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Abstract
The use of surface electromyography (EMG) and Inertial Measurement Unit (IMU) data emerged as a
possible alternative to computer vision-based gesture recognition. As a consequence, the convenience
of using such data in the automatic recognition of sign languages, a natural application of gesture recog-
nition, has been investigated in scientific literature. Most of the methodologies and evaluations are
based on traditional machine learning techniques, such as SVMs, relying on selected handcrafted fea-
tures. Instead, leveraging on the findings about deep Long Short Term Memory (LSTM) architectures
to process time series, we propose a deep LSTM-based neural network for the recognition of the Italian
Sign Language alphabet with surface EMG and IMU data. To preliminary validate our methodology, we
collected a dataset recording gesture samples with the Myo Gesture Control Armband. We obtained a
97% accuracy on the proposed dataset.
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1. Introduction
In the last three decades, automatic gesture
recognition has been investigated in many
applications domains. In fact, hand gestures
are recognized as a natural, ubiquitous and
meaningful part of communicating [1]. There-
fore, extensive research has been devoted to
making hand gestures a natural and effective
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mode of non-verbal communication with com-
puter interfaces [2]. The possible applications
are countless, including touchless interaction
with smart objects [3], rehabilitation and per-
sonal health systems [4, 5], human-robot col-
laboration [6], interaction with smart home
reasoning systems [7, 8], and many others.

Obviously, the automatic recognition of
sign language gestures is an eminent appli-
cation field for the advancements in gesture
recognition. To this end, the earliest researches
in computer vision [9] evolved with the use of
depth sensors, such as those of the Microsoft
Kinect [10] and Leap Motion [11]. An alterna-
tive methodology is emerging in recent years:
the use of wearable devices with surface elec-
tromyography (EMG) and Inertial Measure-
ment Unit (IMU) sensors [12]. Using EMG
and IMU sensors has the disadvantage of forc-
ing a user to wear the device (on both hands,
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for complex gestures). However, it does not
require a fixed camera which might be vul-
nerable to varying lighting conditions, in ad-
dition to having a limited range of vision and
causing privacy issues.

In this regard, we present a deep learning
methodology for the recognition of the Italian
Sign Language (LIS) alphabet using EMG and
IMU data. Specifically, this paper adds the
following contributions to the state of the art
about sign language gesture recognition:

• we propose a deep neural network ar-
chitecture to classify the EMG and IMU
data corresponding to the 26 letters of
the LIS alphabet. We based our network
on the bidirectional Long Short Term
Memory (LSTM) architecture, as it has
been already proven useful to process
time series, e.g. in speech [13] and ges-
ture recognition [14];

• we propose a dataset with 30 gesture
samples for each letter of the LIS alpha-
bet, collected to preliminary evaluate
our approach. Each sample includes
the data from the 8 EMG sensors and
the IMU of the Myo Gesture Control
Armband, a commercial wearable de-
vice designed to collect EMG signals
and IMU data when moving the hand
and the arm.

To guarantee the reproducibility of our ap-
proach, as well as encourage further develop-
ments of the research in this field, the experi-
ments and the dataset are publicly available
in two dedicated GitHub repositories.

The rest of the paper is structured as fol-
lows. Section 2 lists some studies related to
the presented research. Section 3 explains the
proposed approach, with the necessary back-
ground about the LSTM architecture, and de-
scribes the dataset collected to evaluate our
method. Section 4 discusses a preliminary
experimental evaluation of our neural net-

work, explaining the setup of the experiments
and presenting the results. Finally, Section 5
draws the conclusions of this research work.

2. Related Works
The use of EMG and IMU data for the recog-
nition of sign language gestures has been val-
idated by several studies. For example, Savur
and Sahin [15] got 91% accuracy on the Amer-
ican Sign Language (ASL) alphabet, using a
Support Vector Machine (SVM) classifier. Wu
et al. [12] proposed the design of a wearable
device and a feature selection method to col-
lect EMG and IMU data for the recognition
of gestures. They validated their proposal on
the ASL gestures, getting a top accuracy of
96% with a comparison of traditional machine
learning approaches (Nearest Neighbor, Naive
Bayes, Decision Tree, and SVM). In [16] Abreu
et al. evaluated the use of the Myo Armband
for the Brazilian Sign Language alphabet by
defining 20 SVM binary classifiers to recog-
nize 20 letters, in a one-vs-all strategy. Sim-
ilarly to these works, we use EMG and IMU
data (from the Myo Armband) to recognize
the letters of the LIS alphabet. However, in-
stead of relying on traditional machine learn-
ing methods and feature selection, we propose
a deep neural network, leveraging on a deep
architecture to learn the gesture representa-
tion which allows the classification.

Recurrent Neural Networks, in particular
those based on the LSTM and bidirectional
LSTM architectures, have been validated for
representing and classifying complex sequen-
tial data simultaneously, such as in model-
ing human gesture structure and temporal
dynamics [14]. Some research works are pre-
senting LSTM-based architectures for sign
language recognition. For example, Liu et
al. [17] propose to use the LSTM architec-
ture to perform recognition by analyzing the
trajectory of skeleton joints provided by the



Microsoft Kinect; Guo et al. [18] combine a
3D Convolutional Neural Network with the
LSTM to classify gestures from videos, in a
transfer-learning approach; Mittal et al. de-
sign a LSTM-based architecture to recognize
words and sentences of the Indian Sign Lan-
guage from Leap Motion data [19]. Similarly
to these works, we also based our system on
the LSTM architecture, but we rely on EMG
and IMU data, instead of visual data. In the
need of data to train our method, we synthet-
ically augmented our dataset to preliminary
validate our method, using data augmenta-
tion also to add intra-class variation in our
samples and prevent overfitting.

3. Materials and Methods
Recurrent Neural Networks (RNN) use recur-
rent connections to model the flow of time
in a sequence of data [20], and are therefore
particularly suited to work with time series.
LSTM are a type of RNN which are capable of
learning long-time dependencies in the data.
As we want to recognize gestures from a se-
quence of time-ordered EMG and IMU data,
our system is based on the LSTM architecture.
Moreover, we also collected a dataset to test
the accuracy of the proposed system in the
recognition of the LIS gestures.

3.1. LSTM and Bidirectional
LSTM

LSTM is a well-known RNN architecture, pro-
posed by Hochreiter and Schmidhuber [21].
As showed in Figure 1, the basic hidden unit
of a LSTM network is composed of a self-
recurrent cell, called memory cell, whose in-
put/output is regulated by three multiplicative
gates, i.e. the input gate, the output gate, and
the forget gate. A LSTM layer is composed by
a series of such units and the network inter-
acts with the memory cells only by using the
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Figure 1: An LSTM unit, with the input/output
of the memory cell regulated by the input, output,
and forget gates.

gates.
As pointed out in [13], the output ℎ𝑡 at time

point 𝑡 of an LSTM hidden unit is regulated
by the following equations:

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)
𝑓𝑡 = 𝜎 (𝑊𝑥𝑓 𝑥𝑡 +𝑊ℎ𝑓 ℎ𝑡−1 +𝑊𝑐𝑓 𝑐𝑡−1 + 𝑏𝑓 )
𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 tanh(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐 )
𝑜𝑡 = 𝜎 (𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜)
ℎ𝑡 = 𝑜𝑡 tanh(𝑐𝑡 )

where 𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡 , and 𝑐𝑡 are the activation vec-
tors of the input gate, forget gate, output gate,
and memory cell at time point 𝑡 , 𝜎 is the
sigmoid function, 𝑏 denotes the bias of each
gate/cell, and𝑊 are diagonal weight matrixes.
The output vector 𝑦𝑡 at time point 𝑡 of an hid-
den layer is therefore given by:

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦



where 𝑊ℎ𝑦 is the weight matrix and 𝑏𝑦 the
bias vector.

Traditional LSTMs, as RNNs in general, pro-
cess input data in ascending temporal order.
Therefore, their outputs is mostly based on
previous context. However, when data is pro-
cessed at once, as it might happen with the
classification of gestures, the recognition of a
pattern might be more effective with the use
of future context as well. To this end, Bidi-
rectional RNNs [22] and, specifically, Bidirec-
tional LSTMs [20] have been proposed. The
basic idea of such models is to present the
training sequences both forwards and back-
wards, using two separate recurrent nets, which
are connected to the same output layer.

Therefore, we based our deep neural net-
work on the Bidirectional LSTM architecture,
as the gesture are processed once done, tak-
ing advantage of both previous and future
context.

3.2. Proposed Dataset
To evaluate the proposed architecture, we de-
veloped a dataset including all the 26 gestures
of the LIS alphabet. Most of the letters of the
alphabet is represented with static gestures,
while the “G”, “H”, and “Z” are performed
by moving the hand as well. We recorded 30
samples for each letter, building a dataset com-
posed of 780 samples. The dataset is publicly
available as a GitHub repository1.

All the collected gesture were performed
by the same person (male, 24 years old) wear-
ing a Myo Gesture Control Armband2 on his
right arm, always in the same position. In fact,
each sample of the dataset is composed of the
raw data produced by the 8 EMG sensors and
IMU of the Myo Armband. The time window

1https://github.com/airtlab/An-EMG-and-IMU-
Dataset-for-the-Italian-Sign-Language-Alphabet

2https://web.archive.org/web/20200528111822/
https://support.getmyo.com/hc/en-us/articles/
202648103-Myo-Gesture-Control-Armband-tech-specs

for the acquisition of each sample was 2 sec-
onds, sampling both the EMG and IMU data
at 200 Hz. The subject was required to self-
collect the samples with a desktop application
that we developed specifically for the gesture
acquisition.

Each data sample for each gesture repre-
senting a letter is included in a json file con-
taining both the EMG and the IMU data. The
EMG data is organized into an emg object in-
cluding the following fields:

• frequency, i.e. the sampling frequency
(in Hz) of the values from the EMG sen-
sors. This value is 200 for all the sam-
ples;

• data, a 400 x 8 integer matrix. Each row
is then an 8-dimensional array includ-
ing the values from the 8 EMG sensors
of the Myo Armband. Therefore, data
is the time series of the values from the
EMG sensors during the acquisition of
the gesture.

Similarly, the IMU data of the sample is orga-
nized into an imu object with the following
fields:

• frequency, i.e. the sampling frequency
(in Hz) of the values from the IMU. This
value is 200 for all the samples;

• data, a 400 elements length object array.
Each object has three fields, namely gy-
roscope (an array composed by 3 float-
ing point values), acceleration (an array
composed by 3 floating point values),
and rotation (an array composed by 4
floating point values).

In addition, each json file includes a times-
tamp, representing the date and time of the
gesture acquisition, and the duration of each
acquisition, which is 2000 for all the samples.
The information about the acquisition dura-
tion and the sampling frequency are redun-
dant in the current version of the dataset, as
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Figure 2: The proposed gesture recognition pipeline: the time series of EMG and IMU data are fed
into a deep neural network for classification. To train the neural networks and prevent overfitting,
both EMG and IMU data were synthetically augmented.

they are the same for all the gestures. How-
ever, this information might be useful in the
future, when we might add samples varying
the acquisition time window or the sampling
frequency. The complete dataset specification
is available in a dedicated open-access data
paper [23].

3.3. System Architecture
Figure 2 depicts the architecture of the pro-
posed gesture recognition system, used to
identify the gestures of the LIS alphabet. The
user performs the gesture wearing the Myo
Armband; the data from the EMG sensors and
the IMU are the input for our deep neural
network, based on the Bidirectional LSTM ar-
chitecture. The system labels the input data
with one of the 26 letters of the alphabet, iden-
tifying the gesture made by the user. As ex-
plained in Section 4, to evaluate our system,
we synthetically augmented the data in our
dataset during the training process, trying to
use more samples and reduce overfitting.

Table 1 lists all the layers included in our
deep neural network. Among the available
data, we used the 8 series with the values
from the 8 EMG sensors of the Myo Arm-
band. Concerning the IMU, we took the two
3-dimensional vectors with values from the
accelerometer and the gyroscope. Therefore,
each sample is fed into the network as a 400

Table 1
The deep neural network model used for the ges-
ture recognition. The total number of trainable
parameters is 87,514.

Layer Output Shape Param #
Bi-LSTM (400, 128) 40448
Bi-LSTM (64) 41216
Dropout (0.5) (64) 0
Fc1 (ReLU) (64) 4160
Dropout (0.5) (64) 0
Fc2 (Softmax) (26) 1690

x 14 matrix, i.e. there are 400 14-dimensional
vectors for each samples. The first network
layer is a bidirectional LSTM. It processes the
input with 64 hidden units, returning in out-
put 128 hidden state values (64 for the forward
sequence, 64 for the backward sequence) for
each of the 400 vectors in a sample. In fact,
each hidden unit is configured to output a
value for each vector in the sample matrix, as
proposed by Graves et al [24] to stack mul-
tiple LSTM layers. Thus, the second layer
is a also a bidirectional LSTM. However, be-
ing the last recurrent layer, each of the 32
hidden units returns a single value for the
entire sample. Therefore, the output of the
second layer is composed of 64 values (32 for
the forward sequence, 32 for the backward
one). A 50% dropout performs the diluition
of the LSTM output, to prevent overfitting.



The sample classification is performed by a
sequence of two fully connected layer. The
first includes 64 hidden units, using the recti-
fier as the activation function. After another
50% dropout for regularization, the output is
processed by the 26 units of the second fully
connected layer. The softmax activation func-
tion of each unit computes the probability
distribution over the 26 classes, i.e. the letters
of the LIS alphabet.

4. Experimental Evaluation
We evaluate our model by collecting prelim-
inary results on the proposed dataset. We
actually want understand to which extent our
deep neural network is a viable solution to
recognize the LIS gestures based on EMG and
IMU sensor data. As the collected dataset in-
cludes only 780 samples, which might be too
few for a deep learning approach, we also ap-
plied data augmentation, with the twofold ob-
jective of testing with more data and prevent
overfitting. Even if data augmentation has
been proven useful to get general results [25],
the experiments should be considered as early
stage, and therefore inevitably suffer from
some threats to validity.

4.1. Data Augmentation
To augment the proposed dataset, we apply
the technique presented in [26]. Ohashi et
al. point out that, during the gesture recogni-
tion with a wearable device such as the Myo
Armband, the user is supposed to wear the de-
vice always with the same configuration (i.e.
identical placement and rotation). In this way,
the sensors would be attached to the user’s
arm in the same positions every time the de-
vice is used. However, a displacement is very
likely to happen when detaching and attach-
ing the device again. Therefore, samples with
various rotation angles are desirable in the
training data of a gesture recognition model.

As the data from the accelerometer and the
gyroscopse are 3D vectors, they can be easily
rotated by multiplying with a rotation matrix:

⎡
⎢
⎢
⎣

1 0 0
0 cos(𝜃) sin(𝜃)
0 − sin(𝜃) cos(𝜃)

⎤
⎥
⎥
⎦

Such transformation rotates the coordinate
system of 𝜃 degrees, counterclockwise, around
the x-axis. Ohashi et al also propose the fol-
lowing formulation to apply the same rotation
to the data of 8 EMG sensors:

𝑒𝑚𝑔(𝜃)𝑖 =
𝑓 (𝑑)𝑒𝑚𝑔(𝑜𝑟𝑖)𝑖−𝜂 + 𝑓 (1 − 𝑑)𝑒𝑚𝑔(𝑜𝑟𝑖)𝑖−𝜂−1

𝑓 (𝑑) + 𝑓 (1 − 𝑑)
𝜂 = ⌊𝜃/𝜙⌋
𝜙 = 360/𝑁
𝑑 = 𝜃/𝜙 − 𝜂

Here, 𝑒𝑚𝑔(𝜃)𝑖 is the reading of the 𝑖𝑡ℎ EMG
sensor when rotating the armband of 𝜃 de-
grees; 𝑒𝑚𝑔(𝑜𝑟𝑖)𝑖 is the reading of the 𝑖-th sen-
sor in the original data; 𝑁 is the number of
available EMG sensors; 𝑓 (𝑑) is the polynomial
function 𝑓 (𝑑) = 𝑑2. Intuitively, if the rotation
places the 𝑖-th sensor between the original
positions of the 𝑗-th and (𝑗 + 1)-th sensors, the
reading of the 𝑖-th sensor in the rotated data
is computed as the interpolation of the read-
ings of the 𝑗-th and (𝑗 + 1)-th sensors and the
distance from those sensors.

Therefore, we apply such rotation technique
to our data, given that, with this approach,
Oshahi et al. got better performance than
augmenting data with gaussian noise, with
rotating data around all the three axis, and
with linear interpolation. As in their work,
we rotate the data with the angles in the fol-
lowing set:

{−30◦, −22.5◦, −15◦, −7.5◦, 7.5◦, 15◦, 22.5◦, 30◦}

By rotating the data, we get 780 samples for



each angle, adding the 6,240 synthetic samples
to the 780 originally collected with the Myo
Armband.

4.2. Experimental Setup
We tested the proposed deep neural network
on the original dataset, as well as on the aug-
mented dataset. We applied a stratified shuffle
split cross-validation scheme to validate the
accuracy of our model. To this end, we firstly
repeated a randomized 80-20 split 5 times, us-
ing the 80% of the data as the training set, and
the 20% as the test set, preserving the percent-
age of samples from each class, in each split.
The 12.5% of the training data, i.e. the 10%
of the entire dataset, was used as validation
data for the training of the neural network.
Then, we repeated the same randomized split
30 times on each dataset, to collect more gen-
eral results.

We used the Root Mean Square Propagation
(RMSProp) optimizer to minimize the Cate-
gorical Cross-Entropy loss function during
the training of the neural network. The num-
ber of training epochs varied for each split, as
we early stopped the training after 5 epochs
without an improvement on the minimum
validation loss, restoring the weights corre-
sponding to the best validation loss. Table 2
shows the number of training epochs in each
split, in the 5 split experiments. For the 30
split experiments the mean number of train-
ing epochs was 42.77 (± 9.01) for the original
dataset, and 37.67 (± 7.80) on the augmented
dataset. The batch size was 32 samples in each
split of each experiment.

A Jupyter notebook with the described ex-
periments is available in a GitHub public repos-
itory3, in order to guarantee the reproducibil-
ity of the tests. The tests ran on Google Colab
with the GPU runtime, using Keras 2.4.3, Ten-
sorFlow 2.4.1, and scikit-learn 0.22.2.post1.

3https://github.com/airtlab/italian-sign-language-
recognition/

Table 2
Number of training epochs in each split (s1-s5) of
the 5 split experiments, with and without Data
Augmentation (DA).

s1 s2 s3 s4 s5
without DA 59 34 41 42 54
with DA 34 54 36 45 34

4.3. Results
Table 3 shows the prediction accuracy on the
test set obtained by repeating 5 times the strat-
ified shuffle split of the dataset. With the 780
samples of the original dataset, the mean ac-
curacy is 57.44% with a standard deviation of
5.46% over the 5 splits of the experiment. In
other words, around half of the test samples
gets misclassified. In fact, using only 576 sam-
ples for the network training (with 78 samples
used as validation data) results in a poor per-
formance of our model.

Instead, with the 7,020 samples of the aug-
mented dataset, the mean accuracy increases
to 97.36%, and the standard deviation decreases
to 0.62% over the 5 splits. Using 4,914 sam-
ples for training (with 702 samples used for
validation) significantly improves the perfor-
mance of our model. The lower standard de-
viation shows that the model trained on the
augmented dataset exhibits a better general-
ization. Intuitively, most of the misclassifica-
tion errors occurs with gestures which look
similar. For example, in the first split, the “V”
is erroneously identified as the “U” 9 times
and as the “F” one time, while other 44 sam-
ples are correctly identified. Similary, 3 “U”
samples are wrongly identified as “V”. In the
same split, the “W” is misclassified only one
time, being identified as the “V”.

The results are similar when repeating the
tests on 30 random stratified shuffle splits of
the dataset, as showed in Table 4. The mean
value of accuracy is 58.69% (± 4.37%) for the
original dataset and 97.07% (± 1.32%) on the

https://github.com/airtlab/italian-sign-language-recognition/
https://github.com/airtlab/italian-sign-language-recognition/


Table 3
Accuracy results with and without Data Augmentation (DA). The table includes the accuracy value in
each random split of the dataset, obtained with the stratified shuffle split cross-validation scheme.

Split 1 Split 2 Split 3 Split 4 Split 5 Mean
without DA 62.18% 51.92% 51.92% 55.77% 65.38% 57.44 ± 5.46%
with DA 97.22% 98.36% 96.94% 97.72% 96.58% 97.36 ± 0.62%

Table 4
Mean number of training epochs and mean accu-
racy on 30 random stratified shuffle splits, with
and without Data Augmentation (DA).

Epoch # Accuracy
without DA 42.77 ± 9.01 58.69 ± 4.37%
with DA 37.67 ± 7.80 97.07 ± 1.32%

augmented dataset. Therefore, both in the
experiments with 5 splits and 30 splits, the
training on augmented data is more stable
than with the original data, resulting in a
lower standard deviation on the test accuracy.
Moreover, the tests did not highlight any sig-
nificant difference in the recognition of static
gestures (most of the letters) with respect to
the dynamic ones (“G”, “H”, and “Z”), scoring
similar class-wise precision and recall values.

These preliminary results encourage the
use of wearable devices equipped with EMG
and IMU sensors to execute the recognition
of the LIS with deep neural networks. Most
of the samples gets correctly identified by our
LSTM-based model. As expected, the data
augmentation improves the performance, and
our model gets better results with more data,
highlighting the need of expanding the col-
lected dataset.

4.4. Threats to validity
Being in early stage, the presented research
inevitably suffers from some threats to valid-
ity. Concerning the collected dataset, all the
gesture samples were performed by the same
subject. Samples from more subjects are nec-
essary to get more general conclusions. More-
over, we arbitrary fixed the time window for

the gesture acquisition to 2 seconds. Such
time window is worth of further research, as
this time might vary from person to person
and also for more complex gestures.

Concerning the presented results, we built
our model on the results of existing literature
about LSTMs to process time series, especially
in speech and gesture recognition. However, a
systematic study on alternative models as well
as a comparison on more datasets should be
performed to get more results, and therefore
validate our method.

5. Conclusions
We presented a deep learning approach for
the recognition of the LIS alphabet, based on
surface EMG and IMU data. Specifically, we
developed a deep neural network based on the
bidirectional LSTM architecture. To validate
our method, we built a dataset including 30
gesture samples for each letter of the alphabet.
The gestures were recorded from the 8 EMG
sensors and the IMU of the Myo Armband.
To ensure the proper training of our model,
with enough samples, we used data augmenta-
tion, simulating the rotation of the armband.
The results are preliminary, but promising:
on the augmented dataset, our model got 97%
accuracy, showing few classification errors
on very similar gestures. The source code of
the experiments and the dataset are available
as public GitHub repositories, to guarantee
the reproducibility of the tests. Moreover, the
public dataset is available for further tests.

The presented research is in early stage,
since a systematic study of alternative deep



neural network configurations and architec-
tures, as well as comparison on other datasets
are necessary to fully validate our approach.
Also the proposed dataset can be improved.
In the current versions, all the samples were
performed by the same subject, using a fixed
time window. More subjects and different ac-
quisition setups should be included to expand
the dataset. Finally, the evaluation was based
on one hand gestures. Tests on two hands
gestures, combining data from two devices,
are necessary to understand the viability of
the proposed method in the real world.
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