
A comparison of exploration strategies used in reinforcement
learning for building an intelligent tutoring system

Jezuina Koroveshi
a
, Ana Ktona

b

a University of Tirana, Faculty of Natural Sciences, Tirana, Albania
b University of Tirana, Faculty of Natural Sciences, Tirana, Albania

Abstract
Reinforcement learning is a form of machine learning where an intelligent agent learns to

make decisions by interacting with some environment. The agent may have no prior

knowledge of the environment and discovers it through interaction. For every action that the

agent takes, the environment gives a reward signal that is used to measure how good or bad

that action was. In this way, the agent learns which are more favorable actions to take in every

state of the environment. There are different approaches to solve a reinforcement learning

problem, but one drawback that arises during this process is the tradeoff between exploration

and exploitation. In this work we focus on studying different exploration strategies and

compare their effect in the performance of an intelligent tutoring system that is modeled as a

reinforcement learning problem. An intelligent tutoring system is a system that helps in the

process of teaching and learning by adapting to student needs and behaving differently for

each student. We train this system using reinforcement learning and different exploration

strategies and compare the performance of training and testing to find which is the best

strategy.

Keywords
Reinforcement learning, exploration strategies, intelligent tutoring system

1. Introduction

Intelligent educational systems are systems

that apply techniques from the field of

Artificial Intelligence to provide better support

for the users of the system [1]. Web-based

Adaptive and Intelligent Educational Systems

provide intelligence and student adaptability,

inheriting properties from Intelligent Tutoring

Systems (ITS) and Adaptive Hypermedia

Systems (AHS) [2]. [3] defines an Intelligent

Tutoring System (ITS) as computer-aided

instructional system with models of

instructional content that specify what to

teach, and teaching strategies that specify how

to teach.

Traditional tutoring systems use the one-to-

many way of presenting the learning materials

to the students.

Proccedings of RTA-CSIT 2021, May 2021, Tirana, Albania

EMAIL: jezuina.koroveshi@fshn.edu.al (A.1);
ana.ktona@fshn.edu.al (A.2);

 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

In this approach every student is given the

same materials to learn regardless of his/her

needs and preferences. These systems are not

well suited for all students because they may

come from different backgrounds, may have

different learning styles and do not absorb the

lessons with the same peace. An intelligent

tutoring system customizes the learning

experience that the student perceives by taking

into consideration factors such as pre-existing

knowledge, learning style and student

progress. According to [4] an intelligent

tutoring system usually has the following

modules: the student module that manages all

the information related to the student during

the learning process; the domain module that

contains all the information related to the

knowledge to teach, such as topics, tasks,

relation between them, difficulty.; the

pedagogical module, also called tutor module

that decides what, how and when to teach the

learning materials.; the graphical user interface

module that facilitates the communication

between the system and the student. Different

techniques from artificial intelligence can be

applied in order to make these systems more

“intelligent”, but our study is focused on the

use of reinforcement learning (RL).

Reinforcement learning is a form of

machine learning that is based on learning

from experience. The learner is exposed to

some environment, for which he may or may

not have information, starts making decisions

and gets some feedback that gives information

telling how good or bad that decision was.

Based on the feedback from the environment

the learner learns which decisions are more

favorable to take. This class of machine

learning has been used in modeling and

building intelligent tutoring systems such as in

the works from [5], [6], [7], [8], [9], [10].

The remainder of this paper is organized as

follows: in section 2 we give an overview on

reinforcement learning, in section 3 we

describe the model that we have used to build

an intelligent tutoring system, in section 4 we

give the experimental results of training the

model using different exploration strategies

and is section 5 we give the conclusions of our

work.

2. Reinforcement learning

Reinforcement learning is a form of

machine learning in which the learner learns

some sequence of actions by interacting with

the environment. The learner is in a state of the

environment, takes some action that moves it

from that state to another and after each action

the environment gives a reward signal. This

reward signal is used to learn which are the

best states to be in, and therefore learn which

action to take in order to go in those states. A

reinforcement learning problem can be

modeled as a Markov Decision Process

(MDP). A MDP is a stochastic process that

satisfies the Markov Property. In a finite MDP,

the set of states, actions and rewards have a

finite number of elements. Formally, a finite

MDP can be defined as a tuple M = (S, A, P,

R, γ), where:

 S is the set of states: S = (s1, s2, …,

sn).

 A is a set of actions: A = (a1, a2, …,

an).

 γ ∈ [0,1] is the discount factor and is

used to control the weight of the future

reward in comparison to immediate

rewards.

 P defines the probability of transitions

from s to s’ when taking action a in state s:

Pss’ = Pr{st+1 = s’ | st = s, at = a}

 R defines the reward function for each

of the transitions, the reward we get if we

take action a in state s and end up in state

s’: Rss’ = E{rt+1 | st = s, at = a, st+1 = s’}

The goal of the agent is to maximize the total

reward it receives. The agent should maximize the

total cumulative reward it receives in the long run,

not just the immediate reward [11]. The expected

discounted reward is defined as follows by [11]:

Gt = Rt+1 + γ Rt+2 + γ
2
 Rt+3 + … = γ

k
Rt+k+1

The sequence of states that end up in a

terminal state is called an episode. The general

process of RL may be defined as follows:

1. At each time step t, the agent is in a

state s(t).

2. The agent choses one of the possible

actions in this state, a(t), and applies that

action.

3. After applying the action, the agent

transitions in a new state s(t+1) and gets a

numerical reward r(t) from the

environment.

4. If the new state is not terminal, the

agent repeats the step 2, otherwise the

episode is finished.

2.1 Exploration and exploitation
dilemma

One challenge of reinforcement learning is

the tradeoff between exploration and

exploitation [11]. As given by [11]: “To obtain

a lot of reward, a reinforcement learning agent

must prefer actions that it has tried in the past

and found to be effective in producing reward.

But to discover such actions, it has to try

actions that it has not selected before. The

agent has to exploit what it has already

experienced in order to obtain reward, but it

also has to explore in order to make better

action selections in the future”. There are

different strategies that can be used to handle

this problem:

1. Random policy: during the training

process the agent always chooses

random actions. This means that it

always explores and does not exploit

what it has already learned.

2. Greedy policy: during the training

process the agent always chooses the

action that gives the best reward. In

this way, it is always exploiting the

knowledge that has gained and uses it

to choose the action that gives the best

reward.

3. Epsilon-greedy: this method balances

the tradeoff between exploration and

exploitation. With probability epsilon

ε it chooses a random action, and with

probability 1- ε it chooses the best

action. The epsilon value decreases

with time reducing exploration and

increasing exploitation in order to

make use of the knowledge is gained.

4. Boltzmann (soft-max) exploration:

one problem of the epsilon-greedy

method is that the exploration action is

selected uniform randomly from the

set of actions. This means that it is

equally likely to choose the worst

appearing action and the second-best

appearing action. The Boltzmann

exploration uses the Boltzmann

distribution [12] to assign a

probability to the actions Pt(a):

T is a temperature parameter. When

T=0 the agent does not explore at all,

and when T → ∞ the agent selects

actions randomly.

3. Proposed model

The model that we propose focuses on the

pedagogical module of the intelligent tutoring

system. This is a system for teaching lessons

of Python programming language based on

concepts and student knowledge. The learning

material is composed of lessons. Every lesson

teaches some concepts and may require some

previous concepts to be known by the student.

In [14] we give a definition of lessons,

concepts, student knowledge and how they are

related to each other. The student starts

learning the course material. The system gives

the student a lesson that teaches some

concepts. Depending on the student ability to

learn, he/she may learn these concepts or not.

If the student does not learn all the concepts

given by the current lesson, the system cannot

give him/her a new lesson. So, the system

should make sure that the student has absorbed

all the material given by the current lesson

before giving the next one. We propose the use

of reinforcement learning to train the

pedagogical module that based on student

knowledge and the concepts that are taught by

each lesson to decide what lesson to give

him/her. The system will start by giving the

first lesson, and then following the student

progress will give every other lesson until the

end of the course. To model this as a

reinforcement learning problem, we need to

define the set of states, actions and rewards. In

[15] we have given a definition of those

elements that create a framework for doing the

training using reinforcement learning

approach. One problem that arises when

dealing with reinforcement learning is the fact

that in order to do the training, it is required a

relatively large number of iterations and data.

This cannot be achieved using real students,

because the process would be very long. In

[15] we have proposed the use of a simulated

student that can be used during the training

process. The student has some ability to learn

which is given in the form of a learning

probability, and this defines his/her ability to

learn every concept that is taught by the

lessons of the course.

4. Experimental results

We have done the training in a simulated

environment by simulating the behavior of the

student. For every episode the student starts

with knowing random concepts, and the

system tries to learn what is the next lesson to

give. We have used the DQN algorithm as

given by [13], using memory replay and target

network. Figure 1 gives the architecture of the

target and train networks.

Figure 1: The architecture of the neural

network

The hyper parameters used during the training

are given in the Figure 2.

Figure 2: The hyper parameters used during

training/testing

The training is done using different

exploration strategies for the same number of

episodes. For each of the strategies we give the

total reward received for every episode during

the training process in figures 3, 4, 5, 6.

Figure 3: Reward per episode for random

strategy

Figure 4: Reward per episode for greedy

strategy

Figure 5: Reward per episode for epsilon-

greedy strategy

Figure 6: Reward per episode for Boltzmann

strategy

4.1. Testing

After we performed the training, we have

tested the performance of each of the

models learned by using them in

simulations, for 100 episodes with a student

that knows random concepts and learning

probability the same as the one used during

the training process. For each of the tests,

we show the total reward received and the

length for each episode of the training in

figures 7 to 14.

Figure 7: Reward per episode in testing

random strategy

Figure 8: Episode length in testing random

strategy

Figure 9: Reward per episode in testing

greedy strategy

Figure 10: Episode length in testing greedy

strategy

Figure 11: Reward per episode in testing

epsilon-greedy strategy

Figure 12: Episode length in testing epsilon-

greedy strategy

Figure 13: Reward per episode in testing

Boltzmann strategy

Figure 14: Episode length in testing Boltzmann

strategy

5. Conclusion

In this work we have compared the

performance of different exploration strategies

used in training an intelligent tutoring system

using reinforcement learning. We took into

consideration 4 strategies: random, greedy,

epsilon-greedy and Boltzmann (soft-max). For

each of the strategies used, we have considered

the reward gained for every episode during the

training and testing, to evaluate which one

performed better. We saw that during the

training phase, random and greedy strategies

performed worse.

The reward was negative for every episode,

which means that they chose the worst action

for most of the time. For the random policy

this means that it always explores and never

exploits the knowledge. For the greedy policy

this means that it always tries to exploit its

knowledge, but it never explores for new

actions that may be more profitable. On the

other hand, the epsilon-greedy and Boltzmann

strategies performed best during the training

phase, with Boltzmann strategy getting slightly

higher rewards. These strategies use a

combination of exploration and exploitation,

which makes them perform better.

During the testing phase we see that

greedy policy performs worse than every other

policy. This shows that the system has not

learned anything during the training phase.

Random and epsilon-greedy policies

performed well during the testing phase with

almost the same reward gained. Even though

random policy performed poorly during the

training phase, it did quite well during testing,

meaning that the high level of exploration

learned some good actions. The Boltzmann

policy was the best during the testing phase,

getting the highest reward values. This shows

that this policy learned better which are the

best actions to take. Also, comparing the

episode length during the testing phase,

Boltzmann strategy has the shortest episode

lengths. This shows that it finishes each

episode without reaching the episode length

limit, meaning that it finishes the episode

faster because it takes the right actions.

6. References

[1] Brusilovsky, P. & Peylo, C. (2003).

Adaptive and Intelligent Web-based

Educational Systems. Inter-national

Journal of Artificial Intelligence in

Education (IJAIED),13, pp.159-172. {hal-

00197315}

[2] Iglesias, A., Martinez, P., & Fernandez, F.

(2003). An Experience Applying

Reinforcement Learning in a Web-Based

Adaptive and Intelligent Educational

System. Informatics in Education, 2(2),

223–240.

https://doi.org/10.15388/infedu.2003.17

[3] Wenger, E. (1987). Artificial Intelligence

and Tutoring Systems. Morgan Kaufman

[4] Burns, H. L. & Capps, C. G. (1988)

Foundations of intelligent tutoring

systems: an introduction. In

Foundations of Intelligent Tutoring

Systems (eds M. C. Polson & J. J.

Richardson). Lawrence Erlbaum,

London, pp. 1–19

[5] Malpani, A., Ravindran, B., &

Murthy, H. (2011). Personalized

Intelligent Tutoring System using

Reinforcement Learning. In Florida

Artificial Intelligence Research

Society Conference. Retrieved from

https://aaai.org/ocs/index.php/FLAIRS

/FLAIRS11/paper/view/2597/3105

[6] Martin, K. N., & Arroyo, I. (2004).

AgentX: Using Reinforcement

Learning to Improve the Effectiveness

of Intelligent Tutoring Systems.

Intelligent Tutoring Systems, 564–

572. https://doi.org/10.1007/978-3-

540-30139-4_53

[7] Nasir, M., & Fellus, L. & Pitti, A.

(2018). SPEAKY Project: Adaptive

Tutoring System based on

Reinforcement Learning for Driving

Exercizes and Analysis in ASD

Children. ICDL-EpiRob Workshop on

“Understanding Developmental

Disorders: From Computational

Models to Assistive Technologies".

Tokyo, Japan. ⟨ hal-01976660⟩

[8] Sarma, B. H. S., & Ravindran, B.

(2007). Intelligent Tutoring Systems

using Reinforcement Learning to teach

Autistic Students. Home Informatics

and Telematics: ICT for The Next

Billion, 241, 65–78.

https://doi.org/10.1007/978-0-387-

73697-6_5

[9] Shawky, D., & Badawi, A. (2018). A

Reinforcement Learning-Based

Adaptive Learning System. The

International Conference on Advanced

Machine Learning Technologies and

Applications (AMLTA2018), 221–

231. https://doi.org/10.1007/978-3-

319-74690-6_22

[10] Wang, F. (2018).

Reinforcement Learning in a POMDP

Based Intelligent Tutoring System for

Optimizing Teaching Strategies.

International Journal of Information

and Education Technology, 8(8), 553–

558.

https://doi.org/10.15388/infedu.2003.17
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2597/3105
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2597/3105
https://doi.org/10.1007/978-3-540-30139-4_53
https://doi.org/10.1007/978-3-540-30139-4_53
https://doi.org/10.1007/978-0-387-73697-6_5
https://doi.org/10.1007/978-0-387-73697-6_5
https://doi.org/10.1007/978-3-319-74690-6_22
https://doi.org/10.1007/978-3-319-74690-6_22

https://doi.org/10.18178/ijiet.2018.8.8.

1098

[11] Sutton, R. S. and Barto, A. G.

(2018) Reinforcement Learning: An

Introduction (2nd Edition, in

preparation). MIT Press.

[12] Barto, A. G., Bradtke, S. J.,

and Singh, S. P., (1991) Real-time

learning and control using

asynchronous dynamic programming.

University of Massachusetts at

Amherst, Department of Computer

and Information Science.

[13] Mnih, V., Kavukcuoglu, K.,

Silver, D., Rusu, A. A., Veness, J.,

Bellemare, M. G., Graves, A.,

Riedmiller, M., Fidjeland, A. K.,

Ostrovski, G., Petersen, S., Beattie, C.,

Sadik, A., Antonoglou, I., King, H.,

Kumaran, D., Wierstra, D., Legg, S.,

& Hassabis, D. (2015). Human-level

control through deep reinforcement

learning. Nature, 518(7540), 529–533.

https://doi.org/10.1038/nature14236

[14] Koroveshi, J., Ktona, A.

(2020). MODELLING AN

INTELLIGENT TUTORING

SYSTEM USING

REINFORCEMENT LEARNING.

Knowledge International Journal,

43(3), 483 - 487. Retrieved from

https://ikm.mk/ojs/index.php/KIJ/articl

e/view/4745

[15] Koroveshi, J., Ana Ktona.

(2021). Training an Intelligent

Tutoring System Using Reinforcement

Learning. International Journal of

Computer Science An Information

Technolgy, 19(3), 10-18,

http://doi.org/10.5281/zenodo.466145

5

https://doi.org/10.18178/ijiet.2018.8.8.1098
https://doi.org/10.18178/ijiet.2018.8.8.1098
https://doi.org/10.1038/nature14236
https://ikm.mk/ojs/index.php/KIJ/article/view/4745
https://ikm.mk/ojs/index.php/KIJ/article/view/4745
http://doi.org/10.5281/zenodo.4661455
http://doi.org/10.5281/zenodo.4661455

