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Abstract   
Reinforcement learning is a form of machine learning where an intelligent agent learns to 

make decisions by interacting with some environment. The agent may have no prior 

knowledge of the environment and discovers it through interaction. For every action that the 

agent takes, the environment gives a reward signal that is used to measure how good or bad 

that action was. In this way, the agent learns which are more favorable actions to take in every 

state of the environment. There are different approaches to solve a reinforcement learning 

problem, but one drawback that arises during this process is the tradeoff between exploration 

and exploitation. In this work we focus on studying different exploration strategies and 

compare their effect in the performance of an intelligent tutoring system that is modeled as a 

reinforcement learning problem. An intelligent tutoring system is a system that helps in the 

process of teaching and learning by adapting to student needs and behaving differently for 

each student. We train this system using reinforcement learning and different exploration 

strategies and compare the performance of training and testing to find which is the best 

strategy.  
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1. Introduction 

Intelligent educational systems are systems 

that apply techniques from the field of 

Artificial Intelligence to provide better support 

for the users of the system [1]. Web-based 

Adaptive and Intelligent Educational Systems 

provide intelligence and student adaptability, 

inheriting properties from Intelligent Tutoring 

Systems (ITS) and Adaptive Hypermedia 

Systems (AHS) [2]. [3] defines an Intelligent 

Tutoring System (ITS) as computer-aided 

instructional system with models of 

instructional content that specify what to 

teach, and teaching strategies that specify how 

to teach.  

Traditional tutoring systems use the one-to-

many way of presenting the learning materials 

to the students. 
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In this approach every student is given the 

same materials to learn regardless of his/her 

needs and preferences. These systems are not 

well suited for all students because they may 

come from different backgrounds, may have 

different learning styles and do not absorb the 

lessons with the same peace. An intelligent 

tutoring system customizes the learning 

experience that the student perceives by taking 

into consideration factors such as pre-existing 

knowledge, learning style and student 

progress. According to [4] an intelligent 

tutoring system usually has the following 

modules: the student module that manages all 

the information related to the student during 

the learning process; the domain module that 

contains all the information related to the 

knowledge to teach, such as topics, tasks, 

relation between them, difficulty.; the 

pedagogical module, also called tutor module 

that decides what, how and when to teach the 

learning materials.; the graphical user interface 

module that facilitates the communication 

between the system and the student. Different 



techniques from artificial intelligence can be 

applied in order to make these systems more 

“intelligent”, but our study is focused on the 

use of reinforcement learning (RL).  

Reinforcement learning is a form of 

machine learning that is based on learning 

from experience. The learner is exposed to 

some environment, for which he may or may 

not have information, starts making decisions 

and gets some feedback that gives information 

telling how good or bad that decision was. 

Based on the feedback from the environment 

the learner learns which decisions are more 

favorable to take. This class of machine 

learning has been used in modeling and 

building intelligent tutoring systems such as in 

the works from [5], [6], [7], [8], [9], [10].  

The remainder of this paper is organized as 

follows: in section 2 we give an overview on 

reinforcement learning, in section 3 we 

describe the model that we have used to build 

an intelligent tutoring system, in section 4 we 

give the experimental results of training the 

model using different exploration strategies 

and is section 5 we give the conclusions of our 

work. 

2. Reinforcement learning 

Reinforcement learning is a form of 

machine learning in which the learner learns 

some sequence of actions by interacting with 

the environment. The learner is in a state of the 

environment, takes some action that moves it 

from that state to another and after each action 

the environment gives a reward signal. This 

reward signal is used to learn which are the 

best states to be in, and therefore learn which 

action to take in order to go in those states. A 

reinforcement learning problem can be 

modeled as a Markov Decision Process 

(MDP). A MDP is a stochastic process that 

satisfies the Markov Property. In a finite MDP, 

the set of states, actions and rewards have a 

finite number of elements. Formally, a finite 

MDP can be defined as a tuple M = (S, A, P, 

R, γ), where: 

 

 S is the set of states: S = (s1, s2, …, 

sn). 

 A is a set of actions: A = (a1, a2, …, 

an). 

 γ ∈ [0,1] is the discount factor and is 

used to control the weight of the future 

reward in comparison to immediate 

rewards. 

 P defines the probability of transitions 

from s to s’ when taking action a in state s: 

Pss’ = Pr{st+1 = s’ | st = s, at = a} 

 R defines the reward function for each 

of the transitions, the reward we get if we 

take action a in state s and end up in state 

s’:  Rss’ = E{rt+1 | st = s, at = a, st+1 = s’} 

 
The goal of the agent is to maximize the total 

reward it receives. The agent should maximize the 

total cumulative reward it receives in the long run, 

not just the immediate reward [11]. The expected 

discounted reward is defined as follows by [11]: 

Gt = Rt+1 + γ Rt+2 + γ
2
 Rt+3 + … = γ

k 
Rt+k+1 

 

The sequence of states that end up in a 

terminal state is called an episode. The general 

process of RL may be defined as follows: 

 

1. At each time step t, the agent is in a 

state s(t). 

2. The agent choses one of the possible 

actions in this state, a(t), and applies that 

action. 

3. After applying the action, the agent 

transitions in a new state s(t+1) and gets a 

numerical reward r(t) from the 

environment. 

4. If the new state is not terminal, the 

agent repeats the step 2, otherwise the 

episode is finished. 

 

2.1 Exploration and exploitation 
dilemma 

One challenge of reinforcement learning is 

the tradeoff between exploration and 

exploitation [11]. As given by [11]: “To obtain 

a lot of reward, a reinforcement learning agent 

must prefer actions that it has tried in the past 

and found to be effective in producing reward. 

But to discover such actions, it has to try 

actions that it has not selected before. The 

agent has to exploit what it has already 

experienced in order to obtain reward, but it 

also has to explore in order to make better 

action selections in the future”. There are 

different strategies that can be used to handle 

this problem: 



1. Random policy: during the training 

process the agent always chooses 

random actions. This means that it 

always explores and does not exploit 

what it has already learned. 

2. Greedy policy: during the training 

process the agent always chooses the 

action that gives the best reward. In 

this way, it is always exploiting the 

knowledge that has gained and uses it 

to choose the action that gives the best 

reward. 

3. Epsilon-greedy: this method balances 

the tradeoff between exploration and 

exploitation. With probability epsilon 

ε it chooses a random action, and with 

probability 1- ε it chooses the best 

action. The epsilon value decreases 

with time reducing exploration and 

increasing exploitation in order to 

make use of the knowledge is gained. 

4. Boltzmann (soft-max) exploration: 

one problem of the epsilon-greedy 

method is that the exploration action is 

selected uniform randomly from the 

set of actions. This means that it is 

equally likely to choose the worst 

appearing action and the second-best 

appearing action. The Boltzmann 

exploration uses the Boltzmann 

distribution [12] to assign a 

probability to the actions Pt(a):  

 

T is a temperature parameter. When 

T=0 the agent does not explore at all, 

and when T → ∞ the agent selects 

actions randomly. 

3. Proposed model 

The model that we propose focuses on the 

pedagogical module of the intelligent tutoring 

system. This is a system for teaching lessons 

of Python programming language based on 

concepts and student knowledge.  The learning 

material is composed of lessons. Every lesson 

teaches some concepts and may require some 

previous concepts to be known by the student. 

In [14] we give a definition of lessons, 

concepts, student knowledge and how they are 

related to each other. The student starts 

learning the course material. The system gives 

the student a lesson that teaches some 

concepts. Depending on the student ability to 

learn, he/she may learn these concepts or not. 

If the student does not learn all the concepts 

given by the current lesson, the system cannot 

give him/her a new lesson. So, the system 

should make sure that the student has absorbed 

all the material given by the current lesson 

before giving the next one. We propose the use 

of reinforcement learning to train the 

pedagogical module that based on student 

knowledge and the concepts that are taught by 

each lesson to decide what lesson to give 

him/her. The system will start by giving the 

first lesson, and then following the student 

progress will give every other lesson until the 

end of the course. To model this as a 

reinforcement learning problem, we need to 

define the set of states, actions and rewards. In 

[15] we have given a definition of those 

elements that create a framework for doing the 

training using reinforcement learning 

approach. One problem that arises when 

dealing with reinforcement learning is the fact 

that in order to do the training, it is required a 

relatively large number of iterations and data. 

This cannot be achieved using real students, 

because the process would be very long. In 

[15] we have proposed the use of a simulated 

student that can be used during the training 

process. The student has some ability to learn 

which is given in the form of a learning 

probability, and this defines his/her ability to 

learn every concept that is taught by the 

lessons of the course. 

 

4. Experimental results 

We have done the training in a simulated 

environment by simulating the behavior of the 

student. For every episode the student starts 

with knowing random concepts, and the 

system tries to learn what is the next lesson to 

give. We have used the DQN algorithm as 

given by [13], using memory replay and target 

network. Figure 1 gives the architecture of the 

target and train networks. 

 



 
Figure 1: The architecture of the neural 

network 
 

The hyper parameters used during the training 

are given in the Figure 2. 

 

 
Figure 2: The hyper parameters used during 

training/testing 
 

The training is done using different 

exploration strategies for the same number of 

episodes. For each of the strategies we give the 

total reward received for every episode during 

the training process in figures 3, 4, 5, 6. 

 

 
Figure 3: Reward per episode for random 

strategy 
 

 
Figure 4: Reward per episode for greedy 

strategy 
 

 
Figure 5: Reward per episode for epsilon-

greedy strategy 
 

 
Figure 6: Reward per episode for Boltzmann 

strategy 
 

4.1. Testing 

After we performed the training, we have 

tested the performance of each of the 

models learned by using them in 

simulations, for 100 episodes with a student 

that knows random concepts and learning 

probability the same as the one used during 

the training process. For each of the tests, 

we show the total reward received and the 

length for each episode of the training in 

figures 7 to 14. 

  

 
Figure 7: Reward per episode in testing 

random strategy 
 



 
Figure 8: Episode length in testing random 

strategy 

 

 
Figure 9: Reward per episode in testing 

greedy strategy 
 

 
Figure 10: Episode length in testing greedy 

strategy 

 

 
Figure 11: Reward per episode in testing 

epsilon-greedy strategy 

 

 
Figure 12: Episode length in testing epsilon-

greedy strategy 

 

 
Figure 13: Reward per episode in testing 

Boltzmann strategy 
 

 
Figure 14: Episode length in testing Boltzmann 

strategy 

 

5. Conclusion 

In this work we have compared the 

performance of different exploration strategies 

used in training an intelligent tutoring system 

using reinforcement learning. We took into 

consideration 4 strategies: random, greedy, 

epsilon-greedy and Boltzmann (soft-max). For 

each of the strategies used, we have considered 

the reward gained for every episode during the 

training and testing, to evaluate which one 

performed better. We saw that during the 

training phase, random and greedy strategies 

performed worse. 



The reward was negative for every episode,   

which means that they chose the worst action 

for most of the time. For the random policy 

this means that it always explores and never 

exploits the knowledge. For the greedy policy 

this means that it always tries to exploit its 

knowledge, but it never explores for new 

actions that may be more profitable. On the 

other hand, the epsilon-greedy and Boltzmann 

strategies performed best during the training 

phase, with Boltzmann strategy getting slightly 

higher rewards. These strategies use a 

combination of exploration and exploitation, 

which makes them perform better. 

During the testing phase we see that 

greedy policy performs worse than every other 

policy. This shows that the system has not 

learned anything during the training phase. 

Random and epsilon-greedy policies 

performed well during the testing phase with 

almost the same reward gained. Even though 

random policy performed poorly during the 

training phase, it did quite well during testing, 

meaning that the high level of exploration 

learned some good actions. The Boltzmann 

policy was the best during the testing phase, 

getting the highest reward values. This shows 

that this policy learned better which are the 

best actions to take. Also, comparing the 

episode length during the testing phase, 

Boltzmann strategy has the shortest episode 

lengths. This shows that it finishes each 

episode without reaching the episode length 

limit, meaning that it finishes the episode 

faster because it takes the right actions. 
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