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Abstract  
In recent years we have witnessed the rapid development of machine learning algorithms, and 
the same can be said for IoT. Developments in both fields have also influenced the growth of 
machine learning algorithms in IoT devices. The authors of a series of papers cite several 
reasons to argue this trend. This paper explores the possibility of using the Python programming 
language in different versions to create, train, and implement convolutional neural networks on 
two SoCs based on different architectures (ARM and RISC-V). The influence of the number of 
filters in the convolutional layer on the inference speed is also investigated. The number of 
filters has a different effect on inference speed depending on the existence of additional 
components that accelerate individual operations of convolutional neural networks 
(convolution, batch normalization, activation, and pooling operations).  
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1. Introduction 

In the last few years, the terms Internet of 
Things and Machine learning have been 
increasingly mentioned in the field of 
information and communication technologies. 
Definitions of both terms are given below. 
Internet of things is “a system of interrelated 
computing devices, mechanical and digital 
machines, objects, animals or people that are 
provided with unique identifiers (UIDs) and the 
ability to transfer data over a network without 
requiring human-to-human or human-to-
computer interaction” [1]. Machine learning “is 
the study of computer algorithms that improve 
automatically through experience” [2]. 

Powerful computers are most often required 
to implement machine learning, and IoT 
devices are often low in processing power. 
Several authors have stated that there are few 
advantages of transferring part of machine 
learning data processing from large and cloud 
computers to IoT devices. Zhang et al. state that 
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these are energy savings, network traffic 
reduction, privacy problems and delays in data 
transmission [3]. Sakr et al. also cites similar 
benefits of moving computation toward the 
edge, such as lower energy consumption, lower 
response latency, higher security, lower 
bandwidth occupancy and expected privacy [4].  

Since Python is a programming language 
most often used for machine learning and very 
rarely for the development of IoT devices, in 
this paper, the aim was to compare two different 
SoCs' performance using Python and 
MicroPython in the development of machine 
learning models and IoT devices. The C/C++ 
programming language is most often used to 
develop IoT devices, but if a version of Python 
were used for this task, all phases of a machine 
learning model development for IoT devices 
would be significantly accelerated and 
simplified. 

Two development boards that hit the market 
a year ago based on different architectures were 
used in this paper, and their inference 



performance was tested with a different number 
of filters in the first layer of the convolutional 
neural network used to detect handwritten 
digits. Easy use of convolutional neural 
networks on microcontrollers has been possible 
in the last year or two, so there is not much 
information about microcontrollers' 
performance on these tasks. A convolution 
neural network is a deep neural network class 
usually used for image processing, 
classification, and other similar tasks. 

2. Literature review 

The first part of this section provides an 
overview of papers in which the authors used 
MicroPython to solve various problems. The 
second part provides an analysis of the used 
hardware platforms.  

2.1. MicroPython 

MicroPython is a programming language 
partially compatible with Python 3. It is 
optimized to run on microcontrollers, and it 
includes various modules for low-level 
hardware access. It was released in 2014. and it 
is ported on various platforms (ARM Cortex-
M, RISC-V, ESP32, ESP8266, PIC, STM32) 
[5] [6]. It is also available on BBC micro:bit 
development board [7] [8]. Finally, a new 
Raspberry product Raspberry Pi Pico can be 
used with MicroPython [9]. It is evident that 
MicroPython has become quite popular in a 
short time, and it has been ported to various 
platforms without the significant influence of 
large companies.  

MicroPython is used in various IoT projects. 
Regnath et al. used MicroPython on ESP32 
platform to test their approach to verify data 
integrity and consensus on a blockchain used on 
IoT platforms [10]. Cardenas et al. used 
MicroPython in Low-Cost and Low-Power 
Messaging System. Their solution was based on 
ESP32 and LoRa Wireless Technology [11]. 
Tzounis et al., in their review of the IoT 
platform in agriculture, also mention 
MicroPython as a programming language for 
the LoPy development platform based on 
ESP32 SoC [12]. LoPy development board and 
MicroPython have been used by Sayed et al. in 
their multi-sensing platform for the ORCA Hub 
integrated with Robot Operating System [13]. 
Kodali et al. used MicroPython to develop a 

low-cost ambient monitor device based on 
ESP8266 SoC. They used a DHT22 
temperature and humidity sensor and OLED 
128x64 display [14]. 

Khamphroo et al. introduced a mobile 
educational robot based on MicroPython. The 
development's primary goal is to create a robot 
that will be easy to use for beginners. 
STM32L432KC ARM Cortex-M4 168 MHz 
was used in the presented project [15] [16]. 
Tariq et al. used MicroPython for noise filtering 
on an STM32F10RB platform to implement an 
early warning seismic event detection 
algorithm [17]. Zhang et al. used MicroPython 
in their quadruped robot project that deals with 
the twisting trunk's effect on the tumble 
stability from an energy viewpoint. Their 
development board was based on STM32F405 
[18]. Wie et al. used MicroPython in their 
wearable bio-signal processing system. Devices 
were based on the STM32F722 microcontroller 
[19]. Ibba et al. developed an impedance 
analyzer for fruit quality monitoring based on 
the STM32L486 microcontroller. They also 
used MicroPython for microcontroller 
programming [20]. Crepaldi et al. developed 
the body channel communication system used 
for landmark identification. They used 
MicroPython and STM32L486 microcontroller 
[21]. 

Bahmanian et al. used MicroPython in their 
wide-band frequency synthesizer that can lock 
on any of the optical reference harmonics 
between 2 GHz and 20 GHz. They used the 
FE310 microcontroller based on RISC-V to 
control the DA converters [22].  

At the end of the MicroPython part, we 
should mention the Arduino IDE, which is 
undoubtedly more popular than MicroPython, 
but it also has some drawbacks. Kodali et al. 
compared these two platforms by a series of 
features. They state that the difference is in the 
language type since MicroPython is a scripting 
language, while Arduino C code needs to be 
compiled. According to them, MicroPython is 
simpler, and the development is 5-10 times 
faster because there is no compiling. The syntax 
is cleaner, and the code is more readable in 
MicroPython [14]. Tanganelli et al. have 
reviewed the available platforms for rapid 
prototyping of IoT solutions from a developer 
perspective. In addition to the Arduino IDE and 
MicroPython, they listed several other 
platforms and development tools: FreeRTOS, 
mbedOS, Zephyr, Contiki OS, RIOT OS and 



Zerynth. They also cite perhaps the biggest 
drawback of the MicroPython, which is the 
significantly smaller number of development 
boards that support it. The Arduino can be used 
on over 1000 development boards, while the 
MicroPython is supported by twenty. Their 
paper is from 2019, and the situation may have 
changed somewhat [23]. 

2.2. MicroPython hardware on 
edge  

In the previously presented paper review, 
MicroPython-enabled platforms are grouped 
into three individual sections. The first section 
contains papers that use ESP32 and ESP8266 
SoC. These are Espressif Inc. products based on 
Tensilica LX106 and LX6 processors. The 
second section lists papers that use different 
SoCs from STMicroelectronics, while the third 
section includes paper that uses SoCs based on 
the RISC-V architecture. 

The official GitHub page of the 
MicroPython project lists development boards 
that come with MicroPython installed. There 
are currently 35 development boards on the list, 
primarily based on the STM32F family of 
microcontrollers [24]. 

3. Method 

The first part of this section gives the 
characteristics of the used development boards 
and microcontrollers with MicroPython 
installed. The second part of the section 
describes creating a model of a convolutional 
neural network and converting the model into 
formats that can be used on SoC with 
MicroPython. 

3.1. Used hardware supported by 
MicroPython  

The paper analyzes two development boards 
based on different architectures. The 
development board in Figure 1 is an OpenMV 
Cam H7 Plus and is based on the STM32H743II 
ARM Cortex M7 processor. The development 
board's price was € 99.00, but only one 
STM32H743II processor costs € 11.61. Their 
characteristics are listed in Table 1. 
Table 1 

Microprocessor’s characteristics 
 STM32H743I

I 
Kendryte 

K210 
Producer STM Canaan Inc. 
Bit Width 32 bit 64 bit 
CPU clock 480 MHz 400 MHz 
RAM 1+32 MB 6 MB 
FLASH 2+32 MB 16 MB 

 
Figure 1: OpenMV Cam H7 Plus 

 
Figure 2: Sipeed Maixduino 
 

The Development board in Figure 2 is a 
Sipeed Maixduino Kit for RISC-V AI + IoT, 
and it is based on the Kendryte K210 based on 
RISC-V instruction set architecture. The 
development board's price was $ 23.90, but 
only one K210 costs $ 8.64. 

 

3.2. CNN model development and 
deployment 

The MNIST database of handwritten digits 
has been used for training in this paper. This 
database consists of sixty thousand grayscale 
images of handwritten digits between 0 and 9. 



The image's size is 28x28 pixels that are 
reduced to 14x14-pixel size. One simple 
convolution neural network has been developed 
to resolve this classification problem, and it can 
be seen in Figure 3.  

This neural network is quite simple and 
consists of a single convolutional layer with a 
3x3 pixel filter. The number of filters is a 
variable changed during testing to notice the 
impact of that variable on the inference speed. 
Adam is used as an optimizer and ReLU as an 
activation function. The model code can be 
found on the GitHub address: 
https://github.com/kristian1971/MicroPythonR
ACE. 

 
Figure 3: Used CNN model 

 
The model was trained for only 12 epochs, 

and after that, it was converted to TensorFlow 
Lite (tflite) format. A total of 10 training 
processes were conducted, and the variable that 
was changed was the number of filters in the 
convolutional layer. After each training, the 
model in tflite format is saved. The same model 
was used on both development boards. 

The OpenMV Cam H7 Plus development 
board's integrated development environment 
can be downloaded for free from the 
manufacturer's website and is called the 
OpenMV IDE. A free Integrated development 
environment based on the OpenMV IDE, called 
the MaixPy IDE, is available for the Sipeed 
Maixduino development board. Both are based 
on MicroPython. However, the use of the 
convolutional neural network model is 
somewhat different on boards. The OpenMV 
IDE and the associated development board 
allow easy transfer of the model in tflite format 
with a simple drag-and-drop method because 

the OpenMV Cam H7 Plus development board 
in the Windows environment is presented as a 
USB memory stick. 

In contrast, for the Sipeed Maixduino 
development board, model preparation is more 
complicated. NNCase is used for the 
conversion, which is also free, and after the 
conversion, a model in kfpkg format is 
obtained. The file in the specified kfpkg format 
is transferred to the development board using 
the KFlash tool. Figure 4 shows the process of 
training, conversion and transfer of the model 
to both development boards. 

 
Figure 4 - Process of training, conversion and 
transfer 

After the models have been transferred to 
development boards, it is necessary to write a 
program in each integrated development 
environment that will apply that model. In both 
cases, it is written in MicroPython, and the 
differences between them are insignificant. The 
programs are available on the GitHub server.  

 
Figure 5: MaixPy IDE 

Figure 5 shows the integrated development 
environment MaixPy IDE, while the OpenMV 
IDE is not shown because the visual differences 
are negligible. 

The HANTEK DSO5102P oscilloscope was 
used to measure the inference speed. Before the 
command that triggers the data inference 
through the neural network, one pin on the 
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development board is lifted from LOW to 
HIGH. After the inference process, the state of 
that same pin is lowered from HIGH to LOW. 
The commands for the OPENMV IDE are as 
follows: 

pin1.value(1) 
  out = net.classify(graytmp) 
  pin1.value(0) 

The commands for the MaixPy IDE are as 
follows: 

led_r.value(1) 
fmap=kpu.forward(task,img2)  
led_r.value(0) 

        
The described method is used to measure the 
propagation time of data through a 
convolutional neural network. Figure 6 shows 
the measurement procedure on the 
oscilloscope. 

 
Figure 6: Measurement with an oscilloscope 

4. Testing and measurement 

In the measurement procedure, ten models 
were used on both development boards that 
differed in the number of filters in the 
convolutional layer. The number of filters was 
changed from one to ten. Table 2 shows the data 
obtained for the Sipeex Maixduino 
development board, while Table 3 shows the 
data for the OpenMV Cam H7 Plus.  
Table 2 
Sipeex Maixduino data 

 ACCURACY Tflite t 
1 0.8969 8 kB 1,2 ms 
2 0,9220 16 kB 1,3 ms 
3 0.9479 24 kB 1,4 ms 
4 0.9330 31 kB 1,5 ms 
5 0,9520 39 kB 1,6 ms 
6 0.9637 47 kB 2,0 ms 
7 0,9623 54 kB 2,3 ms 
8 0.9624 62 kB 2,3 ms 
9 0,9632 70 kB 2,6 ms 

10 0,9620 78 kB 2,6 ms 
 

The first column of both tables contains the 
number of filters in the convolution layer. In the 
second column, the accuracy is obtained in the 
model creation phase, and in the third column 
are the tflite file sizes. The first three columns 
are the same for both development boards.  
Table 3 
OpenMV Cam H7 Plus data 

 ACCURACY Tflite t 
1 0.8969 8 kB 0,22 ms 
2 0,9220 16 kB 0,33 ms 
3 0.9479 24 kB 0,42 ms 
4 0.9330 31 kB 0,52 ms 
5 0,9520 39 kB 0,63 ms 
6 0.9637 47 kB 0,74 ms 
7 0,9623 54 kB 0,85 ms 
8 0.9624 62 kB 0,97 ms 
9 0,9632 70 kB 1,08 ms 

10 0,9620 78 kB 1,20 ms 
The fourth columns show the neural 

network inference speed, and these values are 
significantly less for the OpenMV Cam H7 Plus 
development board. Figure 7 shows a graph of 
speed for both development boards. 

 
Figure 7: Inference speed 

If we look at the data more closely, we can 
see a linear increase in the inference speed in 
the OpenMV Cam H7 Plus development board 
depending on the number of filters, while for 
Sipeed MaixPy, this dependence is not linear. 
To determine this difference, Figure 8 shows 
the inference speed with x filters (tx) relative to 
the inference speed measured with only one 
filter in the convolution layer (t1).  It is evident 
that by increasing the number of filters, the 
inference speed increases faster on the 
OpenMV Cam H7 Plus development board, 
while this increase is slower on Sipeed MaixPy. 
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Figure 8: Relative inference speed 

5. Discussion and conclusion 

The paper compares the convolutional 
neural network inference speed of two various 
developmental boards. One development board 
is based on the STM32H743II ARM Cortex M7 
processor, while the other is based on the 
Kendryte K210 RISC-V processor. The same 
neural network model was used in both cases, 
and MicroPython was used for the model 
implementation on development boards. 
TensorFlow 2.x and Keras were used to develop 
and train the model. 

It can be observed that the inference speed 
under the given conditions is significantly 
lower on the STM32H743II ARM Cortex M7 
processor. However, we must emphasize that 
the convolutional neural network used is simple 
and that the input image is 14x14 pixels in size. 

A detail that should also be emphasized is 
the influence of the number of used filters on 
the inference speed. With only one filter in the 
convolutional layer, the development board 
based on the ARM processor was 6x faster, 
while when using ten filters, this difference 
dropped to only 2x. The increase in the number 
of filters reduces the difference in inference 
speed between boards. It is possible that at 
some point, the development board based on 
the RISC-V processor would be faster. 

The cause of this slight slope curve for the 
RISC-V processor in Figure 8 is a Neural 
Network processor in K210 with built-in 
convolution, batch normalization, activation, 
and pooling operations. This is sparsely 
described in the documentation [25]. 
In future research, the number of filters and 
other parameters should be further increased, 
and the influence of filter size should be 
studied. In this paper, a 3x3 filter has been used, 
and the documentation for the K210 states that 
the Neural Network processor speeds up the 

data propagation through a convolutional 
neural network for 3x3 filters. 
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