
Knowledge Graph Lifecycle: Building and
Maintaining Knowledge Graphs

Umutcan Şimşek1, Kevin Angele1,2 Elias Kärle1,2, Juliette Opdenplatz1,
Dennis Sommer1, Jürgen Umbrich2, and Dieter Fensel1

1 University of Innsbruck, Technikerstrasse 21a 6020 Innsbruck, Austria
{umutcan.simsek, kevin.angele, juliette.opdenplatz, dennis.sommer,

dieter.fensel}@sti2.at
2 Onlim GmbH elias.kaerle, juergen.umbrich@onlim.com

Abstract. Knowledge graphs are only useful if they satisfy the require-
ments of those applications in terms of quality. In this in-use experience
paper, we present our approach and tools for supporting the knowledge
graph Lifecycle that starts with creation and hosting and continues with
the curation and deployment. The curation process enables the mainte-
nance of a knowledge graph, especially in terms of correctness and com-
pleteness. We provide process models and evaluation of developed tools
with Knowledge Graphs in the tourism domain. We discuss the lessons
learned from implementing such an approach in an open and commercial
setting in several use cases.

Keywords: knowledge graphs · knowledge graph lifecycle · knowledge
curation · knowledge creation

1 Introduction

The lifecycle of a knowledge graph comes with two main challenges (1) how
to integrate heterogeneous sources in a knowledge graph in a scalable manner (2)
how to make them a high-quality resource (e.g., semantically and syntactically
correct, no duplicate instances) given the applications in hand.

In this in-use experience paper, we present various tasks of the knowledge
graph lifecycle and the tools we developed or adopted to support the knowledge
graph lifecycle. The Knowledge Graphs built with this approach are deployed in
an open as well as a commercial setting in the tourism domain to support con-
versational agents. We learned various lessons while implementing our approach
about;

– orchestration of different tasks in the knowledge graph lifecycle
– technical and conceptual challenges of dealing with heterogeneous data and

distributed actors for knowledge creation

Copyright © 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



U. Şimşek et al.

– different perspectives on quality and knowledge integrity for error detection
– challenges of duplication detection configuration during knowledge enrich-

ment

In the remainder of the paper, we first present the tasks of the knowledge
graph lifecycle (Section 2) and tools developed or adopted to tackle them, includ-
ing the use cases for which the knowledge graphs are deployed. Then, we present
the lessons learned from developing and implementing our approach (Section 3).
Finally, we provide concluding remarks and indicators for future work (Section
4). Note that we do not have a dedicated related work section. Naturally, we
benefited from a plethora of research work while developing our approach. Due
to space restrictions, we do not have a dedicated related work section; how-
ever, we discuss the ones that are directly related to the lifecycle and individual
processes. A comprehensive review can be found in [5].

2 Knowledge Graph Lifecycle

There are already proposed methodologies for iterative construction of Knowl-
edge Graphs from various sources (a recent one is described in [11]), but con-
struction is only one side of the coin. On the one hand, it must be built from
various heterogeneous sources, on the other hand, it must be turned into a high-
quality resource that satisfies the requirements of the use case and applications in
hand [14, 2]. Figure 1 shows these processes and the tools developed or adopted
to support them.

The lifecycle starts with the creation process that deals with the generation
of semantically annotated data from heterogeneous sources. For this task, we de-
veloped the Importer Tool, which is an ETL tool utilizing RML mappings and
a mapping engine we developed called RocketRML [16]3, as part of the seman-
tify.it platform[7]4. The created knowledge is then hosted in an RDF triplestore
like GraphDB5.

The curation process aims to improve the correctness and completeness of
a knowledge graph. The first step is to assess the quality of the knowledge
graph. Knowledge quality assessment may involve various dimensions including
correctness and completeness6.

Based on the quality score of the correctness and completeness dimensions,
the cleaning and enrichment processes can be triggered. The cleaning task in-
volves error detection and correction. We developed the VeriGraph tool that uses
integrity constraints implemented with SHACL to detect errors in a knowledge
graph. The enrichment process involves detecting duplicate instances in a knowl-
edge graph (or across knowledge graphs) and enrich them with ”same as” links.

3 https://github.com/semantifyit/RocketRML
4 https://semantify.it - registration and login required.
5 https://graphdb.ontotext.com
6 The knowledge assessment tool is still at an early stage of development and not

presented in this paper. An early demo can be seen at https://qat.semantify.it



Knowledge Graph Lifecycle

Knowledge Creation

Knowledge Hosting

Knowledge Cleaning Knowledge Enrichment

Knowledge
Assessment

Knowledge
Curation

 Importer
and

semantify.it

GraphDB

VeriGraph
Duplication Detection

as a Service

Knowledge Deployment
Conversational Agents

and
Open and Commercial

Knowledge Graphs

Fig. 1: The knowledge graph lifecycle (adapted from [5]). The italic labels repre-
sent the tools developed/used for each process

The property values of the linked instances may need to be fused afterward,
which may require another cleaning process to identify violations of integrity
constraints (e.g., a property with one maximum cardinality may have multiple
values after the fusion.). The curated knowledge graphs are finally deployed to be
consumed by various applications. These processes continue iteratively to con-
stitute the lifecycle. In the remainder of the section, we focus on the creation,
cleaning, and enrichment tasks and present the tools we employed to tackle
these tasks including some design decisions. Finally, knowledge deployment will
be presented in the form of use cases.

2.1 Knowledge Creation

Knowledge creation, as defined in [5], describes ”extracting information from
different sources, structuring it, and creating useful knowledge”. For the cre-
ation process, we use schema.org vocabulary as schema, because it covers many
domains and is a de facto industrial standard for semantic annotations on the
web.

In principle knowledge, creation can be done manually, for example via a
GUI, through mappings from (semi-)structured sources or semi-automatically
from unstructured sources. In our use cases, the majority of the knowledge is
created via declarative mappings from hierarchical data sources. In the context
of our work, the data to be integrated into the knowledge graph was obtained
from different service providers in different formats, typically JSON or XML.
The mapping was then defined from those sources to schema.org.



U. Şimşek et al.

The process model for knowledge creation via mappings is the following:
We first collect raw data from different service providers via web services. Each
object retrieved is mapped to schema.org to create an instance of a schema.org
type with its property values assertions. Alternatively, data providers can provide
RDF data directly. The generated or acquired RDF data is then enriched with
provenance information based on PROV-O7.

Besides the technical challenge of creating mapping files, there is also a con-
ceptual one that involves the selection of types and properties for the mapping.
It is even more challenging when the actors creating the mappings and select-
ing the types and properties are not the same. We developed an approach for
creating domain-specific patterns of schema.org and its extensions[15]. These
patterns describe the relevant types, properties, and constraints for a domain
and facilitate the communication between domain experts, knowledge engineers,
and mapping rule creators. The patterns are implemented via SHACL shapes to
make them more machine-processable and can be used to verify created knowl-
edge (see also Section 2.2). For the declarative mapping rules, we adopted RDF
Mapping Language (RML) [4] with YARRML8 syntax mostly to enable the soft-
ware developers to create mappings easily, as they are familiar with YAML-based
syntaxes.

We implemented the creation process in the Importer tool. The tool allows
registration of new sources including all the access information and their RML
mapping files. The timing and frequency of the mappings can be specified with
cron strings. The Importer has Apache NiFi9 in its core to manage the entire
data flow from accessing raw data to storing it in a triplestore. Apache NiFi is a
dataflow management tool that offers load balancing, buffering and guaranteed
delivery. The actual mapping is executed via an external RocketRML instance,
a scalable RML mapper implemented with NodeJS.

RocketRML currently supports JSON, XML, and CSV formats and adopts
optimization techniques like JOIN path memoization for high-performance. It
supports various JSON-Path and XPath implementations allowing users to ac-
cess extra features like backward traversal in a JSON file with JSON-Path Plus10.
It also supports function mappings which are frequently used for transform-
ing property values and distinguishing between different subtypes of schema.org
type during the mapping (e.g., different types of events can be dynamically
mapped with a single mapping). Listing 1 shows an excerpt from a mapping
supported by RocketRML11. The mapping file creates schema:LocalBusiness in-
stances from various touristic regions’ data in Tyrol. Note that the getType func-
tion returns the suitable subtype of schema:LocalBusiness (e.g., schema:Store,
schema:Library) for a given instance. The relationship between a local business
and its opening hours is given by the nested structure of XML tags and not

7 https://www.w3.org/TR/prov-o
8 https://rml.io/yarrrml/
9 https://nifi.apache.org

10 https://www.npmjs.com/package/jsonpath-plus
11 Full mapping can be found online: https://tinyurl.com/96xcfs3k



Knowledge Graph Lifecycle

#prefixes

sources:

...

mappings:

acc:

sources:

- acc

s: ml:$(@Id)

po:

- [a, {function: myfunc:getType, parameters:

["$(Details/Topics/Topic/@Id)"]}]↪→

- [schema:name, "$(Details/Names/Translation[@Language='de'])",

de~lang]↪→

- [schema:name, "$(Details/Names/Translation[@Language='en'])",

en~lang]↪→

...

- [schema:openingHoursSpecification, {mapping: hours, join: [@Id,

../../../../@Id]}]↪→

...

Listing 1: An excerpt from an RML mapping with YARRML syntax for local
businesses in touristic regions

by primary-foreign key relationships. Therefore, the mapping uses a backward
traversal from opening hours object to the local businesses’ Id field to join them
properly.

The RML mapper used in the Importer, RocketRML, can map 25K triples
per second on average. However, the overhead caused by sending queries to the
GraphDB instance over HTTP harms the overall import process. A more detailed
explanation of knowledge creation via mappings and a detailed evaluation of the
importer tool can be found in [17].

2.2 Knowledge Curation

Knowledge Curation is a process for assessing and improving a knowledge graph
in various dimensions, especially correctness and completeness (see also ”knowl-
edge refinement” [10], with a narrower set of tasks). In this section, we explain
the processes comprising Knowledge Curation and the tasks on which we focused
in the scope of our work.

Knowledge Cleaning Knowledge Cleaning is a process that aims to improve
the correctness of a knowledge graph. It consists of (a) error detection, the
task for identifying the erroneous type and property value assertions, and (b)
error correction, fixing the identified statements. We focused on the former,



U. Şimşek et al.

particularly the verification task where the knowledge graph is checked against
a specification such as integrity constraints.

Our approach is based on verifying the instances in a knowledge graph against
the domain-specific patterns of schema.org. These patterns are expressed with a
subset of SHACL 12. For such an approach we considered various SHACL verifiers
but none of them covered our needs properly. RDFUnit was the closest tool to
satisfy our requirements as it is triplestore-independent and can work directly on
SPARQL endpoints without loading a data dump to the memory. However, we
had issues with large Knowledge Graphs in some of our use cases (particularly
Tyrolean Tourism Knowledge Graph) as the verification never ended after 10M
triples (see below for evaluation).

For detecting errors in a knowledge graph, we conceptualized and developed
a verifier that checks whether a particular subset of a knowledge graph fits the
domain-specific pattern. Figure 2 shows the process model.

Fig. 2: UML Activity Diagram for error detection process model

The first step loads a domain-specific pattern that comprises the shapes
graph for verification. Then the verification process is split into two lines: The
first line of verification retrieves the URIs of the instances that match the target
specification and adds them to a verification queue. Then, for each URI in the

12 Details of the subset can be found in [15]



Knowledge Graph Lifecycle

queue, a data graph is retrieved and verified against the domain-specific pattern.
In parallel, the verification process retrieves all blank nodes that match the target
description and their data graphs and stores them in a cache. Then, each data
graph in the cache is verified against the loaded domain-specific pattern. The
results of both lines of verification are then compiled in a verification report.
Note that the data graph in both lines corresponds to the subgraph built by
following all the outgoing edges of a focus node recursively until no new node
can be added to the data graph (e.g., all nodes to be expanded are literals).
Due to the limitations of SPARQL, such a recursive traversal is tricky. There
is a way to do this in a single query by using ?s (:|!:)* ?o graph pattern,
but admittedly it is a bit hacky. One can also rely on DESCRIBE queries if the
triplestore implements them appropriately.

We implemented our error detection approach in the VeriGraph tool13. The
tool has been implemented in Javascript and available with an open license.
It can be configured to run on any knowledge graph that provides a SPARQL
endpoint. In our experience with many SHACL verifiers, we realized there are
generally two main issues in practice: (1) operating in-memory, which causes
insufficient memory problems with large data graphs (2) SPARQL endpoints
are not always reliable for frequent queries that return high-volume results. The
first issue we address with a caching mechanism. The data graphs are cached on
the disk and only loaded to the memory when they are needed for verification.
The second issue is addressed by both indexing and the caching mechanism.
Indexing the URIs and querying their data graphs one-by-one reduces the size of
the data graph returned by a single query. Each constraint component defined by
the property shapes is checked by graph-traversal in the memory. This reduces
the number of SPARQL queries running against an endpoint for verification.
Additional to the typical SHACL verification report, the VeriGraph tool provides
metadata about the verification process (e.g., duration, number of violations
found).

We evaluated the VeriGraph on several subgraphs of Tyrolean Tourism Knowl-
edge Graph with an increasing number of triples, starting from 100K up to 1B14.
Each knowledge graph contains instances of types like Event, Hotel, HotelRoom,
Person, and Product. The evaluation has been conducted on a server with an
Intel Core i9-9900K Octa-Core 3.60GHz processor, 64GB RAM, and 2TB SSD.
We compared our implementation with the SHACL verifier of AllegroGraph (via
agTool)15, RDFUnit, built-in SHACL verifier of Stardog, and TopBraid SHACL
API16. The instances were verified against a set of constraints with different tar-
get specifications17, except for one constraint for Stardog, due to a non-supported
constraint type (a property-pair constraint). Figure 3 shows the verification time
in relation to knowledge graph size. While each tool detects about the same num-

13 https://github.com/semantifyit/VeriGraph
14 http://dataset.sti2.at/datasets/
15 https://franz.com/agraph/support/documentation/6.6.0/shacl.html
16 https://github.com/TopQuadrant/shacl
17 https://github.com/semantifyit/VeriGraph/blob/master/constraints/constraints.ttl



U. Şimşek et al.

ber of violations for the same size, in terms of time spent, VeriGraph stands out
as the size grows. It is the only one that can finish verification on a knowl-
edge graph with 1B triples. In smaller Knowledge Graphs, VeriGraph is behind
the tools either working completely in-memory (TopBraid) or on their triple-
stores natively (AllegroGraph, Stardog) for smaller datasets. For RDFUnit and
VeriGraph connecting to generic SPARQL endpoints of triplestores create an
overhead. Our initial investigations showed that RDFUnit’s performance is af-
fected primarily not by the size but the number of violations found. This could
be because of generating one SPARQL query for each constraint component and
overhead caused by processing the results of these queries to create verification
reports. Nevertheless, VeriGraph is not a complete SHACL verifier as it only
recognizes a subset of SHACL (e.g. only class-targets are allowed). However, it
appears to be a feasible choice for our use cases.

10−1 100 101 102 103
10−1

101

103

105

Size of dataset (in million)

O
v
er

a
ll

v
er

ifi
ca

ti
o
n

ti
m

e
(s

)

10−1 100 101 102 103

104

105

106

107

108

Size of dataset (in million)

O
v
er

a
ll

v
io

la
ti

o
n
s

d
et

ec
te

d

agTool RDFUnit Stardog TopBraid VeriGraph

Fig. 3: Comparison of different tools in terms of total verification time and num-
ber of violations detected for different dataset sizes [1].

Knowledge Enrichment Knowledge Enrichment is a process that aims to im-
prove the completeness of a knowledge graph [5]. The completeness is enhanced
by identifying and adding missing instance, property value, and equality asser-
tions. In our work, we focused on the duplicate detection task, to find the equality
assertions between instances within or across Knowledge Graphs and add the
missing instance equality assertions. We take schema.org as the golden standard
and do not focus on the alignment of TBox. Heterogenous schemas from different
Knowledge Graphs are mapped to schema.org via declarative mappings.



Knowledge Graph Lifecycle

Mapping Indexing Pre-filtering Property-value
standardization

Instance
comparison

Decision
model

application

Duplicate Detection PhaseIndexing Phase

Fig. 4: A short depiction of the duplicate detection process.

We developed a highly configurable service-oriented approach to the dupli-
cate detection problem that allows linking duplicate instances in a knowledge
graph or from external Knowledge Graphs [9]. The process model is shown in
Figure 4. The whole process is divided into two main phases: (1) the indexing
phase where the knowledge sources are mapped to a common format if needed
and indexed into an internal Elasticsearch18 instance, and (2) the duplicate de-
tection phase which is divided into four steps: The first step is the pre-filtering
step that determines candidate duplicates of two previously indexed knowledge
sources. This step selects a set of candidate instances to which the duplicate
detection process will pay attention19. In the second step properties are normal-
ized such that two instances are easier to compare (e.g., via regular expressions
over string values, mathematical operations to normalize units of certain numer-
ical values). The third step executes the actual detailed comparison between the
candidate duplicates which results in a similarity score for a candidate duplicate.
Here several different similarity metrics are used for different types of property
values (e.g., Jaccard, Levenshtein for string similarity; Euclidean distance for
geocoordinates). Finally, the fourth step applies a decision model in which the
similarities from the third step are utilized to classify the suspected duplicates as
either duplicates or non-duplicates. The output of the duplicate detection phase
can then simply be translated into schema:sameAs statements.

The duplication detection problem is almost as old as computer science itself
and there have been a plethora of approaches to tackle it. We also examined var-
ious tools such as Duke[6], LIMES[8], Silk[13] for linking instances in knowledge
graphs. They all have different advantages and disadvantages; however, one com-
mon aspect is that they all need some form of a configuration file for properties
used for similarity measurement, their weights, and thresholds for determining
duplicate instances. The configuration effort can become quite high especially
when the schemas get complicated. Many tools offer machine learning algorithms
to find the best values for different configuration parameters to achieve the best
F-score. We combined the insights we obtained from these tools and provided a
supervised configuration learning approach with larger flexibility and granular-
ity that allows learning parameters not only for choosing similarity metrics and

18 https://www.elastic.co/elasticsearch/
19 The pre-filtering works based on the more like this queries of elasticsearch.

The ”likeness” is calculated with TF-IDF. Putting a high threshold for the
number of matching terms may harm the recall of the overall approach. See
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-
query.html .



U. Şimşek et al.

thresholds but also indexing and pre-filtering steps. We provide the possibility
to use various algorithms such as time-constrained brute force, hill climbing,
localized brute force, and genetic algorithms with random mutations for each
parameter. The configuration learning can be adjusted towards optimizing for
not only F-score but also recall or precision.

We implemented our approach in a tool called Duplicate Detection as a
Service (DDaaS). The tool consists of multiple services for different tasks. These
services are orchestrated via REST. The decision in the favor of a service-oriented
architecture is to facilitate easy replacement of individual components and their
independent development.

To evaluate the approach, we compared it with three other tools, Duke,
LIMES and Silk, all of which also influenced the development of DDaaS. We
compared the tools over two datasets (Restaurants20 and SPIMBENCH21). The
results are displayed in Table 1.

Restaurants

Tool F1-Score Precision Recall

DDaaS 0.76 1.00 0.61

Duke 0.77 1.00 0.62

LIMES 0.80 0.86 0.74

Silk 0.40 0.79 0.27

SPIMBENCH

Tool F1-Score Precision Recall

DDaaS 0.85 0.98 0.76

Duke 0.09 0.05 0.75

LIMES 0.72 0.88 0.61

Silk 0.62 0.77 0.53

Table 1: Duplicate detection comparison of DDaaS, Duke, LIMES, and Silk

We ran every tool the most automated way possible and results indicate that
DDaaS is at least on par with the other tools. The SPIMBENCH results are
particularly interesting here, while the results for the Restaurants dataset are
more balanced. The main differences between these datasets lie in the number of
properties and their completeness. While the Restaurant dataset is a perfect toy
dataset, the instances in the SPIMBENCH dataset are very sparse with regards
to property values on many instances. Duke’s purely genetic approach to learning
a configuration for this particular dataset seems to be flawed as it will keep
retrying to use properties that are not even available for most instances. DDaaS’
approach to learning a configuration is a composition of different approaches
which includes a genetic approach but also less randomized approaches. We call
this composition the learning strategy. Since every single element of this strategy
(i.e., configurable pieces) can be configured to aim to optimize one of the three
measures (precision/recall/F1), it achieved a good performance even on such an
incomplete dataset. Further evaluation on Tyrolean Tourism Knowledge Graph
is ongoing.

20 https://www.cs.utexas.edu/users/ml/riddle/
21 https://project-hobbit.eu/challenges/om2020/



Knowledge Graph Lifecycle

2.3 Knowledge Deployment

”The proof of the pudding is in the eating.” A knowledge graph is only as valuable
as the applications it enables. Therefore, the knowledge deployment task deals
with the applications that are powered by a knowledge graph. In this section, we
present three use cases where this lifecycle-based approach is being implemented
to build knowledge graphs to power various applications.

German Tourism Knowledge Graph The German Tourism Knowledge
Graph is the reference project to implement the presented lifecycle-based ap-
proach. A ”knowledge management tool” is currently being implemented to
manage creation, hosting, curation, and deployment. The knowledge graph will
integrate tourism-related data from the tourism marketing organizations of 16
federal states and many other external sources. The knowledge graph manage-
ment tool will offer features like provenance tracking, machine-understandable
licenses, and various types of visualizations as well as APIs for programmatically
accessing to the knowledge graph. The knowledge graph will follow domain-
specific patterns of schema.org and its extension developed by the Open Data
Travel Alliance which is an organization that brings tourism experts from Aus-
tria, Germany, Italy, and Switzerland to create schemas for tourism knowledge
graphs. These patterns are published in human-readable form and as SHACL
shapes to help the data providers from the touristic marketing organizations to
create RDF data via declarative mappings. Same patterns will be used to verify
the incoming data.

The project started in December 2020 and will run for 2 years, with an
initial prototype in May 202122. It will be open to application developers from
different domains (e.g., mobility service providers, online travel agencies) and
aim to foster the development of intelligent applications that improve e-tourism
processes.

Tyrolean Tourism Knowledge Graph A notable example is the Tyrolean
Tourism Knowledge Graph23, which contains more than 12B statements. It is
populated with data from 11 different sources (mainly Destination Management
Organizations from different regions in Tyrol) and updated daily. The presented
knowledge creation process is applied fully in this use case and knowledge clean-
ing processes are running on demand. The knowledge coming from different
sources is organized in named graphs. The named graphs imported from the
same source on different time points are linked with each other via the prove-
nance information, which allows applications like time series analysis on fre-
quently changing data (e.g., accommodation prices, weather measurements).

Onlim Conversational Agents Onlim GmbH deploys knowledge graphs de-
veloped with the presented approach commercially. Onlim uses their knowledge

22 See the project timeline online. - https://open-data-germany.org/projektstand/
23 http://tirol.kg



U. Şimşek et al.

graph to power their conversational agents in different domains such as tourism,
education, energy, and finance. Most notably in the tourism domain, they pro-
vide about 20 conversational agents. These agents are typically goal-oriented
dialog systems (GDS) that help users to achieve their goals via conversations.
In the case of Onlim, a knowledge graph powers a GDS in two different ways:

– Providing entities for annotating user utterances to train Natural Language
Understanding (NLU) models.

– Serving as a knowledge source to provide the knowledge needed for a task
at hand

Onlim uses state-of-the-art GDS development frameworks such as DialogFlow24

and RASA25 to streamline the conversational aspects of a dialog system such
as NLU, dialog management and NLG. Such frameworks work with intents,
structures that represent the user goals a GDS supports. The frameworks use
supervised machine learning to classify utterances to intents. They use Knowl-
edge Graphs to create annotated utterances for each intent to help the machine
learning models classify incoming utterances to the correct intents. An intent is
then mapped to a SPARQL query and the user’s question is answered based on
the data provided by the knowledge graph (e.g., accommodation, events, infras-
tructure). The lifecycle explained throughout the paper ensures that the answers
returned a high quality (e.g., resolved duplicate instances, correct property val-
ues). An example of such a GDS can be found online26.

3 Discussion and Lessons Learned

In this section, we discuss our lessons learned from implementing the presented
lifecyle, from the perspective of the overall approach, and creation and curation
processes with references to the use cases above.

3.1 Lessons learned from the implementation of the lifecycle

Orchestration of different tasks in the lifecycle The knowledge graph life-
cycle involves many tasks and each task has been addressed in the literature
with a vast number of methods and tools. We realized however there is an im-
portant gap while implementing the lifecycle which is a tool that can provide
periodic and on-demand actuation of various processes and their orchestration.
An open and decoupled architecture can facilitate relatively painless integration
of different steps in the lifecycle. The interoperability of different tools targeting
different tasks remains an interesting research and engineering challenge. Here
we can take a page from the book of the question-answering systems community
as they have been proposing an open architecture to increase the reusability
and interoperability of the tools targeting different steps of question-answering
system development [12].

24 https://dialogflow.com
25 https://rasa.ai
26 https://www.oberoesterreich.at/ - Flo-Bot virtual assistant.



Knowledge Graph Lifecycle

Community effort needed to maintain existing research products There
is a plethora of research that resulted in various tools for creation and curation
processes. Unfortunately, many of them, especially relatively older ones were
abandoned in their GitHub repositories, and not maintained further. Naturally,
we gained valuable insights even by only studying the publications. However, it
is hard to assess their suitability for different use cases without being able to run
them properly and this may lead to reinventing the wheel. Community groups
such as Knowledge Graph Construction Community Group (KGC CG) may be
the solution to this ”research prototype graveyard” situation. Such groups con-
sisting of research and industrial partners can take a selection of approaches and
tools and further maintain them as an open-source community effort, possibly
under the umbrella of organizations like Apache Foundation.

3.2 Lessons learned from knowledge creation

Real data is not perfect, knowledge creation is not trivial Constructing
Knowledge Graphs from heterogeneous sources scale well with declarative map-
pings. However, the data received from real-world IT solution providers are not
always ideal. For instance, in the Tyrolean Tourism Knowledge Graph use case,
we frequently encountered data sources that do not provide any fields to join two
logical sources (e.g., events and their organizers) but the relationship is specified
by nested structures. We worked around this by extending the existing JSON-
Path and XPath27 implementations with a ˜PATH term which represents the
absolute path of a value in the JSON or XML tree, which is suitable for joining
nested structures. Moreover, various source-specific cleaning steps are involved in
many cases, which hinders scalable development. Here again community efforts
like KGC CG can be beneficial for identifying common challenges in declarative
mappings and addressing them within the existing tools and approaches.

Conceptual and social challenges stand The advantages of using declarative
mappings are clear in terms of flexibility and reusability, however, the conceptual
and social challenges still stand. The domain experts must define the domain by
identifying relevant types, properties, and constraints and communicate them
to the developers and mapping creators. This is particularly challenging when
these actors are distributed across different organizations, as it is in the German
Tourism Knowledge Graph, where semantically annotated data comes from at
least 16 different organizations to be integrated into a single knowledge graph.
We experienced that simple human- and machine-understandable patterns of
schema.org and its extensions published by domain experts improve the knowl-
edge creation process significantly.

3.3 Lessons learned from knowledge curation

There can be different perspectives on knowledge integrity One experi-
ence we had with Tyrolean and German Tourism Knowledge Graph use cases is

27 Newer XPath implementations already have similar functions.



U. Şimşek et al.

that the different instances of the same type may have different expected shapes.
For instance, a generic Organization shape may require schema:vatID property
however for a schema:Organization instance that is the value of organizer prop-
erty of an event only the name property may be interesting. A SHACL shape
that targets the Organization type would verify both Organization instances,
which is not the intended behavior. To address this, we see domain-specific pat-
terns as types with local properties and ranges. This means the relevant shape
of each instance has to be asserted on that instance. Then the verification turns
into instance checking under Closed-World Assumption.

Distinguishing between different kind of constraints may help optimiz-
ing cleaning process For commercial applications of knowledge graphs such
as the Onlim Conversational Agents, maintaining constant knowledge integrity
is crucial, especially in domains like energy and finance. No matter how efficient
the constraint checking process is conducted, the processing time may go out of
acceptable limits as the knowledge graph size and constraint complexity increase.
Distinguishing between constraints involving only metadata and constraints in-
volving property values can help the scalability of constraint checking as the
former can be done over the mapping files which has proven to be efficient[3].

Configuration of duplicate detection task and necessary trade-offs Cor-
rect configuration of the duplication detection task has technical and conceptual
challenges in itself, as it is necessary to identify the right properties and right pa-
rameter values for similarity calculation and filtering is important. Fortunately,
many tools offer configuration learning to help this process. For applications like
conversational agents where time is of the essence, the ability to learn configu-
rations for not only the duplication detection phase but also the preprocessing
steps like filtering and indexing may be beneficial. This way the process can
be optimized towards precision or recall, depending on the strictness of pre-
processing.

4 Conclusion and Future Work

In this paper, we presented our experience with implementing a knowledge graph
lifecycle including creation, curation, and deployment. We presented the tasks
in the knowledge graph lifecycle and employed a set of tools for many of those
tasks. The current implementation is lacking a proper tool to orchestrate the
lifecycle but it is currently being developed in use cases like the German Tourism
Knowledge Graph. There are still some tasks such as validating knowledge graphs
against the real world, fusing linked instances, and automating error correction
that requires further research. Moreover, the maturity of our tools is at a different
stage, however, they are actively being developed by industrial adopters such
as Onlim. We provided an evaluation of different tools supporting the lifecycle
individually. Their real evaluation will be in the next couple of years as the



Knowledge Graph Lifecycle

developed approaches and tools are continuously being tested in the knowledge
graphs and applications of Onlim.

As a knowledge graph gets bigger and supports more applications, it may
come to a point that the curation process may be infeasible, both due to the
size of the knowledge graph and changing contexts (e.g., different applications
and customers may have a different set of constraints and rules). Therefore, our
further research will focus also on building a layer on top of knowledge graphs
that enables applications to work on small subsets of knowledge graphs with
different configurations for curation which will allow the customization of the
knowledge graph for different application contexts.

Acknowledgement

This work has been partially funded by the industrial research project Mind-
Lab28.

References

1. Angele, K., Holzknecht, O., Huaman, E., Panasiuk, O., Simsek, U.: D312y2:
VeriGraph: A verification framework for Knowledge Integrity. Tech. rep., Mind-
Lab Project, Innsbruck, Austria (2020), https://drive.google.com/file/d/1RudX-
yt9JxomMb6OBCi4UD10vLtqWZBv/view

2. Athanasiou, S., Giannopoulos, G., Graux, D., Karagiannakis, N., Lehmann, J.,
Ngomo, A.C.N., Patroumpas, K., Sherif, M.A., Skoutas, D.: Big poi data integra-
tion with linked data technologies. In: EDBT. pp. 477–488 (2019)

3. Dimou, A., Kontokostas, D., Freudenberg, M., Verborgh, R., Lehmann, J., Man-
nens, E., Hellmann, S., Van de Walle, R.: Assessing and refining mappingsto rdf to
improve dataset quality. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M.,
d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K.,
Staab, S. (eds.) The Semantic Web - ISWC 2015. pp. 133–149. Springer Interna-
tional Publishing, Cham (2015)

4. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: Rml: A generic language for integrated rdf mappings of heterogeneous
data. In: Proceedings of the Workshop on Linked Data on the Web (LDOW2014)
co-located with the 23rd International World Wide Web Conference (WWW2014),
April 8. CEUR Workshop Proceedings, Vol-1184 (2014), http://ceur-ws.org/Vol-
1184/ldow2014 paper 01.pdf

5. Fensel, D., Şimşek, U., Angele, K., Huaman, E., Kärle, E., Panasiuk, O., Toma,
I., Umbrich, J., Wahler, A.: Knowledge Graphs. Springer International Publishing
(2020). https://doi.org/10.1007/978-3-030-37439-6

6. Garshol, L.M., Borge, A.: Hafslund Sesam - An Archive on Semantics. In: Pro-
ceedings of the 10th Extending Semantic Web Conference (ESWC2013): Semantics
and Big Data, Montpellier, France, May 26-30, 2013. Lecture Notes in Computer
Science, vol. 7882, pp. 578–592. Springer (2013), https://doi.org/10.1007/978-3-
642-38288-8 39

28 https://mindlab.ai/



U. Şimşek et al.

7. Kärle, E., Şimşek, U., Fensel, D.: semantify. it, a platform for creation, publication
and distribution of semantic annotations. arXiv preprint arXiv:1706.10067 (2017)

8. Ngomo, A.N., Auer, S.: LIMES - A time-efficient approach for large-scale link
discovery on the web of data. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI2011), Barcelona, Spain, July 16–22,
2011. pp. 2312–2317. AAAI Press (2011), https://doi.org/10.5591/978-1-57735-
516-8/IJCAI11-385

9. Opdenplatz, J.: Duplicate detection as a service (2020), master’s Thesis
10. Paulheim, H.: Knowledge graph refinement: A survey of approaches

and evaluation methods. Semantic Web Journal 8(3), 489–508 (2017).
https://doi.org/10.3233/SW-160218, https://doi.org/10.3233/SW-160218

11. Sequeda, J.F., Briggs, W.J., Miranker, D.P., Heideman, W.P.: A pay-as-you-go
methodology to design and build enterprise knowledge graphs from relational
databases. In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I., Hogan,
A., Song, J., Lefrançois, M., Gandon, F. (eds.) The Semantic Web – ISWC 2019.
pp. 526–545. Springer International Publishing, Cham (2019)

12. Singh, K., Radhakrishna, A.S., Both, A., Shekarpour, S., Lytra, I., Usbeck, R.,
Vyas, A., Khikmatullaev, A., Punjani, D., Lange, C., et al.: Why reinvent the
wheel: Let’s build question answering systems together. In: Proceedings of the
2018 World Wide Web Conference. pp. 1247–1256 (2018)

13. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on
the web of data. In: Proceedings of the 8th International Semantic Web Conference
(ISWC 2009), Chantilly, USA, October 25-29, 2009. Lecture Notes in Computer
Science, vol. 5823, pp. 650–665. Springer (2009), https://doi.org/10.1007/978-3-
642-04930-9 41

14. Weikum, G., Dong, L., Razniewski, S., Suchanek, F.M.: Machine knowledge: Cre-
ation and curation of comprehensive knowledge bases. ArXiv abs/2009.11564
(2020)

15. Şimşek, U., Angele, K., Kärle, E., Panasiuk, O., Fensel, D.: Domain-specific cus-
tomization of schema.org based on shacl. In: The Proceedings of the 19th Interna-
tional Semantic Web Conference. Springer (2020)

16. Şimşek, U., Kärle, E., Fensel, D.: Rocketrml - A nodejs implementation of a use-case
specific RML mapper. In: Proceedings of 1st Knowledge Graph Building Workshop
co-located with 16th Extended Semantic Web Conference (ESWC), to appear.
CEUR Workshop Proceedings (2019), http://arxiv.org/abs/1903.04969

17. Şimşek, U., Umbrich, J., Fensel, D.: Towards a Knowledge Graph Lifecycle: A
pipeline for the population of a commercial Knowledge Graph. In: Proceedings of
Conference on Digital Curation Technologies (Qurator 2020). CEUR-WS, Berlin,
Germany (jan 2020), http://ceur-ws.org/Vol-2535/paper 10.pdf


