is spent |)(| MO  to build a set of transformed search 
patterns. At the fourth step, memory is spent |)(| MO  on building a prefix tree, and at the fifth step, 
memory will be spent |)(|WO  on building an automaton using the Aho-Corasick algorithm. So, the 
total memory costs are linear with respect to the total length of the search patterns, that is, they have an 
estimate |)(| MO . It should be noted that the actual memory consumption can be much less, it depends 
on the number of unique keywords in the search patterns and the degree of similarity of the prefixes of 
the search patterns. When processing a string S , memory is spent on support an array of nodes. That is, 
memory consumption is linearly dependent on the number of prefixes )( prefnumO  that were found in 
the string. 

7. Software implementation  

The software implementation of the developed algorithm is carried out in the Java programming 
language. The best library in terms of user-agent string analysis speed, which uses a complete list of 
search patterns from the browscap database [27], was chosen as an analogue for comparison. Software 
to determine the capabilities of the browser is created using modern tools. Cross-platforming is achieved 
through the use of a Java virtual machine (JVM), which implements the principle of "write once, run 
anywhere". The SBT system for automatically compiling projects written in Scala and Java is used to 
manage the dependencies and plug-ins required for any particular type. The OpenCSV library is used 
to read patterns, test user-agent instances, and parse CSV files. Comparison of the results of the 
developed program on the test case with the results of the library-analogue browscap-php is carried out 
using the JUnit framework. The Browscap-php library, which uses the browscap resource, checks the 
correctness of the program and returns information about the capabilities of the user's browser. JMH 
tools [28], which are one of the best for measuring the execution time of Java code in conditions close 
to real, were used for benchmarking. In this work, JMH is used to compare the speed of the program 
with similar programs. 

The main program is presented in three packages: Trie, Parser and Capabilities. The Trie package is 
responsible for constructing and presenting compressed information about all input patterns in the form 
of trees. These are the steps of the offline operation of the algorithm. The Parser package is responsible 
for the main operation of the program, i.e. implements the online steps of the algorithm. The Capabilities 
package contains classes and interfaces for presenting information about browser capabilities. 

The structure of the program consists of five components (figure 6).  

 
Figure 6: Component structure of the program 
 
The User Agent DataBase component is responsible for presenting and interfacing browser features 

and capabilities, preserving the relationship between search templates and the browsers that match 
them. The Pattern Trie component implements and maintains a data structure in the form of a prefix 
tree, which is built at the stage of pre-processing of search patterns and is used when processing 



incoming requests (rows). The Automaton component implements and maintains a finite automaton 
built according to the modified Aho-Corasick algorithm at the stage of pre-processing of search 
patterns, which is used in the processing of incoming requests (strings). The Patterns Preprocessor 
component is responsible for the initial processing of search patterns and builds a prefix tree and 
automaton. The User-Agent processor handles incoming requests (strings), works with the Pattern Trie 
and Automaton components to find matches among the search patterns with the input string. 

Consider the input query as a string: 
«Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) 

Chrome/59.0.3071.115 Safari/537.36» 
The program under consideration analyzes the User-Agent string and displays the following results 

(figure 7): 

 
Figure 7: The result of the program to identify User-Agents 

 
The developed program displays full information about the used device, operating system, and the 

browser. The parsed User-Agent string corresponds to the Chrome browser installed on MacOS. 
Browser features like JavaScript, iframe, and others are listed. 

8. Results and discussion 

Problem description. Research in the field of word processing and analysis methods was performed, 
in particular, a review of methods and algorithms for comparing search patterns with instances of texts 
to solve the problem of determining the capabilities of the browser was done. 

Solution methods. Our own algorithm for solving the problem of comparing search patterns with 
input strings was developed based on the analyzed research. The strengths of the studied algorithms 
and their shortcomings were taken into account in the development of the algorithm. As a result, the 
developed algorithm received the best known estimate of the operating time from below. 

Results. The idea of using a prefix tree and a finite automaton built on the Aho-Corasick algorithm 
to process incoming string queries were put forward. These data structures have been modified and 
interconnected to achieve this goal. Testing the correctness of the software application was carried out 
using the results of the official library browscap-php based on browscap data.  

The list of thousands of the most popular User-Agents, requests from which entered the analytical 
system, was used as a corpus for testing. 



A prototype library to determine the capabilities of the browser was developed on the basis of the 
developed algorithm. The speed of analysis of User-Agent strings collected in the browscap.org 
database is determined by 6,978±0,046 query processing per millisecond. Given that the database 
contains more than 62,5 million records of User-Agent strings, the search for the desired User-Agent 
can take 30 seconds or longer. The running time of the developed application was comparable for 
different real User-Agent strings. A significant advantage in the speed of processing strings by the 
developed program was found in comparison with the browscap-java library [27]. The proposed 
software implementation performs 40.584±0.415 string processing per millisecond. During the 
benchmarking and testing of the developed library, the efficiency of its work and a significant advantage 
in speed compared to the nearest competitor was demonstrated, namely a difference of 7 times. The 
results of benchmarking are presented in table 1. 

 
Table 1 
The results of the benchmarking 

Library name Speed of work unit/мs Accuracy Note 
Developed application 40.584 ±0.415 t Precise method  
browscap4jFileReade 0.0314 Precise method The data is taken from the 

official websiteт 
browscap-java 6.978 ± 0.046 Precise method The library uses caching 

browscap-php 0.002 Precise method Data taken from the official 
GitHub repository 

BitWalker 259.975 ± 1.712 Very low 
accuracy 

Identifies 150 types of 
browsers 

UAParser 0.682 ± 0.003 Average 
accuracy 

Identifies approximately a 
thousand types of browsers 

UADetector 0.161 ±0.005 Low accuracy Identifies about 600 types of 
browsers 

 
The value of the results. For businesses that operate on the Internet, the accuracy and speed of the 

results are very important for further effective work with users. The need to develop fast methods for 
matching a large number of search patterns (more than 200,000) with User-Agent instances (more than 
62.5 million User-Agent records) is relevant. 

Information about the source of the request may be necessary to solve the following tasks: 
• redirecting requests to the mobile version; 
• using specific styles for specific browsers; 
• collecting statistics on the number of requests from different devices; 
• creation of special rules for processing requests from robots; 
• prohibition of access to the site for any web utilities and etc. 

9. Conclusions 

The problem of insufficient speed of existing libraries to determine the capabilities of the user's 
(client's) browser, which uses the browscap database, was formulated. A detailed analysis of the 
literature, available research and developments in the field of matching search patterns with text is 
made. An algorithm for matching an arbitrary number of search patterns with text instances in real-time 
has been developed. The time complexity of the algorithm and memory consumption were analyzed. 
The software implementation has shown a significant performance advantage over existing analogues 
for identifying browsers capabilities. 

Further research can be done to optimize memory consumption during the operation of the 
algorithm, as well as to reduce the pre-processing time of search patterns in the stage of initialization 
of the library. You can also extend the ability to specify wildcards, such as making it possible to specify 
ranges of the number of characters that can be substituted. 
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