
Machine Learning on Android
with Oracle Tribuo, SMILE and Weka∗

Máté Szabó

Faculty of Informatics, University of Debrecen, Hungary
szabo.mate@inf.unideb.hu

Proceedings of the 1st Conference on Information Technology and Data Science
Debrecen, Hungary, November 6–8, 2020

published at http://ceur-ws.org

Abstract

Machine learning is reaching nearly every programming language and
most kinds of devices. While the most popular language for developing ma-
chine learning application is Python, it has its own limits, for example, the
partial compatibility with Android devices. When a mobile application needs
to train a model, it is easier to achieve this with the device’s native language
like Java or Kotlin. There are many machine learning libraries for Java,
but most of them lack Android support. This paper compares the resources
needed to train random forest, support-vector machine and K-means mod-
els of the Weka, Tribuo and SMILE libraries. We developed an application
to compare these libraries’ implementations on datasets with various sizes.
The results show that Weka is the suggested library for bigger datasets and
complex models, as it is the least resource hungry.

Keywords: Android, machine learning, Tribuo, SMILE, mobile

1. Introduction

In September 2020, Oracle announced Tribuo, their open source Java machine
learning library under Apache 2.0 license. It features many commonly used algo-

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

∗The work is supported by the EFOP-3.6.1-16-2016-00022 project. The project is co-financed
by the European Union and the European Social Fund.

176



rithms like random forest, SVM, lasso, K-means, so it can solve prediction, classifi-
cation, regression, clustering and anomaly detection problems. SMILE, the Statis-
tical Machine Intelligence and Learning Engine is another machine learning library
for Java. Its main advantage is performance compared to other libraries and algo-
rithm support. Weka is a general purpose open source machine learning software
with Java API, which is easy to use and has its own graphical interface. The com-
mon thing in these libraries is that they can be used with Java or Kotlin and there
are many algorithms that all of them support. Because of this, their performance
can be compared in the same environment, which will be an Android device with
a mobile processor in it. Although these are not native Android libraries, they
can work on these systems and their performance can be compared. Kotlin is a
programming language for JVM, which became the preferred language for Android
programming. Codes from Java can be transformed into Kotlin code, so it is easy
to use Java libraries in this environment. Benchmarking mobile devices’ model
training performance is a repeating task, because we can measure how much these
devices evolved in years. In this paper, we present the Android machine learning
ecosystem, the libraries, the challenge of porting machine learning libraries, and
the results.

2. Related Works

With the evolution of mobile devices and applications, it was inevitable to use
machine learning techniques for more personal user experience. Most applications
use pre-trained models to recognize voice, to take better pictures or to swap faces.
There are many disadvantages of training models on mobile, for example, the en-
ergy consumption [14]. Besides that, there are many use cases of models trained
on mobiles like comparison of machine learning capability of processors [8], detect-
ing potholes [9], or malware [19]. The present work can be placed on the topic of
machine learning and Android benchmarking. There are many articles about com-
paring devices or machine learning libraries by training time, memory and CPU
efficiency. For a complete benchmarking tool, there is the PMLB, the Penn ma-
chine learning benchmark [16]. There are other papers about benchmarking, like
the Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance
Benchmark [4], the MLPerf Training Benchmark [12], or the Benchmark of Machine
Learning Methods for Classification of a Sentinel-2 Image [18].

2.1. Java Machine Learning

Java is not a popular language for machine learning, but it is popular for applica-
tion development, and because of the need of intelligent applications, it supports
many machine learning features with libraries. Each of these supports different al-
gorithms and datasets and each of them has advantages for specific systems. Weka
[6] is a complete machine learning software with graphical interface, command-line
interface and it can be used as a Java library too. It supports tasks like pre-

177



processing, classification, regression, clustering, association rules and visualization.
SMILE [10], the Statistical Machine Intelligence and Learning Engine is a powerful
engine that covers every aspect of machine learning. It supports JVM languages,
so SMILE codes can be transformed into Kotlin codes. It has many algorithms
for classification, regression, clustering, association rule mining and many built-in
solutions for pre-processing, validation, feature engineering and time series. Oracle
Tribuo [17] is a newly open sourced machine learning library written in Java and
it has unique features like provenance, type safety and interoperability. Models,
datasets, and evaluations have provenance, which means they know the transforma-
tions and parameters used to create them. The interoperability means that Tribuo
has interfaces to libraries like XGBoost [3] and Tensorflow [1] and the ONNX [2]
exchange format. Deeplearning4J [21] is a SMILE based library focusing on deep
learning, which is not in the scope of this paper. H2O [7] is an in-memory platform
that has many softwares and libraries for machine learning. It supports most kind
of data mining tasks and it can be integrated with Java applications through REST
API or embedding. Mallet [13] is another option for applications which use natural
language processing, document classification or clustering.

3. Machine Learning on Android

When we want to train and use machine learning models on Android, we can
encounter many challenges. The main reason not to train models especially with
large datasets on mobiles is that these operations need a lot of energy, so running
applications would result in battery drain. While training is possible, it is limited
by these devices’ memory capacity, because most mid-range smartphones usually
have 4-6 gigabytes of memory, and this is not enough for processing larger datasets,
not to mention that Android has limitations for memory usage. Another challenge
for mobile machine learning developers is the architectural difference between the
processors of computers and mobiles. Using Java libraries on these devices can be
risky because Android does not have full Java support, so it is possible that some
functions don not work or work, but with different results.

Currently, applications that want to use machine learning can choose from
using TensorFlow Lite, or a library with Android Neural Network API support, or
web services. With TensorFlow Lite developers can mostly use pre-trained models
created with TensorFlow or they can train specific models for image and text
classification. A popular choice is to use machine learning web services where the
application sends data to the service and gets back the result.

3.1. Porting Weka

Weka contains many Android incompatible code, mostly its graphical interface
and logging, but there are many more functions that use specific code parts, which
cannot be compiled on mobiles. Our strategy here was to remove everything that is
incompatible and see how the application can work with the newly compiled Weka.

178



The porting was successful, however sometimes minor errors occured during the
tests. The tested library was based on rjmarsan’s Weka-for-Android project [11].

3.2. Porting SMILE

SMILE also contained incompatible code, for example Java codes that were not
supported by Android or functions with java.sql type. Because the number of
these code parts were few, they were replaced by Android compatible ones. The
result was good enough to run on mobiles, but it did not support all features, and
some of these errors occured during runtime.

3.3. Porting Tribuo

Oracle’s Tribuo library consists of many Maven artifacts, and some of them were not
needed for this application. There are modules which cannot be compiled on An-
droid, but the most important ones, namely tribuo-data, tribuo-classification-trees,
tribuo-clustering-kmeans and tribuo-classification-sgd ran without modifications.
Overally we can say that not all of Tribuo’s functions work on Android, especially
the ones using third-party libraries, but we can do simple machine learning tasks
with it on mobiles.

4. Application

The aim of the Android application is to measure properties of machine learning
libraries like memory usage or runtime. The libraries involved are the newly open
sourced Oracle Tribuo, SMILE and Weka. The application runs the same test with
each library, which means it trains models like SVM, Random Forest and K-means
on multiple datasets with different sizes. The test uses the same algorithms and
parameters for all libraries. The results and runtime properties are logged by the
application.

The graphical interface is quite simple. When we tap on a library name, the
software will train a selected type of model on a selected dataset. The “ALL” but-
ton is for running the training operation of all libraries parallelly. We can choose
from the Iris dataset [5] with 150 records, a subset of the Record Linkage Com-
parison Patterns dataset [15, 20] with 60,000 records and the full Record Linkage
Comparison Patterns dataset with 5749132 records. The algorithms we can choose
from are the random forest with 500 trees, split rule GINI, maximum depth = 20,
maximum nodes = data size / 5 and node size = 5, the SVM with an RBF kernel,
gamma = 0.1, lambda = 0.5, epochs = 30, and the K-Means algorithm with 2 or
3 centroids based on the dataset, iterations = 10 and distance is Euclidean. The
outputted result contains the runtime, the maximum and the average CPU usage,
the memory usage and the energy consumption.

179



Figure 1. First screen of the measuring application. The user can
decide to run tests for a specific library or all available libraries.

5. Results

Weka, SMILE and Tribuo can train machine learning models on Android and all
of them can be used for simpler applications. As the software trained the same
models with the same parameters and datasets these models’ performance was the
same on the test datasets. The only difference between these libraries was in the
runtime, memory usage, average CPU usage and energy consumption.

5.1. Runtime

In Table 1 and Figure 2, we can see how fast the libraries finished the training
of the models, where the prefix is the dataset (i is the Iris dataset and p is the
Patterns dataset), and the second part is the name of the algorithm (where r is the
random forest, s is the support-vector machine and k is the K-means).

Table 1. Runtime of algorithms on specified datasets.

i-r i-s i-k p-6-r p-6-s p-6-k p-r p-s p-k
Tribuo 0.98 1.18 0.45 49.72 0 25.29 3187.497 0 0
Weka 0.72 0.7 0.72 9.26 95.8 22.73 459.304 1696.58 92.817

SMILE 3.09 1.47 0.09 75.6 0 13.24 1725 0 0

As we can see, most of the time, Weka library was the fastest, except for K-
means where SMILE was faster. For smaller datasets, both Tribuo’s and SMILE’s
results are good, but for larger ones, they were much slower than Weka. Where
there are zeros in the table, the software did not complete the training of the model,
because the Android system killed the application due to its high resource need.

180



Figure 2. Comparison diagram of runtime results.

5.2. Memory Consumption

In Table 2 and Figure 3, we can see how much memory the algorithms needed in
megabytes. The notation is the same as in Table 1 and Figure 2.

Table 2. Memory need of algorithms on specified datasets.

i-r i-s i-k p-6-r p-6-s p-6-k p-r p-s p-k
Tribuo 110 95 102 106.3 500 139 500 500 290
Weka 82.5 103.4 96 89.3 95 133.8 316 354.6 330

SMILE 90.5 113 84 121.7 800 265.8 285.4 800 1200

It is clear, that Weka used the least amount of memory, but in some cases Tribuo
was wery close to it, like in iris-svm, iris-kmeans, and patterns-kmeans. There
are special cases where the training did not finish, like Tribuo’s pattern-60000-
svm, pattern-rsvm and pattern-kmeans or SMILE’s pattern-60000-svm, pattern-
svm and pattern-kmeans where the memory need was extremely high compared to
other cases. The highest value was the SMILE’s K-means training for the Pattern
dataset where the application used 1.2 GB memory. For smaller datasets we can
say that Tribuo and SMILE needed somewhat more memory, but this is not a huge
difference.

181



Figure 3. Comparison diagram of memory results.

5.3. Battery Consumption

In Table 3 and Figure 4 we can see the battery consumption of the application,
when it trains the selected models. The table’s and figure’s notations are the same
as earlier. The values range from 0 to 1, where 0 is the no energy need and 1 is the
highest energy need.

Table 3. Energy consumption of algorithms on specified datasets.

i-r i-s i-k p-6-r p-6-s p-6-k p-r p-s p-k
Tribuo 0.6 0.2 0.2 0.6 1 0.2 0.4 1 0.6
Weka 0.2 0.2 0.2 0.6 0.6 0.4 0.4 0.2 0.4

SMILE 0.6 0.2 0.6 1 0.6 0.4 1 0.6 0.2

Battery consumption is an important part of these measurements, because this
means that a machine learning application could be maintained or it drains the
battery that much, that the application is unusable. In Figure 4 we can see that
Weka used the least amount of battery, the next one was Tribuo and the hungriest
library was SMILE. For smaller tasks, Tribuo’s and Weka’s energy need were nearly
the same.

182



Figure 4. Comparison diagram of energy consumption results.

5.4. Average CPU Usage

In Table 4 and Figure 5 we can see the average CPU usage while training the
models. The table’s and figure’s notations are the same as earlier. Average CPU
usage shows how these libraries use this resource. When this value is below 50, it
means that other applications can run parallelly while the training is running.

Table 4. CPU usage of algorithms on specified datasets.

i-r i-s i-k p-6-r p-6-s p-6-k p-r p-s p-k
Tribuo 26 23 37 15 0 16 25 25 60
Weka 20 21 21 12 20 21 18 23 20

SMILE 97 71 16 90 30 21 75 30 61

Table 4 shows that SMILE needs the most CPU resource for every algorithm and
dataset. The second most processor hungry library was Tribuo, but it produced
similar results as Weka. This means that with better processors, SMILE would
perform better in runtime. For weaker processors, it is strongly advised to use
Weka because of its small resource need.

183



Figure 5. Comparison diagram of CPU usage results.

6. Conclusion

This paper showed that using machine learning libraries meant for Java can be
used in Android application development if we have a specific task. However if an
application uses models for image or text classification the recommendation is to
use Tensorflow or web services. Specific tasks can be classifying or recommendation
based on the users’ data, where it is necessary to train a local model.

Porting Weka, Tribuo and SMILE to Android devices is a somewhat challenging
task, because each of them has some Java version or platform specific codes, which
will not work on mobiles. To compare these libraries’ performance, we must select
algorithms that each of them supports and has Android compatible implementa-
tion. For the comparison, we chose the random forest, SVM and K-means models
and datasets with different sizes. The results show that Weka is the suggested
library for bigger datasets and complex models, as it is the least resource hungry.
It supports a wide range of algorithms, so every kind of machine learning task can
be done with it. For smaller datasets or fewer complex models, Tribuo and Smile
can be an option because they get updates frequently, so they can react faster to
market needs.

An improvement can be extending these tests with other datasets, algorithms,
or multiple devices. The results could be compared to results from computers
instead of Android devices. As new machine learning libraries are released, they
could be ported to mobiles and the results could be extended.

184



References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al.: Tensorflow: A system for large-scale machine learning, in:
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16),
2016, pp. 265–283.

[2] J. Bai, F. Lu, K. Zhang, et al.: ONNX: Open Neural Network Exchange, https://
github.com/onnx/onnx, 2019.

[3] T. Chen, C. Guestrin: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, San Francisco, California, USA: ACM, 2016, pp. 785–794, isbn: 978-1-4503-4232-2,
doi: 10.1145/2939672.2939785,
url: http://doi.acm.org/10.1145/2939672.2939785.

[4] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao, J. Zhang, P. Bailis,
K. Olukotun, C. Ré, M. Zaharia: Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark, ACM SIGOPS Operating Systems Review 53.1 (2019),
pp. 14–25,
doi: 10.1145/3352020.3352024.

[5] R. Fischer: Iris Dataset, 1988,
url: https://archive.ics.uci.edu/ml/datasets/iris.

[6] E. Frank, M. A. Hall, I. Witten: The WEKA workbench. Online appendix, in: Data
mining: practical machine learning tools and techniques, Morgan Kaufmann, 2016.

[7] H2O.ai: H2O, 3.10.0.8, Nov. 2020,
url: https://github.com/h2oai/h2o-3.

[8] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, L. Van Gool: AI
Benchmark: Running Deep Neural Networks on Android Smartphones, in: Proceedings of
the European Conference on Computer Vision (ECCV) Workshops, Sept. 2018,
doi: 10.1007/978-3-030-11021-5_19.

[9] A. Kulkarni, N. Mhalgi, S. Gurnani, N. Giri: Pothole detection system using machine
learning on Android, International Journal of Emerging Technology and Advanced Engineer-
ing 4.7 (2014), pp. 360–364.

[10] H. Li: Smile, https://haifengl.github.io, 2014.

[11] R. Marsan: Weka-for-Android, https://github.com/rjmarsan/Weka-for-Android, 2011.

[12] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Patterson, H.
Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen, D. Dutta, U. Gupta,
K. Hazelwood, A. Hock, X. Huang, D. Kang, D. Kanter, N. Kumar, J. Liao, D.
Narayanan, T. Oguntebi, G. Pekhimenko, L. Pentecost, V. Janapa Reddi, T. Ro-
bie, T. St John, C.-J. Wu, L. Xu, C. Young, M. Zaharia: MLPerf Training Benchmark,
in: Proceedings of Machine Learning and Systems, ed. by I. Dhillon, D. Papailiopoulos,
V. Sze, vol. 2, 2020, pp. 336–349,
url: https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-
Paper.pdf.

[13] A. K. McCallum: MALLET: A Machine Learning for Language Toolkit, 2002,
url: http://mallet.cs.umass.edu.

[14] A. McIntosh, A. Hindle, S. Hassan: What can Android mobile app developers do about
the energy consumption of machine learning?, Empirical Software Engineering 24.1 (2019),
pp. 562–601,
doi: 10.1007/s10664-018-9629-2.

[15] E. C. R. of North Rhine-Westphalia: Record Linkage Comparison Patterns Dataset,
2011,
url: https://archive.ics.uci.edu/ml/datasets/record+linkage+comparison+patterns.

185



[16] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, J. H. Moore: PMLB:
a large benchmark suite for machine learning evaluation and comparison, BioData mining
10.1 (2017), pp. 1–13,
doi: 10.1186/s13040-017-0154-4.

[17] Oracle: Oracle Tribuo, https://tribuo.org/, 2020.

[18] F. Pirotti, F. Sunar, M. Piragnolo: Benchmark of Machine Learning Methods for Clas-
sification of a SENTINEL-2 Image, International Archives of the Photogrammetry, Remote
Sensing & Spatial Information Sciences 41 (2016),
doi: 10.5194/isprsarchives-XLI-B7-335-2016.

[19] J. Sahs, L. Khan: A Machine Learning Approach to Android Malware Detection, in: 2012
European Intelligence and Security Informatics Conference, 2012, pp. 141–147,
doi: 10.1109/EISIC.2012.34.

[20] M. Sariyar, A. Borg, K. Pommerening: Controlling false match rates in record linkage
using extreme value theory, Journal of Biomedical Informatics 44.4 (2011), pp. 648–654,
doi: 10.1016/j.jbi.2011.02.008.

[21] E. D. D. Team: Deeplearning4j: Open-source distributed deep learning for the JVM, 2016,
url: http://deeplearning4j.org/.

186


