CEUR-WS.org/Vol-2874/paperll.pdf

Conference on
Information Technology and
Data Science

Development of a Man-in-the-Middle
Attack Device for the CAN Bus*

Andras Gazdag, Csongor Ferenczi, Levente Buttyan

CrySyS Lab, Department of Networked Systems and Services,
Budapest University of Technology and Economics
agazdag@crysys.hu
csferenczi@crysys.hu
buttyan@crysys.hu

Proceedings of the 1t Conference on Information Technology and Data Science
Debrecen, Hungary, November 6-8, 2020
published at http://ceur-ws.org

Abstract

Modern vehicles are full of embedded controllers called ECUs (Electronic
Control Units). They are responsible for different functionalities involving
processing information from sensors and controlling actuators. To perform
their functions, ECUs also need to communicate with each other. Most ve-
hicles use a Controller Area Network (CAN) for ECU communication. The
original design of the CAN bus was focusing on safety and reliability prop-
erties. Security was not an issue because these networks were considered
to be isolated systems. These assumptions were correct for a long time,
but they no longer hold. Modern vehicles have many interfaces towards the
outside world, which renders the internal network accessible to an attacker.
Bluetooth, Wifi, wireless Tire Pressure Monitoring System (TPMS), or the
On-Board Diagnostics (OBD) port are all options for attackers to either di-
rectly access the CAN network or compromise a component attached to it.

Copyright (©) 2021 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

*This work has been partially funded by the European Commission via the H2020-ECSEL-
2017 project SECREDAS (Grant Agreement no. 783119) and partially supported from the grant
GINOP- 2.1.1-15 (the project has been supported by the European Union, co-financed by the
European Social Fund. EFOP-3.6.2-16-2017-00002). The research presented in this paper have
also been supported by the NRDI Office, Ministry of Innovation and Technology, Hungary, within
the framework of the Autonomous Systems National Laboratory Programme, and the NRDI Fund
based on the charter of bolster issued by the NRDI Office.

115



It is possible to inject fake messages, or potentially, to modify messages on
the CAN, and hence, forcing some ECUs to act upon these fake messages,
which may influence the overall behaviour of the vehicle.

Modification attacks are complex both to carry out and to detect. The
main difficulty of modification attacks is that the sender checks whether the
transmitted bits correctly appear on the bus or not for safety reasons. The
only network level way to circumvent this protection is to physically separate
the sender and the attacked ECU on the CAN bus. This can be achieved with
a physical layer Man-in-the-Middle attack. We built a proof-of-concept hard-
ware device capable of modifying the CAN traffic in real-time to demonstrate
that this attack is possible. It has two CAN interfaces to read messages from
the original CAN bus and either just forward or modify-and-forward traffic to
the attacked CAN bus. We showed with measurements that we can perform a
message modification attack while keeping the introduced delay within what
is allowed by the CAN specification.

Keywords: Vehicle Security, CAN, ISO 11898, Man-in-the-Middle attack

1. Introduction

Modern cars are not just simple mechanical devices with an engine and four wheels
like they used to be. They are full of Electronic Control Units (ECU) that control
the car, monitor the drivers’ every movement, and try to keep them safe on the road,
while providing convenience features to them. Thus, more and more components
have to communicate with each other in a car, which means that we need reliable
communication channels between these components. One of the most common
communication solutions is the Controller Area Network (CAN) bus.

When it comes to manufacturers, they put a great emphasis on the safety
of the cars. There are ABS, ESP, crash avoidance systems, or even better and
better crumple zones in every car. The inter-component communication channels
are protected against errors caused by the high noise environment, but security
seems to be less important for manufacturers. The internal components are rarely
designed to be secure from a potential attacker, although it is not unthinkable that
a malicious device could be installed into a car and do some harm. For instance, it
only takes one mechanic to plug such a device into an On-Board Diagnostics (OBD)
port of a targeted car, and we have access to the vehicle’s CAN bus. Moreover, with
the spread of Bluetooth OBD debugging probes, which can connect to the owner’s
smartphone, users themselves connect more and more, potentially compromised,
devices onto the CAN bus.

Unfortunately, the CAN bus has no security, only safety measures. It was
designed to be a robust communication bus that can withstand a high amount of
noise while providing relatively high transfer speeds. At the end of every CAN
message, a Cyclic Redundancy Check (CRC) code ensures that if the content of
the message changes during transmission, the receiver will detect it. However, the
CAN standard does not provide support for message authentication. Thus, just
by receiving a message with a given ID does not guarantee that the source of the

116



message was any particular device. This leads to the issue that messages can be
injected onto the bus without the communication partners ever noticing that a
message was not sent by the correct device and could contain false data.

Besides injecting messages, an attacker could modify the content of the message,
but achieving this is much harder. With the current techniques, it is only feasible
by compromising an ECU, and sending messages with modified values. This attack
produces no extra messages, nor highly deviating values; thus, it is much harder to
detect than simple message injection attacks, but until now, it required a more in-
depth knowledge' to carry out than just plugging in a device to the OBD port. In
this paper, we present our solution to modify CAN messages in real-time, without
compromising any ECU.

We have created a device, which is capable of modifying ISO 11898 high-speed
CAN messages in real-time. It can handle up to 100% bus load with a bus speed
of 500 kbps or less, and about 60-100% busload at 1 Mbps, which is the maximum
speed specified in the standard. It introduces a delay of 260 us, which is even at
1 Mbps is well within the delay of re-sending a message due to high traffic or a
transient error on the bus. The device itself provides a wireless interface that can
be used to remotely configure the attack parameters. All this, while consisting of
cheap, commonly available parts.

In Section 2, we are going to take a deeper look at the current attacks against
the CAN bus and their mitigations, and how our solution differs from them. In
Section 3, we summarize the important parts of the CAN standard. In Section 4,
we discuss the design principles of the introduced device, the hardware and software
architecture, and the operation of the device. In Section 5, we take a look at the
measurements of the device, and finally, in Section 6, we conclude our work.

2. Related Work

There is a large amount of published research on the (in)security of the CAN
bus. Many of them propose a solution to protect the CAN bus [11, 12], but there
are several papers discussing different kinds of attacks against it [3, 9]. We can
generally categorize the attacks into two groups: message injection and message
modification attacks.

2.1. Attacks Against the Can Bus

2.1.1. Message Injection Attacks

Message injection attacks [8] are possible due to various properties of the CAN bus.
First of all, since the CAN bus is a broadcast channel, during operation, every ECU
connected to the CAN bus receives all of the messages. This cost-saving measure
saves a lot of money for the manufacturers, since they only have to wire a few
twisted pair cables throughout the whole car in order to connect the ECUs to each

Ihttp://illmatics.com/remote\%20attack\%20surfaces.pdf

117



other. When receiving a message, the ECUs decide whether they are interested in
the given message based on its ID and process it or discard it. On the other hand,
this principle also makes it easy for an attacker to eavesdrop messages on the bus,
monitor the values of the sensors in real-time, or reverse engineer the messages and
their purposes for a given vehicle type. The second issue with the standard is that
the CAN bus does not support any kind of cryptographic message authentication
measures. Any ECU can create a message with an arbitrary ID and send it to the
other ECUs via the CAN bus, and the ECUs will not be able to differentiate the
messages coming from two different ECUs, if they have the same ID. This makes an
attacker able to craft arbitrary messages and send them to the ECUs via the CAN
bus. An attacker can have multiple goals to exploit these properties, for instance,
overwriting values or forcing the network into a Denial of Service attack state.

Message injection attacks have several drawbacks. First of all, both the rapidly
changing value behaviour and the at least doubled message periodicity is easily
detectable [4]. Upon detection, the targeted ECU might switch into a fallback
mode, where it ignores both the original and the injected values. Secondly, the
ECU might have safety margins built-in. For instance, most, if not all of the lane
assist systems have a maximum steering angle it is allowed to perform in order to
keep the car in the lane. If the attacker tries to induce a higher steering angle than
this maximum value, the lane assist system might just deactivate.

2.1.2. Message Modification Attacks

Message modification attacks are based on the idea that instead of injecting mes-
sages, one could modify the message that is being sent. There are several safety
measures in the CAN standard that makes it hard if not impossible to modify mes-
sages transmitted by another ECU on-the-fly (e.g., CRC, bit stuffing, sender ECU
monitoring the bus during transmission, etc.). Thus, until now, the easiest way to
realize this attack was to compromise an ECU [10] and modify the messages before
they are even sent.

2.1.3. Denial of Service (DoS)

In a DoS attack, the attacker’s goal is to render a given CAN bus unusable, which
can be achieved in two ways: by adhering to the CAN standard or by breaking
it. The first option is to send as many messages to the CAN bus with the lowest
possible ID as physically possible. When the bus is idle, if two or more ECUs want
to transmit at the same time, the one with the lowest ID will have priority. Thus,
since the zero ID has priority over every other message ID, none of the regular
messages will win the arbitration against the injected message, which will lead to
the starvation of the regular ECUs. The second method is to force the CAN H
and CAN L wires into dominant state and hold it there as long as the attacker
wants to. While the second method could be easier to implement, it triggers the
error detection in the ECUs; thus, the connected subsystem will detect that there
is an error with the CAN bus. On the other hand, the first solution does adhere to

118



the rules of the CAN, and the ECUs might only think that everything is okay with
the CAN bus, except it is busy at the moment. Nonetheless, using both solutions,
an attacker can render a given CAN bus unusable.

2.2. Attack Mitigations

There are several proposed solutions to the issues mentioned in the previous section.
However, while the following measures could increase the security of the CAN bus,
they are more theoretical than practically applicable solution.

2.2.1. CANAuth

As mentioned before, one of the biggest deficiencies of the CAN bus is that it lacks
message authentication. CANAuth [5] solves this issue by using a symmetric key
based HMAC. The main idea behind the CANAuth is the following. As described
in section 3.1, every bit transmitted on the CAN bus get sampled at the 75%
percentile point of the bit time to ensure a reliable sampling. However, technology
has developed a lot since the introduction of the CAN bus, and microelectronics
are much faster nowadays. Thus we could use a higher sampling rate in order to
hide authentication data in the propagation segment of every CAN bit.

2.2.2. CAN Firewall

Another mitigation method is to use firewalls [1]. By using a firewall, we can phys-
ically split a CAN bus into multiple separate segments and control the traffic going
between them. For instance, we can apply whitelist or blacklist-based message fil-
tering on each of the different segments, introduce rate limiting, etc. Thus, we can
limit the possibility of message injection and DoS attacks. Adding a CAN firewall
to an existing car should not require redesigning the car, since the firewall itself is
just a simple device with two CAN interfaces, which can be inserted between the
separated CAN segments.

While this solution could appear as the ultimate solution to the shortcomings
of the CAN standard, it has several issues. For instance, we have to separate every
important ECU or at least every important segment with a firewall, in order to be
effective, which creates an excess cost for the manufacturer. An even bigger issue is
the management of the firewall. Who gets to write the filtering rules? How are the
rules updated, if an update is required? Who is responsible if an important packet
gets dropped unintentionally? What if an airbag does not open during an accident
due to a malformed firewall rule? While these edge cases could seem unimportant,
not being able to address them satisfactorily may make manufacturers deciding not
to use this technology.

2.2.3. Secure CAN Transceivers

A third mitigation technique is the secure CAN transceivers [2| proposed by NXP.
Their idea is to introduce a new firewall-like security defense layer at the CAN

119



transceiver level. Using this new layer, they can prevent message spoofing in both
the transmitting and the receiving side; i.e., detect malicious ECUs and evade DoS
attacks.

2.2.4. Mitigations in Practise

Based on the mitigation techniques introduced in the previous subsections, we can
say that while these mitigations are great theoretical results, and could more or
less enhance the security of the CAN bus, we have to emphasize that they are still
not widely used in practice, and thus, do not provide protection against current
attacks. NXP’s Secure CAN transceivers could be the next easy to implement
security measure, but our solution introduced in this paper could still circumvent
it after a minor modification.

3. The ISO 11898 High-speed CAN standard

The CAN bus [6, 7] is a broadcast, serial communication protocol used mainly in
vehicles. It was designed to be robust, withstand high external RF noise, while
providing a high-speed communication link between the ECUs. The CAN bus is a
cost-effective solution because it enables the manufacturers to connect the ECUs
by placing only one twisted pair cable between them.

The CAN bus uses two wires called CAN high (CAN_H) and CAN low (CAN L),
in order to implement differential signalling. The cables are twisted pair cables. On
each end of the cables, the wires are connected to each other using a terminating
resistor in order to achieve a nominal 120 Ohm impedance. The CAN bus has two
states, driven, and not driven. When it is not driven, the CAN_ H and CAN L
wires get pulled to about the same 2.5V nominal voltage using the passive pull
resistors placed in the CAN transceivers. This state is also called a “recessive” bit,
which represents a binary 1. When the CAN bus is driven, at least one CAN node
pulls the CAN H wire to 3.5V and CAN L wire to 1.5V nominal voltage. This
state is also called a “dominant” bit, which represents a binary 0.

3.1. Bit Timing

Every CAN bus has a nominal bitrate, which gets preconfigured in the ECUs by
the car manufacturer. The maximum bitrate specified by the standard is 1 Mbps,
but 500 kbps and 250 kbps is also frequently used bitrates.

Every bit time can be divided into the following four segments (Figure 1):

o synchronization segment (Sync_Seg): This segment is used for synchroniza-
tion. At the SOF, every receiving ECU synchronizes itself to the edge of
the first bit, which is called a “hard sync”. There is also another kind of
synchronization called bit resynchronization, which is performed at the syn-
chronization segment of each bit, by the ECU fine-tuning its inner clock based

120



on the deviance between the expected time of a potential edge, and the actual
time of its detection.

e propagation time segment (Prop Seg): This segment is used to compensate
for physical delay times within the network (e.g., signal propagation time,
internal delay of the ECUs, etc.)

e phase buffer segment 1 (Phase_Segl) and Phase buffer segment 2 (Phase_ Seg2):
These segments are used for edge phase error compensation. The sampling of
the bus occurs after the phase buffer segment 1. The length of these segments
can be fine-tuned by resynchronization, and thus, the sampling point can be
moved backward or forward.

Nominal bit time

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg1

Sample point

Figure 1. The four segments of the bit time.

3.2. Frame Timing

Messages can be transmitted based on events (e.g., receiving a remote frame, a
sensor value triggering a transmission) or by a trigger coming from an internal
timer. The internal timer method is called Time-Triggered Communication (TTC).
During communication, after every frame’s EOF segment, there is a 3-bit long
intermission period. After these 3 recessive bits, the bus is considered idle, and
any following dominant is considered as the SOF of the next frame. When the
ECUs detects that the bus is idle, any of them may start to transmit. If two or
more ECUs happen to transmit at nearly the same time, the conflict between them
is resolved using contention-based arbitration.

3.3. Contention-based Arbitration

When a node starts to transmit a frame, it monitors the bus during the arbitration
segment of the MAC frame in order to check whether the data on the bus is the
same as it is transmitting. In case it detects that despite transmitting a recessive
bit, the bus is still in dominant state, it knows that another ECU tries to transmit
data, and it terminates the arbitration process and turns into a receiver. This
allows the other ECU to transmit its message as nothing happened, and the other
ECU that lost the arbitration, can retry sending its message at a later time. Using
this method requires the bus has to adhere to three key elements:

121



e The ID of the message types has to be unique.

e A data frame with a given ID and a non-zero Data Length Code (DLC) value
may only be sent by one ECU.

e The remote frame’s DLC value has to be the same as the data frame it
requests.

Using this contention-based arbitration ensures that the ECU with the higher
priority frame will always win the arbitration, because its ID contains more domi-
nant bits, than the other potential transmitter ECU frame’s ID.

4. Malicious CAN Gateway

Since the CAN standard does not support message authentication, if we manage to
insert a special device in the communication line between the two ECUs, then we
can add, modify, or even delete messages with an arbitrary ID. The visualization
of the attack can be seen in Figure 2.

EELS

9 e N | )

b= 4 o

Hijacked message path

Figure 2. The concept of a MITM attack in the automotive
industry.

4.1. Design

In order to create a CAN gateway, we used NodeMCU ESP32s microcontrollers.
ESP32 is a two-core, 240MHz versatile microcontroller, with a built-in CAN con-
troller and Wi-Fi module. It comes with the Espressif IoT Development Framework
(ESP-IDF), which is based on the popular Free Real-Time OS (FreeRTOS) plat-
form. Using the ESP-IDF allows us to create a hard-real-time device using its
built-in scheduler, while providing convenient features, for instance, a built-in web
server, which is useful for device configuration.

There were several requirements for the proof-of-concept malicious CAN gate-
way:

122



e It should be able to handle ISO 11898 High-Speed CAN messages, with a bus
speed of up to 1Mbps.

e It should have as low introduced delay as possible, preferably low enough
that it is not significantly greater than a lost arbitration or a transient error.

e Despite being a proof-of-concept device:

— It should be robust enough to be used later at least for research.

— It should be easy to configure during testing, and configuration shall not
require reprogramming of the device.

— It should be as serviceable as possible, without requiring specific hard-
ware knowledge. The components should be replaceable in case it is
required.

The first step of the design process was to create a high-level architecture of
the CAN gateway, which can be seen in Figure 3. As one can see on the figure, the
CAN gateway consists of two CAN transceivers, and two ESP32s microcontrollers.
One of the microcontrollers is the master, and the other one is the slave. Each
microcontroller handles one side of the CAN bus via its built-in CAN controller,
and the corresponding CAN transceiver. The communication between the micro-
controllers is realized via a UART line. The master provides a web interface for
configuration through its 2.4GHz Wi-Fi module, working as an access point.

HTTP through 2.4GHz WiFi

@

CAN SIDE A ESP32s ESP32s CAN SIDE B

CAN_H— CAN -RX—>|CAN GATEWAY| €& UART- |CAN GATEWAY | ¢—RX~ CAN — CAN_H

CAN_L ——>| Transceiver |e—TX- SIDEA SIDEB -TX—>| Transceiver Je—— CAN_L
(Master) (Slave)

Figure 3. High-level architecture of the CAN gateway.

4.2. Implementation

After designing the schematics and verifying it on a breadboard, we have built a
soldered version of the circuit. We used a protoboard as the base of the device,
which allowed us to apply minor changes to the hardware design without having
to rebuild the complete circuit again. The components have been soldered onto
the protoboard using sockets in order to make a potential component replacement
easier to achieve. A picture of the finished proof-of-concept CAN gateway board
can be seen on Figure 4.

123



— Masterenabler P
= SlaveJreselfenablerkes:
== Test{pointsk S 25

== CANKZ0}ohm EREEE
termlnatlng

Figure 4. The top view of the proof-of-concept CAN
gateway board.

4.3. Operation

After powering up the device, it provides a web interface for configuration through
its Wi-Fi access point, as we mentioned before, which is a key element in making the
device usable for research purposes. This web interface allows the user to configure
it using a simple web browser, or via direct POST request (e.g., using curl). The
graphical web configuration interface of the device can be seen on Figure 5.

CAN Bus bitrate:

Attack type: ‘ REPLACE_DATA_WITH_CONSTANT_VALUES v‘

ID to be attacked: Ox |a1b2 ?)

Offset of the data to be modified in bytes:

)

Length of the attack in bytes:

Value to be inserted/added/subtracted: ox |42 @

Figure 5. The graphical web configuration interface of the CAN
gateway.

The configurable parameters are the following:

e Bitrate: This parameter can set the bitrate of the CAN bus.

124



e [d: The id of the CAN message to be attacked.

o Offset and AttackLength: The offset controls the position of the first byte
to be attacked, and the attackLength determines how many bytes will be
attacked.

e ByteValue: Some of the attack types require an additional parameter, which
will replace the original or will be added or subtracted from the selected byte
values.

o AttackType: There are several different attacks the device can perform:

Passthrough: In this mode, the device relays the traffic without modi-
fying any of the messages.

Replace-data-with-constant-values: In this mode, the device re-
places the selected bytes in the message with the given ByteValue pa-
rameter.

Replace-data-with-random-values: In this mode, the device gener-
ates random bytes for each of the selected bytes in the message, and
replaces them.

Add-delta-value-to-data: In this mode, we add the given ByteValue
parameter to each of the selected bytes in the message. In case the
resulting values would overflow, it gets capped at the maximum 255
value.

Subtract-delta-value-from-data: Similar to the previous attack type,
but the byte ByteValue is subtracted instead of added. In case the re-
sulting value would underflow, it gets bounded at the minimum 0 value.

Increase-data-until-max-value: In this mode, we take the lowest
value from the selected bytes, increase it by one and replace all of the
selected bytes if the increased byte is higher than the original. This is
repeated until the max value (0xff) is reached.

Decrease-data-until-min-value: This attack type is similar to the
previous one, but at the start, we take the highest value from the selected
bytes and decrease it every message, until we reach 0x00.

Replace-data-with-increasing-counter: We start a counter from 0
and increase it by one at every occurrence of the message. The selected
bytes get replaced with the counter. The counter can overflow.

Replace-data-with-decreasing-counter: Similar to the previous at-
tack type, but the selected bytes get replaced by a decreasing counter
starting from 255, which can underflow.

After the user sends the configuration via the graphical web interface or via a
direct POST request, the device validates the configuration on the server-side, and
if it is correct, it starts the attack phase.

125



5. Evaluation

During the evaluation, we performed two tests. First, we created a testbed using
a Raspberry Pi with a PICAN shield; and a NodeMCU ESP32s with an additional
CAN Transceiver as our CAN nodes. Later, we used a vehicle testbed built from
actual vehicle components to verify the functionalities of our device in a close-to-
real-world setting.

5.1. Raspberry Pi Testbed

The nodes were configured to send messages to each other via the CAN bus; how-
ever, they could only send these messages through the CAN gateway. The testbed
can be seen on Figure 6.

Figure 6. The CAN gateway testbed using a Raspberry Pi and a
NodeMCU ESP32s.

During the measurements, we tested all attack types, with different IDs, offsets,
and attack lengths, while logging both the UART lines, as well as the messages on
both sides of the gateway. As we found, the CAN gateway managed to modify the
messages with an introduced delay of 260us on the 1Mbps CAN bus. This delay is
only approximately 2.3 times longer than a lost arbitration, which could be caused
by a busy bus or a short transient fault.

One example of the tested attacks has the following parameters:

e Bitrate: 1 Mbps
e Id: 0x090

126



Offset: 2

AttackLength: 3

ByteValue: 0x08

AttackType: Replace-data-with-constant-values

A screenshot of a measurement can be seen on Figure 7. There are two messages
traveling on the bus at the same time:
A—B: ID: 0x090, Data: 0x00 0x80 0x80 0x80 0x41 0x41 0x00
B—A: ID: 0x045, Data: 0x01 Oxf2 0x03 0xf4 0x05 Oxf6 0x07 0xf8

However, after both messages go through the CAN gateway, the targeted message
with the 0x090 ID arrives with changed values. On the arriving side, the following
messages are present:

A—B: ID: 0x090, Data: 0x00 0x80 0x08 0x08 0x08 0x41 0x00

B—A: ID: 0x045, Data: 0x01 O0xf2 0x03 O0xf4 0x05 0xf6 0x07 0xf8

Thus, we can say that the CAN gateway has successfully modified the preconfigured
part of the message.

i |

Bus: 1Mbps
Introduced delay: ~ 260us

S

Inter-uC UART
B->A

Figure 7. Simultaneous message transmission in both direction.

5.2. Vehicle Testbed

After verifying that our attack worked in our local testbed, we tested the malicious
CAN gateway on a Citroen C5 test bench, which contains the electronics of a
real-life Citroen C5 (Figure 8).

127



Figure 8. The Citroen C5 test bench.

We found a CAN bus connection point between the dashboard and the ECU,
we connected the CAN gateway to this point. The attack we performed was to
overwrite the tachometer value with a constant, and thus force the dash to show
a modified engine rpm instead of the real one. The attack parameters were the
following:

e Bitrate: 250 Kkbps

1d: 0x208

Offset: 0

AttackLength: 1

ByteValue: 0x30

AttackType: Replace-data-with-constant-values

As one can see in Figure 9, despite the engine idling at 810 rpm, the dashboard
shows the modified values of around 1500 rpm.

128



Figure 9. The attack of the tachometer displays different rpm
than the real one.

6. Conclusion

In summary, the CAN bus, which is one of the most common communication
solutions for ECUs, has several security flaws since security was not in focus during
its development. There are no message authentication measures; the ECUs decide
to act upon a message or not based only on the CAN ID field of the message.
Hence, it is possible to inject fake messages, or modify existing messages on the
CAN, and by doing that, to force some ECUs to act upon these fake messages,
which may influence the vehicle’s overall behavior.

While message injection attacks are easy to implement, they provide several
side effects, making them almost trivial to detect. Message modification attacks
are hard to realize and require a more profound knowledge of the field, but they
are much less detectable. In this work, our goal was to design and implement a
device, capable of modifying ISO 11898 high-speed CAN messages in real-time.

Our CAN gateway device was designed to perform a Man-in-the-Middle attack
by separating the targeted ECU and the rest of the CAN bus. Being in a man-in-
the-middle position allows our device to modify the content of any message passing
through the CAN gateway without any excess message or increase in the busload.
It is capable of modifying CAN messages in real-time with a minuscule introduced
delay of 260 us, without being detectable by current measures. It can handle up
to 100% bus load with a bus speed of 500 kbps or less, and about 60-100% busload
at 1 Mbps. The device is built from low-cost, commonly available parts, and it
provides a wireless interface that can be used to remotely configure the attack
parameters.

129



References

(1
2]

(3]

(4]

[5]
[6]
(7]
(8]

[9]

[10]

(11]

(12]

ARriLou: Feasible car cyber defense, ESCAR, 2010.

B. ELeEnD, T. WALRANT, G. OLMA: Securing CAN Communication Efficiently With Min-
imal System Impact, NXP, 2020,
URL: https://www.nxp.com/docs/en/white-paper/SECURECARTRANA4FS. pdf.

E. EvencHick: Hopping On the CAN Bus, Black Hat Asia, 2015,
URL: https://www.blackhat.com/docs/asia-15/materials/asia-15-Evenchick-Hopping-
On-The-Can-Bus.pdf.

A. Gazpag, D. NEUBRANDT, L. BUTTYAN, Z. SzALAY: Detection of Injection Attacks in
Compressed CAN Traffic Logs, in: International Workshop on Cyber Security for Intelligent
Transportation Systems, Held in Conjunction with ESORICS 2018, Springer, 2018.

A. HERREWEGE, D. SINGELEE, I. VERBAUWHEDE: CANAuth - A Simple, Backward Com-
patible Broadcast Authentication Protocol for CAN bus, in: Jan. 2011, p. 7.

Road vehicles — Controller area network (CAN) — Part 1: Data link layer and physical
signalling, Standard, Geneva, CH: International Organization for Standardization, Dec. 2015.

Road vehicles — Controller area network (CAN) — Part 2: High-speed medium access unit,
Standard, Geneva, CH: International Organization for Standardization, Dec. 2016.

K. KoscHER, A. Czeskis, F. RoEsNER, S. PaTeL, T. Kouno, S. CHEckowaYy, D. McCoy,
B. KanTOR, D. ANDERSON, H. SHACHAM, S. SAVAGE: Ezperimental Security Analysis of a
Modern Automobile, in: 2010 IEEE Symposium on Security and Privacy, 2010, pp. 447462,
DoI: https://doi.org/10.1109/SP.2010.34.

C. MILLER, C. VALASEK: Adventures in Automotive Networks and Control Units, I[OActive
Labs Research, 2013,
URL: https://ioactive.com/pdfs/I0Active_Adventures_in_Automotive_Networks_and_
Control_Units.pdf.

C. MILLER, C. VALASEK: Remote Exploitation of an Unaltered Passenger Vehicle, IOActive
Labs Research, 2015,
URL: https://ioactive.com/pdfs/I0Active_Remote_Car_Hacking.pdf.

H. M. Song, H. R. Kiv, H. K. Kim: Intrusion detection system based on the analysis of
time intervals of CAN messages for in-vehicle network, in: 2016 International Conference
on Information Networking (ICOIN), 2016, pp. 63-68,
DOI: https://doi.org/10.1109/ICOIN.2016.7427089.

A. TavLor, N. Japkowicz, S. LEBLANC: Frequency-based anomaly detection for the auto-
motive CAN bus, in: 2015 World Congress on Industrial Control Systems Security (WCICSS),
2015, pp. 4549,

pol: https://doi.org/10.1109/WCICSS.2015.7420322.

130



