
Hybrid AdaBoost and Naïve Bayes
Classifier for Supervised Learning

Ahiya Ahammed, Balazs Harangi, Andras Hajdu

University of Debrecen, Faculty of Informatics
ahiya.evan@gmail.com

harangi.balazs@inf.unideb.hu
hajdu.andras@inf.unideb.hu

Proceedings of the 1st Conference on Information Technology and Data Science
Debrecen, Hungary, November 6–8, 2020

published at http://ceur-ws.org

Abstract
Supervised learning is a task of machine learning that maps an input to an

output based on available data. The data set contains the information from
which we get to know the process of classifying at least some of the data
correctly. Thus, the classified data is called Training set. In this learning
method, the supervision comes from the instances having labels in the train-
ing set. Classification problems are mostly referred to come from the branch
of supervised learning. Classification is a function of machine learning that
finds out the correctly predicted class labels of instances for all the unlabelled
instances. In this research, our main focus will be discussing about the most
commonly used data classification methods especially Naïve Bayes (NB) and
Boosting basically Adaptive Boosting (AdaBoost) classifiers. In preparation
for the enhancement of the performances with regards to the accuracy rate
of those classifiers we would like to introduce two newly hybrid approaches
for classification when the data set is big, noisy and high dimensional. In
real life, the data sets usually contain noise or outliers, contradictory in-
stances or missing values. Mostly the data got affected by them during the
time of data collection or generation. To resolve that issue, we proposed two
new hybrid classifiers. Our first hybrid approach is the ADA+NB classifier,
where we used Adaptive Boosting (AdaBoost) classifier to find comparatively
more important attribute subsets before the assumption of class conditional
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independence using Naïve Bayes (NB) classifier [13]. Besides, NB classifier
assumes class conditional independence, therefore, it’s possible to multiply
the probabilities when the events are independent. Because of that, NB clas-
sifier can be very effective in removing examples from the training set before
the decision tree (DT) generation at the time of building AdaBoost model.
We named this process our second proposed hybrid NB+ADA classifier [14].
This paper investigates the comparison between two classical machine learn-
ing approaches with two new hybrid classifiers in terms of accuracy rate, error
rate, precision, f-score, sensitivity, specificity analysis on 4 real benchmark
data sets who are high dimensional and noisy chosen from UCI (University of
California, Irvine) machine learning repository. For instance, Adult data is
one of the renowned noisy data set available in UCI. Therefore, we tested Ad-
aBoost classifier which gave us accuracy of 87.65% and NB classifier provided
79.99%. On the other hand, our first proposed (ADA+NB) classifier showed
86.39% and our second proposed (NB+ADA) indicated 94.14% of the accu-
racy rate with the same data. Similarly, we used other data-sets and derived
performance comparison between the classifiers to prove that our proposed
classifier’s performances are higher than the text-book classifier’s.

Keywords: Supervised learning, classification, hybrid classifier, decision tree,
adaptive boosting, Naive Bayes classifier and performance comparison

1. Introduction

This research intends to establish two new, strong and powerful hybrid classifiers
with the following names ADA+NB and NB+ADA and compare them with two
existing machine learning approaches such as AdaBoost and Naïve Bayes classi-
fiers in order to gain the highest accuracy rate. Currently, increasing number of
researchers are using different classical machine learning algorithms to solve differ-
ent regression, classification and clustering problems. Classification problems are
the most widely studied and filled with plenty of new research domains in the area
of data science. Different applications of classification are being used in variety of
problem domains such as multimedia, text, medical or biological data and social
networking. These domains are using various methods of data classification such as
neural networks, decision trees, probabilistic or rule-based classification, Bagging,
Boosting, Support Vector Machine (SVM) and other instance-based techniques
etc. This paper consists of 2-major portions: comparative analysis on the machine
learning models, evidence of choosing our proposed classifiers over 2-classical ma-
chine learning classifiers with respect to higher accuracy rates, especially when the
training data is too noisy and large in dimension.

The first part “comparative analysis of machine learning models”, contains the
comparison between the classical machine learning algorithms such as Adaptive
Boosting (AdaBoost) and Naïve Bayes (NB) with our two proposed hybrid algo-
rithms, first hybrid classifier denoted as ADA+NB, because it starts with Adaboost
induction and then it classifies with the NB classifier and second one is NB+ADA,
because it starts with NB induction and then it classifies according to the Ad-
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aBoost classifier model. In the second part, the “evidence of choosing our proposed
algorithms” makes the comparison between our proposed algorithms with the clas-
sical Naïve Bayes (NB) classifier and Adaptive Boosting (AdaBoost) classifier, and
states that when the data sets are noisy or there are presence of outliers and re-
spectively high in dimensions the proposed hybrid classifiers perform well, when it
comes to the accuracy rate, error rate, precision, f1-score, sensitivity/recall or speci-
ficity records analysis. Generally, the classifier’s performance in machine learning
depends on the data quality. Sometimes data with the lower quality are used as the
training set to build the model that might lead to creating the over-fitting problems
for that particular model. For instance, though AdaBoost is a strong classifier, due
to the presence of noise or outliers in the training data, if anyone tries to build
AdaBoost model from that data, decision trees (DT) might suffer from the over
fitting problem, during the time of tree generation. As a result, being a classifier
with high calculations AdaBoost fails to provide the expected accuracy rate [3].

Therefore, it is really important to pre-process the data set before it can be used
for the training. Data pre-processing can improve the data quality. As a result, it
can take tremendous part to enhance the classifier model’s efficiency. Therefore,
accuracy might also be improved. In paper [14] several pre-processing techniques
are available such as:

1. Data cleaning: Removing noise or outliers or missing values.

(a) Outliers or anomaly: Using method of binning, process of regression or
clustering.

(b) Missing value: Ignoring the instance or filling the missing values (con-
sidering the mean value or manually).

2. Integration: Data are merged from different resources.

3. Transformations: Normalization of data, proper selection of attributes, dis-
cretization of the data.

4. Reduction: Cube aggregation of the data, subset selection of attributes,
shorten the dimensions.

2. Related Work

2.1. Adaptive Boosting (AdaBoost) Classifier
During the process of Boosting in paper [1] a weight is assigned for each training
example. It also adjusts the weight efficiently at completion of individual cycle.
Not correctly classified examples will have more increased weight, whereas cor-
rectly classified ones will have more decreased weights. In consecutive iterations,
AdaBoost is forced to concentrate on the hardly identified examples.

The paper [13] discussed about a AdaBoost classifier for biological data which
have multiple classes. It takes into consideration noise reduction, over-fitting and
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class-imbalance problems. To stop over-fitting, the classifier considers a random
subspace solution. By giving it a flavor of boosting, it pays more emphasis on the
incorrectly classified instances in the next round or iteration.

Adaptive boosting was first applied in 1997 by Freund and Schapire [16]. Over-
fitting is the main disadvantage of AdaBoost. When the final classifier gets too
complicated, the test error increases [4, 10, 22]. The AdaBoost classifier’s test error
also starts to reduce after the training error becomes 0 and never rise back; when
lots of rounds are passed through. Besides, after incredibly huge rounds, the error
on the test set was found to be increased marginally [17] Boosting, along with the
more developed classifiers, such as the Decision Tree (DT), Neural Network (NN),
Support Vector Machine (SVM) and Naïve Bayes (NB) classifier have become one
of the alternative mechanisms for classification [6].

AdaBoost classifier’s popularity can be due to its potential to stretch the margin
according to the research, [23] which may increase the classifier’s generalization
capabilities. There have been reports of several experiments using Decision Trees
(DTs) [9] or Neural Networks [24] or Support Vector Machine (SVM) [19] as element
classifiers or learning schemes in Adaptive Boosting (AdaBoost) classifier. Such
experiments indicate strong success of these AdaBoost classifier’s generalization,
with some difficulties still remaining. What should the appropriate size of the
tree? Especially when Decision Trees (DTs) are used as learning scheme. And
how should manage computational difficulties? Especially when Neural Networks
(NNs) are used as learning scheme. Before using AdaBoost classifier, both of these
questions need to handled carefully to produce better results.

2.2. Decision Tree (DT) Classifier
Construction of decision tree (DT) is very simple and useful approach with a wide
number of variables for classifying instances in large data sets. During the process
of DT generation, 2-widely known steps are followed:

• Decision tree evolution has to be made so that the examples available on the
training can be classified correctly.

• With regard to getting higher classification rate; precision or accuracy rate at
time of pruning some redundant nodes and branches needed to be eliminated.

In paper [15] they proposed a new algorithm named Decision Tree Fast Splitting
(DTFS), is used for large data sets to construct decision trees (DTs). To extend
tree nodes as well as training examples are processed in an incremental way, DTFS
used this attribute collection technique. DTFS has stored a limit of N instances
in a leaf node in order to avoid saving all the examples available in DT. Until the
number of instances available in leaf node that have been stored, met it’s maximum,
the leaf node was modified accordingly.

A new approach of constructing Decision Tree (DT) while solving classification
problems using cluster based analysis method; named Classification based clus-
tering (CbC), was presented in the research paper [3] Similarities were observed

4



between instances while using the clustering algorithms and specified some target
attributes. Afterwards, it evaluated the distribution of each cluster’s target at-
tributes. When the number of instances contained in a cluster is met for a specific
threshold value, all instances in each cluster were listed according to the target
attribute’s acceptable value.

They recommended a new classification scheme on a classifier for the Decision
Tree (C4.5 algorithm) and to enlarge the accuracy rate for solving multi-class
problems in [21] and they also introduced an unique approach where, M numbers
of classifiers were developed by their system, each of which distinguished one class
from the other. A procedure is suggested in [2] in the analysis to overcome the
possible exceptions in the algorithms of simple decision tree (DT) induction. In
their work, the influential element of attributes was discovered, which provided the
reliability of the attribute value on the target value. Based on this aspect, the DT
was pruned.

In the research [8] an algorithm is made especially for the Fuzzification of deci-
sion boundaries without translating attributes into fuzzy linguistic terminology. In
order to select suitable attribute for individual node that needed to be split, Gini
Index is used by the G-FDT tree. According to the average-points of feature values
in which the details of the class altered, the split-points were selected.

2.3. Naïve Bayes (NB) Classifier

In the area of data science or machine learning Naïve Bayes (NB) Classifier is
most popular especially for classification problems. A new classifier named Hidden
Naïve Bayesian (HNB) was added by authors in paper [5] through a system that
can be used for the detection of any network’s invasion. This greatly increased
the attack detection accuracy in Denial of Services (DoS). Main reason of having
another layer, representing a individual feature’s secret or hidden parent was basic
idea in the process of HNB. In terms of higher accuracy rate or lower error rate,
the HNB multi-class classifier demonstrated comparatively better in performance
[20, 25].

During the research of [7] they suggested a Robust Naïve Bayesian Classifier
(RNBC) to address the original limitations, one is over-fitting and another one
is underflow, for gene expression data sets classification. Instead of multiplying
probabilities, RNBC used an approximate method to provide solutions to over-
fitting issues and probability logarithms to deal with the underflow problems.

For the Naïve Bayesian classification of micro-array data analysis, “Partition
Conditional Independent Component Analysis (PC-ICA)”; a new approach was
suggested by the authors of [11]. They used Class Conditional Independent Variable
Analysis (CCICA) approach. In order to conduct the “Independent Component
Analysis (ICA)” within individual partition, “PC-ICA” splashed the small sized
data samples into various partitions. Inside of each partition, which can consist of
many classes, “PC-ICA” also tried to do “ICA” based function uprooting.

A newly proposed classification system for multi classes data classification called
Extended Naïve Bayesian (ENB) was suggested in [18]. Categorical and numeric
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data were used in the mixed data categories. To compute the probability of cat-
egorical features, ENB used a classical Naïve Bayes (NB) classifier approach. By
observing the average and variation of numeric values, the mathematical principle
was given for discretizing numeric features into symbols while treating numeric
attributes.

3. Classification

In machine learning, classification derives a function from the training set. Training
data-set consists of set of input vector or scalar and target output vector or scalar
(class-label). The result of a function may be a constant value, or the target values
of input vectors can be expected. Sometimes, it is also referred to supervised
learning since, before analyzing the data, the class labels are known.

3.1. Adaptive Boosting (AdaBoost) Classifier
AdaBoost is a commonly used boosting algorithm that takes into account a number
of classifiers and combines each classifier’s votes to classify an unknown or known
instance.

• Weights are allocated to each training example at the time of boosting

• There is an iterative trained sequence of k classifiers

• 𝑀𝑖 is learned after using a classification model, the weights are modified to
help the following classifier, 𝑀𝑖+1 to give more emphasis on the instances
incorrectly classified by 𝑀𝑖

In Adaptive Boosting (AdaBoost) after following the above mentioned steps,
a final boosted classifier, M* is found. It blends individual classifier’s votes and
these weights of the votes of every classifier is accuracy rate’s function. If the
original training dataset D is given with a set of d class-labeled instances available,
(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑑, 𝑦𝑑), where 𝑦𝑖 is considered as the class label of instance 𝑥𝑖.
Assume, assigned weights which were allocated to each training example initially is
1
𝑑 . For the ensemble, generating k classifiers requires k rounds over the rest of the
algorithm. In order to shape some size training set, we should consider samples,
not needed to be the size d. Sampling with replacement is used so that the same
example can be chosen more than once. The probability of being chosen for each
instance is dependent on its weight. M is a classifier model, can be generated from
𝐷𝑖 training instances. Then it’s error can be measured as a test set using 𝐷𝑖. The
weights of the instances can be modified if needed according to their performances.

When any instance is misclassified the weight of its increased and if that instance
is properly classified then its weight is reduced. Judging from instance’s weights,
classification difficulties can be noticed. Instances with higher weights are hard to
classify. Weights are important to select instances that will be participating in the
next iterations for generating next classifiers.
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Error Rate: We measured sum of weights for individual instances in 𝐷𝑖 that
were not correctly classified by 𝑀𝑖 to measure the error rate of 𝑀𝑖 model.

Error(𝑀𝑖) =
𝑑∑︁

𝑗=1

error(𝑥𝑗) * 𝑤𝑗

Here, the error of not correctly classified instance 𝑥𝑖 is denoted as error (𝑥𝑗). If the
instance 𝑥𝑖 is correctly classified by the classifier, then error (𝑥𝑖) is 0. In contrast,
it is 1. A threshold value 0.5 is used to measure the classifier’s performance. If it
is more than the threshold, then it cannot be considered. Thus, repetition of the
same process is necessary.

Normalizing Weight: If an instance was correctly classified by the classifier
in 𝑖𝑡ℎ iteration, then the weight of its multiplied by,

Error
(︂

error(𝑀𝑖)

1− error(𝑀𝑖)

)︂
.

According to [12] the weights for all instances are normalized until properly classi-
fied instance’s weights are changed. We considered the product value of a weight
and sum of old weights; divided product value by the new weights, to normalize it.

Algorithm: 1: AdaBoost Classifier
Input: Training data, D, number of iterations, k and a learning scheme.
Output: Ensemble model, M∗.
Method:

1. Initialize weight, xi ∈ D to 1/d.
2. for i = 1 to k do
3. Sample D with replacement according to instance weight to obtain Di.
4. Use Di and learning scheme to derive a model, Mi,
5. Compute error(Mi).
6. if error(Mi) >= 0.5 then,
7. Go back to step 3 and try again.
8. end if
9. for each correctly classifier xi ∈ D do
10. Multiply weight of xi by error(Mi)/(1− error(Mi))
11. end for
12. Normalize weight of instances.
13. end for

To use M∗ to classify new instances, xnew:
• Initialize weight of each class to zero
• for i = 1 to n do
• wi = log((1− error(Mi))/error(Mi)) //weight of classifier’s vote.
• c = Mi(xnew) //class prediction by Mi,
• add wi, to weight for class c.
• end for
• return class with largest weight.

Figure 1. Adaptive Boosting (AdaBoost) classifier.

3.2. Naïve Bayesian (NB) Classifier
A fundamental probabilistic classifier contingent on Bayes hypothesis with solid
predictions of (Naïve) independence and models of independent characteristics;
is called Naïve Bayesian (NB) classifier. While determining the probability of
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participation for each class, attributes with missing values are perfectly handled by
merely omitting the corresponding probabilities by the NB classifier itself. Class
conditional independence is also necessary. For instance, the attribute’s effect on
a defined class can be distinct from other attributes.

NB classifier assumes that an training example X belongs to a class 𝐶𝑖 if and
only if 𝑃 (𝐶𝑖|𝑋) > 𝑃 (𝐶𝑗 |𝑋) belongs to 𝑗 ̸= 𝑖 and 1 ≤ 𝑗 ≤ 𝑚. Therefore, highest
posterior analysis shows 𝐶𝑖 class due to that 𝑃 (𝐶𝑖|𝑋) is maximized.

𝑃 (𝐶𝑖|𝑋) =
𝑃 (𝑋|𝐶𝑖)× 𝑃 (𝐶𝑖)

𝑃 (𝑋)
(3.1)

A constant 𝑃 (𝑋) is for all classes in equation of (3.1), then 𝑃 (𝑋|𝐶𝑖) × 𝑃 (𝐶𝑖)
has to be increased. If the prior probabilities of the class are not specified, then the
classes are generally believed to be identical, i.e. 𝑃 (𝐶1) = 𝑃 (𝐶2) = · · · = 𝑃 (𝐶𝑚).
Thus, maximize 𝑃 (𝑋|𝐶𝑖) accordingly or 𝑃 (𝑋|𝐶𝑖)×𝑃 (𝐶𝑖) needed to be increased.
The prior probabilities of the class are determined by 𝑃 (𝐶𝑖) = |𝐶𝑖, 𝐷|/|𝐷|, here,
|𝐶𝑖, 𝐷| is the number of available instances that are ready to be trained in 𝐷
belonging to the 𝐶𝑖 class.

It is highly computationally costly to calculate 𝑃 (𝑋|𝐶𝑖) in a dataset which
contains lots of attributes. Provided the class labels of the events, the attributes
are conditionally independent of each other. The equation showed in (3.2) is used
for generating 𝑃 (𝑋|𝐶𝑖)

𝑃 (𝑋|𝐶𝑖) =

𝑛∏︁

𝑘=1

𝑃 (𝑥𝑘|𝐶𝑖) (3.2)

In equation (3.2), 𝑥𝑘 corresponds to the value of the 𝐴𝑘 feature, for any 𝑋 instance.
However, datasets that are usually used for the training can be numeric, nominal
or continuous or categorical. Attributes are usually believed to have a Gaussian
distribution having a mean 𝜇 and standard deviation 𝜎 which can be represented
from the following equations:

𝑃 (𝑥𝑘|𝐶𝑖) = 𝑔(𝑥𝑘, 𝜇𝐶𝑖
, 𝜎𝐶𝑖

) (3.3)

𝑔(𝑥, 𝜇, 𝜎) =
1√
2𝜋𝜎

𝑒−
(𝑥−𝑝)2

2𝜎2

In equation (3.3), mean value and standard deviation are denoted by 𝜇𝐶𝑖 and
𝜎𝐶𝑖 respectively, for the attribute value 𝐴𝑘 of all training examples that belong to
the 𝐶𝑖 class. Now, 𝑃 (𝑥𝑘|𝐶𝑖) can be calculated by using the method of substitution
using the 𝑔(𝑥, 𝜇, 𝜎) value.
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Algorithm: 2: Naïve Bayesian Classifier
Input: D = {x1, x2, . . . , xn} //Training data.
Output: A naïve Bayes model.
Method:

1. for each class, Ci ∈ D do
2. Find the prior probabilities P (Ci).
3. end for
4. for each attribute Ai ∈ D do
5. for each attribute value Aij ∈ Ai, do
6. Find the class conditional probabilities P (Aij |Ci).
7. end for
8. end for
9. for each instance, xi ∈ D do

10. Find the posterior probabilities P (Ci|xi).
11. end for

Figure 2. Naïve Bayesian (NB) classifier.

3.3. Proposed Algorithm1 (ADA+NB) Classifier

Our proposed algorithm1 (ADA+NB) classifier is a newly proposed, hybrid and
very powerful classifier to solve the problems in classification domains, it made up
with two strong classifiers, one is Boosting algorithm basically Adaptive Boosting
(AdaBoost), with a learning scheme of decision tree and another one is Naïve
Bayes (NB) classifier. It performs better when the dataset is too noisy and high
dimensional. We named this classifier ADA+NB because it uses the AdaBoost
classifier to detect the noise or missing value from the data. Because AdaBoost has
an amazing ability to find the subset of attributes which are comparatively more
important. At the beginning, equal weights are assigned to all the training instances
and those who are misclassified by AdaBoost gains higher weights. Afterwards,
we deleted the noisy instances from the original training data which have higher
weights and prepares the data to go for the training and uses Naïve Bayes (NB)
classifier to make the predictions. And if we used AdaBoost and try to build model
using the training set which is noisy; there is high probabilities that AdaBoost
might fall into the over-fitting during the time of Decision tree (DT) generation.

Algorithm: 3: ADA+NB Classifier
Input: D = {x1, x2, . . . , xn} // Training data.
Output: An ADA+NB Model.
Method:

1. Assign weights 1/d initially to all the instances on D.
2. Split the dataset D into 70% DTrain for training and 30% DTest for testing.
3. Use DTrain to build AdaBoost model using algorithm 1 and test each of the instances xTest

from DTest.
4. Increase the weights of the misclassified instances at the original data D by the

followings:
weight = weight ∗ 1/2 ∗ (error/accuracy)

5. Delete the data/instances, which have higher weights from the original dataset D.
6. Use the new cleaned dataset DTrainNew to build a new model NB using the Algorithm 2

and calculate the performance.

Figure 3. ADA+NB Classifier.
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3.4. Proposed Algorithm2 (NB+ADA) Classifier
Our proposed algorithm2 (NB+ADA) classifier is another newly proposed, hybrid
and powerful classifier to solve the classification problems, it made up with two
strong classifiers, one is Naïve Bayes (NB) classifier and another one is powerful
Boosting algorithm to be more specific Adaptive Boosting (AdaBoost) classifier.
Here, decision trees were used as a weak learning scheme during the AdaBoost in-
duction. It performs better when the data-set is too noisy and larger in dimensions.
We named it NB+ADA, the reason behind it is we used NB classifier to find the
noise or missing values from the data. As, NB has a ability to handle the missing
value by simply ignoring the it or use the mean value. Initially, all the instances
were given weights and those instances who were misclassified by the NB classifier
have the higher weights than before. Afterwards, we delete the instances, given
the priority of higher weights, which can not be handled by NB classifier from the
original data assuming that they are anomaly in the data. Then, we proceeded
comparatively cleaned data used as the training data-set for AdaBoost to build the
model and make the predictions. In that way due to the less presence of anomaly
in the recently created training set, AdaBoost would have lower chances of falling
into over-fittings.

Algorithm: 4: NB+ADA Classifier
Input: D = {x1, x2, . . . , xn} // Training data.
Output: A NB+ADA Model.
Method:

1. Assign weights 1/d initially to all the instances on D.
2. Split the dataset D into 70% DTrain for training and 30% DTest for testing.
3. Use DTrain to build NB model using algorithm 2 and test each of the instances xTest

from DTest.
4. Increase the weights of the misclassified instances at the original data D by the

followings:
weight = weight ∗ 1/2 ∗ (error/accuracy)

5. Delete the data/instances, which have higher weight from the original dataset D.
6. Use the new cleaned datasct DTrainNew to build a new model AdaBoost using the

Algorithm 1 and calculate the performance.

Figure 4. NB+ADA Classifier.

3.5. Architecture Comparison
In this section, we can see the plots of the architectural view of the 4-classifiers
shown in Figure 5 and compare them. Here, Figure 5(a) shows the architecture
of Adaptive Boosting (AdaBoost) classifier. It uses the Algorithm 1 to generate
the AdaBoost model. Hence, Figure 5(b) stands for the Naïve Bayesian (NB)
classifier architecture using the Algorithm 2 to build a NB model and Figure 5(c)
and 5(d) illustrates the architectural model of our proposed classifier1 (ADA+NB)
and proposed classifier2 (NB+ADA) which uses the Algorithm 3 and Algorithm 4
to build it’s model accordingly. It is clearly seen that all the classifiers that were
used in this research, we used the same split-validation process, which is 70% for
training and 30% for testing the model. It is a matter of great concern that the
amount of data are used to train the classifier’s model should be more; if better
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classification performances are expected from that model.

(a) (b)

(c) (d)

Figure 5. Classifier’s architectural comparisons.

3.6. Experiment

This section of the paper describes the data sets that are used for the experiment.
It also represents the performance evaluation of Adaptive Boosting (AdaBoost),
Naïve Bayesian (NB), our proposed (ADA+NB) and our proposed (NB+ADA)
classifiers.

Datasets: We used our chosen 4-real benchmark data sets collected from the
online free data resource named UCI machine learning repository and also evaluated
the classification performances for the above mentioned classifiers. Each of the
data sets consists of a two dimensional (2D) Excel spreadsheet. The data sets are
following:

• Adult Database

• Covertype Data

• Dota2 Games Results Data
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• Isolet Database

Table 1. Data-set Description.

Data-sets No. of
Att.

Att.
Types

No. of In-
stances

No. of
Classes

Adult 14 Categorical,
Integer 48842 2

Covertype 54 Categorical,
Integer 581012 7

Dota2
Games
Results

116 Integer,
Real 102944 2

Isolet 617 Real 7797 26

Experimental Setup: We conducted all the experiments using a 2.30 GHz;
Intel Core i3 Processor and RAM of 4 GB machine. We implemented both Ad-
aBoost and Naïve Bayesian (NB) classifiers and our proposed hybrid algorithms
(Algorithms 1 and 2) using Python 3.6. Several Python packages were used: Scikit
Learn, Numpy, Pandas, Seaborn, Math, Itertools, Catplot and Matplotlib were
used for plotting graphs. Besides, the soft-wares were used to run the program are
Anaconda/Spyder and Microsoft Excel for the performance records.

Different symbols were used in measuring the classifier’s performances such as
follows:

Table 2. Meanings of performance evaluation symbols.

Symbols Symbolic Meanings
Accuracy Percentage of assumptions which are correct
Precision Percentage of "+" assumptions which are correct
F1-score Harmonic mean of precision and sensitivity/recall
Sensitivity Percentage of "+" instances (predicted as "+")
Specificity Percentage of "-" instances (predicted as "-")

Results Evaluation: At first, the performance of the proposed classifiers
(Algorithms 1 and 2) against existing AdaBoost and NB classifiers was tested
using the classification accuracy of the training sets of the 4 benchmark data sets
shown in Table 3–6, summarizing the classification accuracy rates of the simple
AdaBoost and NB classifiers, and our proposed hybrid algorithms for each of the 4
test data sets. We have used the weighted average to record the precision, f1-score,
sensitivity/recall, specificity.

The results of the Table 3 indicates that despite all the algorithms are perform-
ing well in terms of accuracy rate but if we check the Specificity and Sensitivity
for this Adult data-set we can find that both of them are almost 94% and 99% for
the proposed algorithm2(NB+ADA) respectively.
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Table 3. Classifier’s performances on Adult Data-set.

Algorithms Accuracy
(%)

Error
Rate
(%)

Precision F1-score Sensitivity Specificity

AdaBoost 87.65 12.35 0.87 0.88 0.68 0.94
Naïve
Bayes 79.99 20.00 0.78 0.77 0.31 0.95

Proposed
Algorithm1 86.39 13.60 0.85 0.85 0.45 0.96

Proposed
Algorithm2 94.14 5.86 0.96 0.95 0.99 0.94

Hence, Table 4 illustrates all the four classifier’s performance on the data-set
named Covertype. It is visible that accuracy rates are poor due to the data-set
imbalanced, still our proposed algorithm1(ADA+NB) is able to provide the 45.76%
accuracy with 95% Specificity.

Table 4. Classifier’s performances on Covertype Data-set.

Algorithms Accuracy
(%)

Error
Rate
(%)

Precision F1-score Sensitivity Specificity

AdaBoost 44.29 55.70 0.59 0.48 0.52 0.79
Naïve
Bayes 45.31 54.69 0.64 0.41 0.21 0.96

Proposed
Algorithm1 45.76 54.24 0.65 0.42 0.22 0.95

Proposed
Algorithm2 44.29 55.70 0.59 0.48 0.52 0.79

Table 5. Classifier’s performances on Dota2 Games Result data-set.

Algorithms Accuracy
(%)

Error
Rate
(%)

Precision F1-score Sensitivity Specificity

AdaBoost 58.82 41.18 0.59 0.59 0.66 0.51
Naïve
Bayes 55.61 44.39 0.56 0.56 0.59 0.52

Proposed
Algorithm1 73.41 26.59 0.73 0.73 0.81 0.63

Proposed
Algorithm2 76.19 23.81 0.76 0.76 0.81 0.69

The performance of the Dota2 Games Results data-set from Table 5 states
that our proposed algorithm2(NB+ADA) performs outstanding with less number
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of error rate of around 23% which proves our proposed algorithms strength over
AdaBoost and NB classifiers for this data-set.

Table 6. Classifier’s performances on Isolet Data-set.

Algorithms Accuracy
(%)

Error
Rate
(%)

Precision F1-score Sensitivity Specificity

AdaBoost 28.89 71.10 0.30 0.22 1.00 0.00
Naïve
Bayes 81.46 18.54 0.85 0.81 0.88 1.00

Proposed
Algorithm1 83.55 16.45 0.87 0.83 0.88 1.00

Proposed
Algorithm2 31.19 68.81 0.33 0.24 1.00 0.00

The data of the Table 6 indicates that if we consider higher Accuracy rate
for the Isolet data-set Naïve Bayes (NB) classifier and our proposed algorithm1
(ADA+NB) performs well with the Accuracy rate of 81.46% and 83.54%. Even, if
we compare the Specificity which is 100% for both of them but Sensitivity is much
higher for NB. Now, if we compare the Error rate between the two classifiers then
Proposed Algorithm1(ADA+NB) works better than classical NB classifier.

4. Graphical Comparison

In this section, we plotted the performance graph in Figure 6 for AdaBoost, Naïve
Bayes (NB), Proposed Algorithm1 (ADA+NB) and Proposed Algorithm2 (NB+
ADA) respectively and compared their performances based on the Accuracy rate
on the 4-real benchmark data-set that are discussed in the above sections.

4.1. Classifier’s Performance Graphs

If we analyze the graph shown in Figure 6(a) the performance of AdaBoost classifier,
we can see that despite of being such a strong classifier AdaBoost’s performance
for the Dota2 Games Result data-set and Isolet data-set denotes as orange and red
color dots in the graph are not satisfactory. Performance for the Covertype data-set
denotes as green dot is average due to the data-set imbalanced. But the Accuracy
rate that we got for the Adult data-set represented as blue dot is around 90%. NB
classifier’s performance shown in Figure 6(b). The NB classifier induction shows
that for the Adult and Isolet data-set it performs extraordinary as the Accuracy rate
is almost 90% for the both data-sets, denotes as blue and red color dots accordingly
and Covertype orange colored dot shows the worst performance accuracy rate due
to imbalanced data-set.
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(a) (b)

(c) (d)

Figure 6. Classifier’s Performance Comparison Graphs.

From the Figure 6(c) which illustrates proposed algorithm1(ADA+NB) classi-
fier’s performance, it’s clearly visible that for Adult and Isolet data-set our pro-
posed algorithm1 (ADA+NB) classifier provides Accuracy rate over 80%. But
unfortunately for the Covertype data-set (orange color dot) it’s unable to provide
better classification Accuracy due to the data-set is very imbalance with higher in
dimension too and AdaBoost trees are facing over-fitting problems. Figure 6(d)
stands for the performance of proposed algorithm2(NB+ADA) classifier, visualizes
the performance of our proposed algorithm2 (NB+ADA) classifier over our chosen
data-sets. And it can be seen from the graph that except the Isolet data-set which
is denoted by red dot, this classifier’s performance is out ranging the other classi-
fier’s performances for all the chosen data-sets. Because, this classifier uses NB to
reduce the noise and then uses the AdaBoost method to generate decision trees so
that this decision trees DT do not fall into over-fitting.

4.2. Datasets Vs. Classifier’s Performances
Earlier mentioned classifier’s performances over chosen data-sets are shown in Fig-
ure 7. Based on Accuracy rate, it is proved that for the Adult & Dota2 Games
Result data-set, our proposed classifier2 (NB+ADA) can be chosen, denoted as red.
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Though the accuracy rate is almost the same for the Covertype data-set, therefore
it is hard to define any specific classifier for that particular data-set but still our
first hybrid classifier1 (ADA+NB) denoted as green, is better. Also, for the Isolet
data-set we can use that classifier too.

Figure 7. Classifier’s Performance Comparison.

5. Conclusion

This research focuses on the establishment of our two newly proposed hybrid clas-
sifiers with regard to the improvements of the root classifier; Naïve Bayesian (NB)
and Adaptive Boosting (AdaBoost). It is proved that our proposed classifiers have
successfully increased the classification performance of AdaBoost and NB conse-
quently when it comes to the accuracy rates. Technically, AdaBoost is one of the
really strong Boosting algorithms. But it’s a fact that in real life the data sets
are not well organised. Most of the time it is full with noise or missing values or
different behavioural instances. Due to these obstacles in the data, it is often seen
that AdaBoost fails to provide its own capability when it comes to the accuracy
rate. Hence, both of our proposed hybrid methods used NB classifier to help Ad-
aBoost; so that we can save AdaBoost from over-fitting. We used NB classifier
here because of no complexity and just one scan is enough for the training data-set
as a result the computation gets fast. Another reason for choosing NB is that
it has an amazing way of handling missing value when it calculates each class’s
similarities. In our first hybrid (ADA+NB) classifier, AdaBoost is used to remove
the outliers from the training set and then proceeded comparatively clean data
set for the Naive prediction. On the other hand, our second hybrid (NB+ADA)
we used NB classifier to eradicate anomaly from the original data-set and passed
the training examples to generate the decision trees (DTs) for AdaBoost model
through preventing over-fitting. The performances of 2-classical approaches in ma-
chine learning, AdaBoost and NB and our two proposed hybrid classifiers were
tested. Afterwards, we compared the experimental results of the four classifiers.
The experiment proved that our newly proposed classifiers exceed the performances
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of other two textual approaches due to higher accuracy rates or lower error rates.
We strongly believe that our proposed algorithms can be used in solving different
classification problems in real life problem-domains. Forthcoming, we definitely
want to extend our work by using some other classification techniques to remove
the noise from the data such as Naive Bayes Trees or K-means clustering before
the AdaBoost starts to generate its decision trees (DT).
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