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Abstract

In this work, a so-called “Time Evolution Model” is suggested to help cat-
egorize files of a sample set used in antivirus testing procedures. The basic
time-dependent variable of this model is the Ratio of the Infected files within
an investigated Time Window. To estimate the main characteristics of the
time series describing the change of the Ratio values related to a specific file,
a nonlinear, exponential curve fitting method is used. The free parameters
of the model were determined by numerical searching algorithms. The ef-
fectiveness and the reliability of the model is also demonstrated by several
real-word and numerically simulated examples.
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1. Introduction

As business and people rely more and more on computer related devices (including
smart devices and the IoT), they are increasingly vulnerable to cyber-attacks [3,
15]. These attacks include threats of social networks [6] data phishing, malicious
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programs [17], etc. The defense against malware is composed of malware detectors,
systems that investigate malicious objects (mainly files and URLs). Several mal-
ware detection techniques and methods to investigate the vulnerability of systems
are introduced in the literature [10].

Security solution testers use malicious files (sample set) coming from different
sources to determine whether the defense is able to detect these files as malicious
or not [2, 7, 9, 13, 15].

One of the most important parts of the testing procedure influencing the re-
liability of the procedure is the correct and relevant selection of the used sample
set.

How to correctly classify samples of a sample set is one the major issues for
security solution testers to ensure their service to be reliable and to be able to
give relevant recommendations for their client about the capabilities of security
solutions [5]. Evaluating the efficiency of different antiviruses (AV), different an-
tivirus vendors or even testing the level of security in a corporation requires reliable
information about the samples [1, 8].

Besides the main question whether a given object (file/URL) (abbreviated only
file in what follows) in a sample set is “Infected ” or “Noninfected ” [4, 11], in case
of the infected files the “freshness” of the infection is also an important issue. The
starting time of operation of a malware is essential for categorizing the malware as
“New ” or “Old ”.

Sample selection can be broken down into three phases [16]:

• Collection

• Validation

• Classification

In this paper the classification phase is in focus, however some aspects of the vali-
dation phase are also incorporated. It is assumed that the collection was correct,
and the sample consists of real-world, prevalent, fresh, diverse files collected inde-
pendently.

The sample validation process essentially is series of tests to make sure that the
sample is functional (has working malicious function). There are several methods
trying to validate samples: reverse engineering, usage of automated tools or by us-
ing various specialized tools (e.g. sandboxes) to check file integrity or functionality.

Best practices show that validation is most valuable when it is based on sample
functionality, but these methods are not applicable to all sample types and may
need enormous efforts to pursue these kinds of activities on a daily basis with huge
number of files.

In this paper a so-called “Time Evolution Model ” is suggested to help categorize
each file or even a whole sample set (also called as feed).

The basic time-dependent variable of this model is the Ratio of the “Yes” de-
cisions to the question: Is this file infected? The answers come from the members
of a set of antimalware where most of these members showed reliable operations in
the past in malware detection.
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After the appearance of a new malware it takes less or more time for the different
antimalware to detect the fact of infection. Some antimalware is simply not able to
recognize some specific infections. (Possibly due to some validation issue.) Hence
the ratio of “Yes” decisions is gradually increasing in time and reaches the state
when the increase and the variation of the Ratio value is small enough to establish
this Ratio as the steady state value of the time evolution.

The main goal of this study is to establish the main characteristics of these time
functions. A nonlinear curve fitting method is used to fit a smooth time function
on the observed Ratio data to estimate the steady state value (called Asymptote),
the Start Time (starting time of operation) and the Slope at the Start Time for
each file in a feed. These parameters can be used later to classify a file belonging
to a certain category (“Old ”, “New ”, “Infected ”, “Noninfected ”, etc.).

For this estimation past Ratio data within a Time Window are used. The Time
Window ends at the moment of investigation (“Today”) and goes back in time.
Obviously, the length of time, how far the Time Window goes back, has influence
on the estimation. It is also investigated.

The reliability of the “Yes” decisions of the antiviruses is crucial. In this study
it is assumed that the antimalware set consists of properly selected members. The
process of selection resulting in a reliable set is discussed elsewhere.

2. General Features of the Time History of Malware
Detections

As an example, in Table 1 the results of classifications for a sample of files are
summarized.

Table 1. Results of Files Classifications and the Ratio Values.

Date File name AV 1 AV 2 AV 3 . . . AV 100 #AV #Yes 𝑅𝑎𝑡𝑖𝑜

01.03 File 1 * No Yes Yes 97 34 0.35
01.03 File 2 No No Yes No 93 43 0.462
. . .

01.03 File 1000 Yes Yes Yes Yes 96 44 0.463
01.04 File 1 Yes No * Yes 94 37 0.35
01.04 File 2 Yes No Yes No 95 44 0.463
. . .

01.04 File 1000 No Yes Yes Yes 90 37 0.411
. . .

01.19 File 1 Yes Yes * No 89 42 0.472
01.19 File 2 Yes * Yes No 98 50 0.510
. . .

01.19 File 1000 Yes Yes * Yes 99 51 0.515
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Figure 1. Time Series Graphs for the Ratio Values for Different
Files in Different Phases of Antimalware Detection.

The cells of the table show the 𝑌 𝑒𝑠/𝑁𝑜 results of classifications for 𝑁𝑓𝑖𝑙𝑒𝑠 =
1000 different files by 𝑁𝐴𝑉 = 100 antiviruses for 17 days. Typically, not all files
are checked by all 𝐴𝑉 on all days, so some cells contain no data. In the Ratio
column the ratio of the number of 𝑌 𝑒𝑠 -es (#𝑌 𝑒𝑠) and the number of nonempty
cells (#𝐴𝑉 ) in the given row is calculated.

The time evolution of the Ratio variables is better representable by time series
graphs. In Figure 1 typical graphs for different files are shown where the different
files are in different phases of antimalware detection. In Figure 2 those files are
selected which can be considered as “Old ” infected files.

Here the values of the Ratio variable show little fluctuation around different
“imaginary”, almost horizontal lines for the different files. This steady state fea-
ture forecasts not much change in the future, so these steady state Ratio values
can be the basis for classifying the different files. Depending on the purpose of
classification different threshold values can be decided in advance to categorize the
files. If only two categories are used, above some predefined 𝑅𝑎𝑡𝑖𝑜𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 value
(e.g. 𝑅𝑎𝑡𝑖𝑜𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 = 0.7) a file can be taken as an “Infected ” file, otherwise as
“Noninfected ”. Sometimes three categories are better to use: “Infected ”, “Nonin-
fected ”, “Gray”. In this case two threshold values 𝑅𝑎𝑡𝑖𝑜𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 and 𝑅𝑎𝑡𝑖𝑜𝐺𝑟𝑎𝑦 (e.g.
𝑅𝑎𝑡𝑖𝑜𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 = 0.7 and 𝑅𝑎𝑡𝑖𝑜𝐺𝑟𝑎𝑦 = 0.4) can divide the zero-one interval into
three different classification categories. The details for establishing these threshold
values are not discussed here.

In Figure 3 and in Figure 4 the situations are different. Both figures suggest
that the gradual increases of the Ratio values have not been finished, the infections
are “New ”, they have been detected recently. These forecast additional increases
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in Ratio values, so the steady state Ratio values are in questions. In Figure 3 the
graphs suggest the Start Time-s of the infection outside the Time Window while
the graphs in Figure 4 suggest them inside.

Figure 2. Time Series Graphs for the Ratio Values for “Old” In-
fected Files.

Figure 3. Time Series Graphs for the Ratio Values for “New ”
Infected Files. The Start Time-s are outside the Time Window.
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Figure 4. Time Series Graphs for the Ratio Values for “New ”
Infected Files. The Start Time-s are inside the Time Window.

3. The Time Evolution Model

To estimate the main characteristics of the time series describing the change of
the Ratio values related to a specific file, nonlinear curve fitting method is used.
For each file a theoretical time function is fitted to the observed Ratio values. In
Figure 5 the notations are summarized.

Malware Detection in Time

Asymptote

Slope

Last Time (tlast)First Time (tfirst)Start Time (tstart)

Time Window (Δt)

Fitted Line (y(t))

Ratio Observed (yobs(t))

Ra
tio

 (y
, y

ob
s)

Time (t)

Ratio 
Increment

(Δy)

Age

Figure 5. Notations in the Time Evolution Model.
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In what follows 𝑦𝑜𝑏𝑠(𝑡) or simply 𝑦𝑜𝑏𝑠 denotes the observed Ratio values in time.
(Sometimes the more precise 𝑦𝑜𝑏𝑠(𝑡𝑖) is used since the observations are in discrete 𝑡𝑖
time instants.) The function 𝑦(𝑡) or simply 𝑦 is the fitted function to be determined
as the best fitted function to the observed 𝑦𝑜𝑏𝑠 values. Hence

𝑦𝑜𝑏𝑠(𝑡) = 𝑦(𝑡) + 𝜖(𝑡) (3.1)

where 𝜖(𝑡) is a random error term. The function 𝑦(𝑡) is searched in an exponential
form widely used in different growth models [12, 14],

𝑦(𝑡) = 𝛼1(1 − 𝑒−𝛼2(𝑡−𝛼3))

where 𝛼1, 𝛼2 and 𝛼3 are free parameters to be determined. The method of least
squares can be used to determine the 𝛼1, 𝛼2, 𝛼3 free parameters. It requires the
minimization of the criterion

𝑄 =
𝑛∑︁

𝑖=1

[𝑦𝑜𝑏𝑠(𝑡𝑖) − 𝑦(𝑡𝑖)]
2

where 𝑛 is the number of observations within the Time Window.
Unlike linear curve fitting, it is not possible to find analytical solution for the

least squares, instead numerical search procedures must be used. In the exam-
ples presented here Matlab https://www.mathworks.com/products/matlab.html
software’s built in optimization procedures have been used.

In the optimization the constrains

𝛼1 ≤ 1 and 𝛼2 ≥ 0

were applied.
It is worth seeing that concrete “physical” meaning can be attributed to the

three free parameters in the model. The 𝛼1 value corresponds to the Asymptote
shown in Figure 5 Depending on the 𝛼1 value, a specific file can directly be classified
in to the “Infected ” or “Noninfected ” category.

The parameter 𝛼3 is the Start Time when the infection begins. Depending
on the 𝛼3 value, a specific file can directly be classified in to the “Old ” or “New ”
category.

The 𝑆𝑙𝑜𝑝𝑒 = 𝛼1𝛼2 product gives the tangent of the angle at Start Time. This
Slope value may refer to the extent (the speed) of spread of a specific infection at
the beginning.

4. Examples for Curve Fitting

Several samples, several real-world files’ time evolution models have been set up in
the present study. In Figure 6 some of them are presented where the final results
of the numerical search procedures for the 𝛼1, 𝛼2, 𝛼3 parameters are also shown.

83



α1 = 0.813
α2 = 0.053
α3 = -32.15

tfirst = 1      tlast = 27

a.

c. d.

α1 = 0.428
α2 = 0.182
α3 = -13.19

b.

α1 = 0.682
α2 = 0.144
α3 = -3.018 α1 = 0.091

α2 = 0.015
α3 = -172.7

Figure 6. Examples for Curve Fitting in Different Detection Situ-
ations.

In all cases the present time (“Today”) is denoted as 𝑡𝑙𝑎𝑠𝑡 = 27. The Time
Window goes back to 𝑡𝑓𝑖𝑟𝑠𝑡 = 1 and the time scale goes beyond 𝑡𝑓𝑖𝑟𝑠𝑡 and 𝑡𝑙𝑎𝑠𝑡 to
get some impression about the possible run of the curves in the past and in the
future. The different panels of the figure depict different detection situations. In
Figure 6b and in Figure 6d the graphs show more or less steady state situations
where Figure 6d reveals a “Noninfected ” case when the detection started long time
before while the 𝛼1 = 0.428 value in Figure 6b refers to a rather uncertain case,
probably better to classify it as a “Gray” situation.

In both, in Figure 6a and in Figure 6c the curves suggest further increases of
𝑦 values in time in “Infected ” situations. However, the observed 𝑦𝑜𝑏𝑠 values in
Figure 6c suggest less uncertainty in the estimated 𝛼1 = 0.682 Asymptote and in
the 𝛼3 = −3.018 Start Time values while the prediction for the 𝛼1 = 0.813 and the
𝛼3 = −32.15 values in Figure 6a are probably more uncertain.

5. Factors Influencing the Reliability of the Param-
eter Estimation

It is obvious that the extent of uncertainty in the predicted 𝛼1, 𝛼2 and 𝛼3 param-
eters is dependent on the run of the observed 𝑦𝑜𝑏𝑠 values. More precisely they are
influenced by the ∆(𝑡) width, the location of the Time Window (relative to the
Time Start), and the spread of the 𝑦𝑜𝑏𝑠 values (this can be characterized by the

84



𝑆𝑡𝑑(𝜖) standard deviation in the model equation (3.1)).
It needs further studies to establish confidence intervals for the 𝛼1, 𝛼2 and

𝛼3 parameters. In this nonlinear curve fitting it is hopeless to get closed form
analytical solutions for these intervals but numerical simulation studies covering
the whole space of the influencing factors may help in determining them.

In practice the question arises in the form: What is the minimal size of the
Time Window at a given file to get reliable estimates for the 𝛼 parameters?

To get some impression about the effects of the influencing factors, in Figure 7,
Figure 8 and Figure 9 the tendencies of the change in the 𝛼 parameters are presented
for two different files where the width of the Time Window is gradually widened.

α1 =  0.925
α2 =  0.038
α3 =  2.080

tlast = 30

a.

c. d.

α1 =  0.625
α2 =  0.206
α3 = 14.726

b.

α1 =  1.0
α2 =  0.038
α3 =  4.856

α1 =  0.734
α2 =  0.085
α3 =  9.922

tfirst = 20 
tfirst = 26 

tfirst = 18 tfirst = 10 

Figure 7. Malware Detection History in Time when the Operation
of the Malware Commences Inside the Time Window.

In Figure 7 the 𝑦𝑜𝑏𝑠 curve depicts the detection history of such a file when the
time of investigation (“Today”) is at 𝑡𝑙𝑎𝑠𝑡 = 30 and the operation of the malware
commences at 𝑡𝑠𝑡𝑎𝑟𝑡 = 10. In Figure 7d where the Time Window goes back in
time to the malware’s start of operation good fit can be seen within the whole
Time Window. Hence the Start Time = 𝛼3 = 9.922 and the 𝑆𝑙𝑜𝑝𝑒 = 𝛼1𝛼2 =
0.734 · 0.085 = 0.062 values can be regarded as good estimates. The value of
Asymptote = 𝛼1 = 0.731 holds more uncertainty, however, this ∆(𝑡) = 20 wide
Time Window seems to be wide enough to produce a reliable Asymptote value to
classify the file as being “Infected ”.

In Figure 7a-c the fluctuations of the 𝛼 parameter values can be seen as the
𝑡𝑓𝑖𝑟𝑠𝑡 value approaches to the Time Start value.
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α1 =  0.887
α2 =  0.413
α3 =  -56.409

tlast = 30

a.

c. d.

α1 =  0.950
α2 =  0.049
α3 = -27.405

b.

α1 =  0.930
α2 =  0.070
α3 =  -15.815

α1 =  0.902
α2 =  0.098
α3 =  -10.187

tfirst = 18

tfirst = 24 

tfirst = 7 tfirst = 1 

Figure 8. Simulated Malware Detection History in Time when the
Operation of the Malware Commences Outside the Time Window.

α1 =  0.9
α2 =  0.1
α3 =  -10

a.

c. d.

b.

tlast = 30 
tfirst = 1
tlast = 30yobs = y + ε

y = 0.9·exp[-0.1·(t + 10)] 
α1 =  0.9

α3 =  -10

Slope = α1α2 =  0.09

tlast = 30 

tlast = 30 

Figure 9. The Change of the 𝛼1, 𝛼2 and 𝛼3 Parameters as the
Width of the Time Window is Changing.
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In Figure 8 and in Figure 9 not a real world but a numerically simulated 𝑦𝑜𝑏𝑠
curve is used to illustrate the situation when the Start Time is outside the available
widest Time Window, so no chance to trace the 𝛼 parameter values back to the
Start Time value.

In Figure 9a the layout of the situation is summarized. The widest Time Win-
dow is ∆(𝑡) = 30 − 1 = 29 wide and within this window the 𝑦𝑜𝑏𝑠 values have been
randomly simulated using the 𝑦 = 0.9𝑒−0.1(𝑡+10) deterministic function and the
normally distributed 𝜖 random errors with zero mean and 𝑆𝑡𝑑(𝜖) = 0.015 standard
deviation.

In Figure 9 the 𝑦, 𝑦𝑜𝑏𝑠 curves and the numerically searched 𝛼 parameter values
are shown in case of four different Time Windows. It is worth seeing how far the
three numerically searched 𝛼 parameters are from the deterministic 𝛼1 = 0.9, 𝛼2 =
0.1 (𝑆𝑙𝑜𝑝𝑒 = 0.9 · 0.1 = 0.09), 𝛼3 = −10 values.

In Figure 9 the change of the 𝛼 parameters is shown as the width of the Time
Window is gradually changing. It is worth following the tendencies of the change
backwards along the 𝑡𝑓𝑖𝑟𝑠𝑡 axis. In Figure 9c and in Figure 9d as the 𝑡𝑓𝑖𝑟𝑠𝑡 value is
decreasing from the 𝑡𝑙𝑎𝑠𝑡 = 30 value (as the width of the Time Window is increasing)
the estimated Slope and 𝛼3 (Start Time) values are convincingly converging to their
deterministic values. After some fluctuation when the width of the Time Window
reaches the ∆(𝑡) = 10 values the fluctuation becomes almost negligible. In Figure
9b the situation is even better. The estimated 𝛼1 parameter value (the Asymptote)
is very close to the deterministic 𝛼1 = 0.9 value even in the very narrow Time
Window cases. All these 𝛼1 values would classify the given file as being “Infected ”.

6. Conclusion

In this paper a so called “Time Evolution Model” was suggested to help categorize
files of a sample set in antimalware testing procedures. The basic time dependent
variable of this model is the Ratio of the Infected files within an investigated Time
Window. To estimate the main characteristics of the time series describing the
change of the Ratio values related to a specific file, nonlinear, exponential curve
fitting method was used. The free parameters of the model were determined by nu-
merical searching algorithms, hence specific “physical” characteristics of the sample
set were calculated.

The effectiveness and the reliability of the model was demonstrated by several
real-word and numerically simulated examples.

Further studies are required to establish the extent of reliability of the model in
the whole parameter space and to give general recommendations for the minimal
size of the Time Window for reliable classifications.
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