
In-Memory Database Testing Performance Measurements
in Azure

Ledia Bozo a, Olta Dedej b

a University of Tirana, Faculty of Natural Sciences, Tirana, Albania
b University of Tirana, Faculty of Natural Sciences, Tirana, Albania

Abstract
Testing is the process which involves different pieces of a system and subsystems in order to

interact in certain situations that takes into account factors such as performance, scalability,

memory allocation and system reliability, to provide the assurance that the software

development has been in accordance with functional requirements. In this paper we first

demonstrate different types of testing a web application as Integration and Unit Testing, then

we handle a specific case study of performance improvement when In-Memory Database

Testing is implemented and how the execution time is reduced. Furthermore, this study will

have a focus on how automatic tests can be executed in an online Azure repository every time

a new request is published.

Keywords 1
System-Testing, Integration-Testing, Unit-Testing, Web Host, In-Memory Database, Pipeline,

Azure, Pull Request.

1. Introduction

The rapid pace of technology evolution

shows the need in the market to have dynamic

systems that successfully fulfill the main goals

that businesses and users have. Testing of such

applications goes hand in hand with their

development techniques. As soon as we have a

boost in the construction methodology of a

system, consequently we have improvements in

the ways that this system can be tested.

To test a web application during

development, two main test methodologies are

implemented: Unit Testing and Integration

Testing. For each part of the system such tests

are written with the sole purpose of identifying

errors, but building them is not easy and they

often depend on other factors that affect their

performance and scalability.

In this paper it will be discussed how the

implementation of an in-memory database for

unit testing and integration testing increases

system performance both in reducing their

Proccedings of RTA-CSIT 2021, May 2021, Tirana, Albania

EMAIL: ledia.hajderi@fshn.edu.al (L. Bozo);

olta.dedej@fshn.edu.al(O. Dedej);

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

execution time as well as their scalability in the

future. Furthermore, the integration testing

technique is presented by implementing in host

logic to enable a more flexible communication

through other subsystems in a distributed

environment or not. The last session of this

paper covers the logic of implementing

automated unit testing in Azure DevOps

repository whenever a pull request of a

development team member is published.

2. How a software-based system
can be tested?

There are many different types of testing

that you can use to make sure that changes to

your code are working and the system is still

error free. Not all tests are equal [1]. There are

two categories of testing techniques: manual

tests and automated tests. Manual tests are

performed by a person or a group of people

interacting with the software or APIs with the

appropriate tooling. On the other hand,

automated tests are performed by a machine

which executes a test script that has been

written before. It is also less expensive than

manual tests [2]. Not all automated tests are the

same, they differ from their complexity to the

quality of their test results. Using automated

tests is a way to provide continuous integration

and continuous delivery. Test case designs can

be automated for a set of test goals with the help

of evolutionary algorithms [3].

2.1. Automatic test types

Manual testing of the complete system is

costly and time consuming, because every test

case comprises building up a scenario with real

data. In contrast, automated tests can perform a

great number of test cases with less effort.

Therefore, automated functional tests

performed in a controlled simulation

environment in addition to manual tests could

form an important quality assurance measure.

Different types of automated tests mostly used

in every built-in system are as follows:

● Unit tests which are created to test all

functionalities of a unit independently

from other parts of the system.

● Integration tests show how different

individual parts of a system can be

tested grouped together. They are

executed after unit tests. The unit serves

as an input for those tests. Integration

tests are used to verify the interaction

with the database or the communication

between microservices in order to verify

that they work as expected.

● Functional tests represent the most

important test procedure - they are used

to check the correct functioning of a

system without analyzing the internal

system structures.

● Acceptance tests (according to ISO

10360 standard), the main principle

which is to perform an overall

performance test of the entire coordinate

measuring system (CMS). Therefore,

the test should be performed as an

integrated system (i.e. such as a Black

Box testing technique) and it should

assess the system using the complete

measurement chain.

A systematic test is divided into the core

activities of test case design, test execution,

monitoring and test evaluation as well as the

activities of test planning, test organization and

test documentation, which prepare for the test

and accompany it [4].

Unit tests and integration tests can be built

using different methods to improve their

performance. Some of these techniques are in-

memory database and in-host testing. In section

below we demonstrate how in-memory

database and in-host are used with a web

application in order to test this application

faster and more efficiently.

2.2. In-memory Database
technique of Entity
Framework Core

Entity Framework Core (EF Core) provides

a persistence layer for .NET applications that

allows developers to work at a higher level of

abstraction when interacting with data and data-

access interfaces [5]. EF Core offers an in-

memory database provider which allows it to be

used with an in-memory database [5]. This

provider is designed for testing purposes only.

The in-memory database can be used to test

your code without the need of having a real

database server configured on your local

machine, as well as it will allow you to save

data that would violate referential integrity

constraints in a relational database.

Using in-memory databases with unit tests

or integrations tests shows how the general

performance of executing those tests has

improved.

2.3. In-Host Test Server

Modern times require modern software

techniques to handle all the requests for

accomplishing their goals. To build an

application we can choose from different types

of architectural styles as are Microservices

Architecture, Model-View-Controller (MVC) /

Model-View-ViewModel (MVVM), n-tier

architectures etc. The execution of tests written

for an application using Microservices

Architecture requires the endpoint (which

includes the logic of communication between

microservices) to be running at all times,

otherwise these tests cannot be executed. Using

in-host technique removes the need of having

the endpoint running every time that integration

tests should be executed. In-host or Software

Under Test (SUT) environments [6] can be

configured using environment variables in

.NET5. Next time when a SUT is configured,

executing integration tests will not require for

the endpoint to be running so they will execute

independently. Designing tests using this

approach improves execution time for

integration tests as well as verifies that different

components of the application are working as

expected or not.

3. Monitoring Data Tool
Application

Monitoring Data Tool is an application

specifically designed for a worldwide

automobile company. This application is

designed to handle daily work to company

subsidiaries. The real concept behind this is to

create different input forms for specific daily

routines as are entry reports for spare parts,

vehicles, tires etc. Once a form is created by a

super-user it can be shared between other users.

The form is created using drag and drop

functionality in the user interface, then it is

translated into readable code for machines. The

architecture style that the application uses is

Microservice Architecture, consisting of five

main microservices that communicate with

each-other and the Web App project according

to the schema in Figure 1:

Figure 1: Monitoring Data Tool projects

communication between each-other

3.1. Communication
between projects and Azure
Service Bus Queue

Monitoring Data Tool (MTD) is designed to

handle requests from users all over the world. It

offers functionalities according to the role of

the user. If you are a system administrator you

have the right to manage all the parts of the

system no matter what area you are, but if you

are an area administrator you can manage only

requests inside your area. An area can be a

country in which the system is published, for

example Germany, Italy or Spain. Making this

work, requires that all 6 projects communicate

together in the order specified in Figure 1, but

what are the functionalities that a project is

responsible for? Figure 2 explains how requests

are processed in different phases of their life-

cycle:

Figure 2: Request life-cycle

The primary purpose of Windows Azure

Service Bus is to relay messages through the

cloud in order to support application

connectivity. The Service Bus gets its name

from the Enterprise Service Bus (ESB) Pattern.

This ESB pattern defines a standard based

integration model that combines Web Services,

data transformation, messaging and intelligent

routing. The ESB platform is used to coordinate

the interaction of diverse applications [7]. The

Azure Service Bus exposes an application's

services through an endpoint. Each endpoint is

assigned a URI (Universal Resource Identifier),

which is published using the service register.

Endpoints can then be discovered by clients that

use the service register. Each endpoint provides

a rendezvous address that can be used for

communication. Some of the available

communication types are [8]:

● One-Way Messaging

● Publish/Subscribe Messaging

● Direct Connectivity

Monitoring Data Tool uses

publish/subscribe messaging where different

services specially Core and Common are

registered to the same Service Bus rendezvous

address. When Core or Common submit a

message to this address, the relay will distribute

the messages to all services that have registered.

In this way Core and Common can be both

publishers and subscribers which share data

together using queue messages.

4. Unit Tests performance
measures in Monitoring Data
Tool application

MTD application for every core logic has

unit tests written using unit test boilerplate

generators. It is a tool that generates a unit test

boilerplate from a given C# setting app mocks

for all dependencies [9]. Using this tool MTD

has successfully generated 2900 unit tests

which are executed every time a core logic

changes.

Unit tests are designed to use two different

approaches for databases (in-memory and

physical database). We will compare the

executed time for all 2900 unit tests in two test

cases:

1. In-Memory Database Execution

2. Physical Database Execution

The tests have been executed exactly 30

times for each database. The range in minutes

for an in-memory database varies from 4 min

and 30 seconds which is the best execution time

to 9 min and 45 seconds which is the slowest.

The following diagram shows time per seconds

needed to execute 2900 unit tests in both

approaches.

Figure 3: Execution time in seconds per unit

tests

While investigating the data we come to the

conclusion that in-memory database approach

is less time consuming than physical database

approach. If you repeat these tests 50, 100, or

200 times, all the data show that in-memory

approach is better to use in complex systems

with a large number of unit tests. If we compare

the best execution times, the results show that

the in-memory database approach is 1.629

times faster than the physical database

approach.

𝑡1 ÷ 𝑡2 = 440 ÷ 270 = 1.629

The two different approaches are also used

on integration tests to show the difference in

seconds.

4.1. Integration Tests
performance measures in
Monitoring Data Tool
application

MTD application in total has 1760

integration tests written to test communication

between different parts of the system. Those

tests are executed using the two different

approaches explained in section 4. Integration

tests have been executed using an in-host

testing environment, which increases the

general performance of executing these kinds

of tests. The tests have been performed

specifically 20 times in both approaches, and

the best execution time in seconds is shown in

Figure 4:

Figure 4: Execution time in seconds per

integration tests

If the best execution times for the physical

and the in-memory database are compared,

we come to the conclusion that an in-

memory database approach is 1.604 times

faster than a physical database approach.

𝑡1 ÷ 𝑡2 = 337 ÷ 210 = 1.604

5. Execution of unit tests in Azure
DevOps

MTD application is configured in Azure

DevOps repository. Using Azure DevOps as an

online server to save our code has improved a

lot the quality of code the MTD’s developer

write. When developers commit changes into

their branch, they are required to create a pull

request to the main branch. Once the pull

request is created, before improvement, the

Azure pipeline has to execute all the unit tests

configured for the repository.

Azure DevOps CI/CD (Continuous

integration/Continuous Delivery) pipelines are

used to manage building software. Continuous

integration means that new code is frequently

integrated with the existing code, for instance

through pull requests [10]. During this

integration the code is compiled to make sure

nothing is broken, and sometimes running

automated (unit) tests is also part of CI.

Continuous Delivery means that there is always

a tested and working product ready to deploy.

There are CD pipelines that build and deploy

the application to test servers automatically.

Unit tests have to be written for specific parts

of code, and the correctness and completeness

is mostly checked in the review process [11].

Figure 5: MDT pipeline configuration

If the output of the steps explained in Figure

5 are errors, then the process starts from step 1

only after the developer responsible for the pull

request has completed the needed changes.

Using Azure Pipelines helps a lot in improving

the quality of software deployment.

6. Conclusions

In this paper we discussed how an

application’s performance can be improved

using in-memory database testing approach.

We implemented this approach in unit tests and

integration tests, compared with the physical

database approach, the results show that in both

tests the better approach to choose is in-

memory database since it is specific for tests

goals and it offers minor time execution. Also

configuring Azure Pipeline keeps the software

cleaner from unneeded code and improves the

quality of pull requests.

7. References
[1] Nadia Alshahwan and Mark Harman.

Automated Web Application Testing Using

Search Based Software Engineering, 2011 26th

IEEE/ACM International Conference on

Automated Software Engineering (ASE 2011),

pp 2-4

[2] Wasif Afzal, Richard Torkar, and

Robert Feldt. A systematic review of search-

based testing for non-functional system

properties. Inf. Softw. Technol., 51:957–976,

June 2009.

[3] H. H. AlBreiki and Q. H. Mahmoud.

Evaluation of static analysis tools for software

security. In 2014 10th International Conference

on Innovations in Information Technology

(IIT), pages 93–98, 2014.

[4] Mohd. Ehmer Khan, Different Forms

of Software Testing Techniques for Finding

Errors, IJCSI International Journal of Computer

Science Issues,Vol. 7, Issue 3, No 1, 2010.

[5] Y.W, G.Zh, L.K, L.W, H.K, F.G,

CH.L, X.D. The Performance Survey of in

Memory Database, in: 2015 21st IEEE

International Conference on Parallel and

Distributed Systems (ICPADS),

doi:10.1109/ICPADS.2015.109

[6] Integration tests in ASP.NET Core |

Microsoft Docs, 2020 URL:

https://docs.microsoft.com/en-

us/aspnet/core/test/integration-

tests?view=aspnetcore-5.0

[7] Don Champers, Windows Azure:

Using Windows Azure's Service Bus to Solve

Data Security Issues, Msc thesis, Columbus

State University, 2010.

[8] Julia Lerman, Programming Entity

Framework, Building Data-Centric Apps with

the Ado.Net Entity Framework, 2nd. ed.,

O’Reilly Media, United States of America,

2010.

[9] Unit Test Boilerplate Generator -

Visual Studio Marketplace. URL:

https://marketplace.visualstudio.com/items?ite

mName=RandomEngy.UnitTestBoilerplateGe

nerator

[10] Configure and pay for parallel jobs

2021 Microsoft Docs, URL:

https://docs.microsoft.com/en-

us/azure/devops/pipelines/licensing/concurrent

-jobs?view=azure-devops&tabs=ms-hosted

[11] Add Continuous Security Validation to

your CICD Pipeline | Microsoft Docs, 2018

URL: https://docs.microsoft.com/en-

us/azure/devops/migrate/security-validation-

cicd-pipeline?view=azure-devops

