
Technical Improvements of the
ILONA System

Zsolt Tóth∗

Eszterházy Károly University, Faculty of Informatics, Eger, Hungary
toth.zsolt@uni-eszterhazy.hu

Proceedings of the 1st Conference on Information Technology and Data Science
Debrecen, Hungary, November 6–8, 2020

published at http://ceur-ws.org

Abstract
The Indoor Localization and Navigation (ILONA) System was designed

and developed since 2015. During this period, the ILONA System was used
to record data data sets, perform experiments and numerous students con-
tributed to its development. Keeping the project up-to-date from the view-
point of technology is a constant challenge which has both pitfalls and success
stories. Collecting data with the ILONA System allowed us to get experience
with its usage in real scenarios and set further directions of improvement.
Testing different positioning algorithms showed the flexibility of the system.
Modular decomposition of the monolithic first version of the ILONA System
was successful with some overstatements. Development is an ongoing pro-
cess with a couple of new features. Applications, experiences and further
developments of the ILONA System are both detailed.

Keywords: Indoor positioning, architectural design, ILONA System

1. Introduction

The Indoor Localization and Navigation (ILONA) System [5] was designed in 2016
in order to facilitate the implementation and testing of indoor positioning algo-
rithms. The ILONA System is a web application which provides web services for

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

∗The author’s research was supported by the grant EFOP-3.6.1-16-2016-00001 (“Complex im-
provement of research capacities and services at Eszterhazy Karoly University”).

240



mobile clients and a management interface via web. Extend ability and flexibility
were key requirements during the design of the ILONA System. In addition, the
recent technology trends were also considered during the design and development.
Over the last few years, ILONA System was used to record data sets [4, 6], perform
experiments in positioning and implement navigation [2] algorithms as well.

Modifications each have contributed to the development of the ILONA System
and the current paper gives an overview of the development process. Based on our
experience during the development, some technology, technique and approach were
proven useful and beneficial while others were dead ends. The overview of these
experience may facilitate the design of other projects, can summarize some good
practices and outline further developments of the ILONA System. System wide,
component or technology specific and implementation techniques were both used
during the development. Currently, modular decomposition, data access technolo-
gies and automated code formatting will be presented.

2. Methods

In the following, there is a brief overview of used methods, tools and techniques.
The motivation behind their applications is also presented.

2.1. Modules
The ILONA System has a modular design where four subsystems were distin-
guished. These subsystems have the same architecture in order to standardize
them. Each subsystem contains controller, model, persist, service, web mod-
ules that are the common building blocks of web applications. The ILONA project
is managed with Maven that is a build tool and dependency manager for java.
Maven facilitates the creation of projects and allow to organize them into hier-
archy by creation of so called bundle projects which are packaged as a pom. The
bundle project can contain more projects so the project hierarchy can be organized.
Unfortunately, there is no single, commonly accepted approach when should a new
project created, so the size and structure of the project vary between development
projects.

The modules and architecture of the ILONA System has four major variants.
Initially, the entire code base was represented by a single monolithic project where
the subsystems were separated on the level of packages. Then, subsystems were
outsourced into separate projects so they had independent development life cycle.
Due to the success of separation of subsystems, each subsystem was defined as a
bundle project and its modules became independent projects. Finally, the subsys-
tems were flattened by merging the modules because the management of the tiny
module was costly and difficult.

241



2.2. Data Access
Data access is a particularly common task in information systems so there are a
wide range of tools and techniques. The ILONA System was designed to be inde-
pendent of any database so data can be stored via Data Access Objects. These
Data Access Objects are interfaces which define the so called CRUD methods;
create, read, update, delete. The loose coupling of data storage allowed the sepa-
ration and exchange of implementation due to the Dependency Inversion Principle.
The measurement subsystem uses MySQL database which was accessed with two
different technologies; mybatis and hibernate.

Mybatis is a data access technology which can hide SQL statements behind
Java methods by defining them in XML format. The implementation of these
interfaces is generated by the mybatis based on the XML description. So mybatis
allows us to create custom SQL statements and use them via method invocations.
On the other hand, mybatis require the handling and management of the XML
descriptions which may be confusing.

Hibernate is an Object–Relational–Mapping tool for Java which can store, fetch,
update and delete objects via repositories. The stored objects must be properly
annotated and they are called entities. Although there is a need for conversion of
model and entity objects both of these kind of objects are defined by Java classes
and the SQL is hidden. The conversion and then handling of the repositories are
hidden behind the Data Access Objects which gives one more indirection into the
data handling.

2.3. Code Style
Coding conventions and styles are vital for huge projects with developers with
various experience. Unfortunately coding conventions were overlooked during the
first years of the project and automated checking tools was recently introduced into
the project. Although Implementation Patterns [1] and Clean Code [3] were given
as guidelines but nor rigorous style check or automated tools were used. As result,
the code base is pretty heterogeneous but the main interfaces were already defined.
In addition, some naming convention and coding styles were copied through the
projects due to the existing code base.

The lack of automatic code analysis has not caused any problem yet but it
would standardize the code quality. Enforcing these coding standards is essential
for the project due to the following two reasons. First, some technologies should
be changed because they became deprecated or no longer supported so there is a
need for refactoring. Second, students are contributing in the development of the
ILONA system and their coding skill could be improved by the standard. The code
quality is ensured by the application of checkstyle and its integration into the
version control process.

242



3. Results

The experimental results with modules, data access techniques and code style
checking are summarized in this section.

3.1. Modules
Modular decomposition was successful on the level of subsystems but it was an
overstatement on lower levels of the system. The initial success with decompo-
sition made us enthusiastic about modularization which lead to numerous tiny
modules. Monolithic systems are easy to design but their maintainability decrease
quickly so the separation of subsystems was necessary. Each subsystem contains
the same modules that represents a well–defined part of the system. While the
subsystems are huge building blocks of the entire system and they can be devel-
oped independently, the modules of a subsystem are connected and depend on each
other.

Although the subsystems are implemented with the same technologies currently,
their separation allows us to use different technologies or programming languages
in the ILONA System. For example, the measurement, tracking and navigation
subsystems can be efficiently implemented with Java and Spring Framework. On
the other hand, our current research is focused on the application of machine
learning techniques so using Python would be easier in the positioning subsystem.
Because each subsystem has an own development life cycle and they can be deployed
separately these subsystems can be virtualized with containers which is the base
of micro service architecture.

Separation of the modules seemed to be a great idea but the dependencies be-
tween the modules made the development slow. Developers should simultaneously
work on different project because each module was represented as a project. Hence
they made more error and the build process was also longer because each mod-
ule had separate build processes. In addition, the separation of build process was
unnecessary because the build was usually started from the root of the subsys-
tem. Consequently, these modules were merged back into the subsystem which is
represented as a single project currently.

3.2. Data Access
Data access was recently changed in the measurement subsystem from mybatis
to Hibernate. This modification was performed in three major steps. First, the
Hibernate based implementation was added to the subsystem while the mybatis im-
plementation was still used. Then the system was configured to use the Hibernate
based implementation which required only the modification of a few configuration
files. Finally, the mybatis was removed from the project in a refactoring phase.
Changing mybatis to Hibernate was a good experience because it showed the ben-
efits of loose coupling and Hibernate is currently more widely supported.

243



Loose coupling of data storage is part of the ILONA System from the initial
version. The definition and implementation of the data access object seemed to be
an unnecessary step because the system supported only a single technology. Ser-
vices used the definition of the data access objects while the implementation was
initialize during when the application started. This separation served educational
purposes too. During the implementation of the hibernate based data access, the
interfaces and the expected behavior were already defined which set the expecta-
tions about the implementation. In addition, the implementation was tested with
unit tests and allowed experiments with the entire system too. Furthermore, the
migration from the mybatis implementation was quite simple because it required
only a few modifications in the configuration classes to initialize the Hibernate
based solution.

Hibernate seems to be dominant data access technology in the local software
industry therefore migrating to it was necessary. Mybatis was chosen for data
access because it was popular when the development started. In addition, based
on our experience Hibernate has a way better documentation and support in forum
and tutorials which facilitate the development. Finally, Hibernate is part of the
curriculum which helps students to participate in the development of the ILONA
System and makes their onboarding process easier.

3.3. Code Style
Automatic code checkers were introduced recently in order to standardize the code
quality. In the first few years the students had no standard but they had to follow
some recommendations. As a result, the following three observations were made;
naming the variables depends on the developer, they organize their code differently
and the code quality decreases when the deadline is getting closer.

Naming a variable or a function is a difficult processes even for experienced
developers. Using proper names increase the code readability and facilitates its
maintenance. Due to the lack of their experience, the students chose different name
for similar tasks or objects. In general, they adopted the practice to introduce a
result variable in each method with the return type and this variable is returned
in the function.

4. Discussion

Development of the ILONA System is an ongoing process with technical challenges
and changes. Some experience with the development were summarized and orga-
nized in this paper. These observations could be useful for other projects and can
be used to improve the development too. Architectural, design and implementation
level observations were presented in details.

Defining modules is a difficult task and it is strictly related to architectural
design of the system. The initial monolithic system was organized into independent
subsystems successfully. Then these subsystems were split into projects which made

244



the development slow. Our experience showed that the zealous modularization
could be harmful for the project.

Design of the data access hide the technology and implementation details behind
interfaces and used loose coupling. The recent change of technology from mybatis
to Hibernate was simple and successful which clearly demonstrated the benefits
of this design. The change of technology required only the implementation of the
corresponding interfaces and some configuration. As a result, the ILONA System
fits better to the current trends in the local software industry.

Implementation patterns and coding standards were neglected in the first years
of the development which inevitably leads to poor code quality. Due to the ex-
isting code base and the recommended literature the students adapted some good
practices although the automatic checking was missing. Proper naming of variables
and methods was particularly challenging for inexperienced developers.

To sum up, the 5-years development of the ILONA System yielded important
experience in all levels of development.

References

[1] K. Beck: Implementation patterns, Pearson Education, 2007.

[2] D. P. Kun, E. B. Varga, Z. Toth: Ontology based navigation model of the ILONA system,
in: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics
(SAMI), 2017, pp. 000479–000484,
doi: https://doi.org/10.1109/SAMI.2017.7880357.

[3] R. C. Martin: Clean Code-Refactoring, Patterns, Testen und Techniken für sauberen Code:
Deutsche Ausgabe, MITP-Verlags GmbH & Co. KG, 2013.

[4] Z. Tóth, J. Tamás: Miskolc IIS hybrid IPS: Dataset for hybrid indoor positioning, in: 2016
26th International Conference Radioelektronika (RADIOELEKTRONIKA), 2016, pp. 408–
412,
doi: https://doi.org/10.1109/RADIOELEK.2016.7477348.

[5] Z. Tóth: ILONA: indoor localization and navigation system, Journal of Location Based
Services 10.4 (2016), pp. 285–302,
doi: https://doi.org/10.1080/17489725.2017.1283453.

[6] Z. Tóth, P. Magnucz, R. Németh, J. Tamás: Data model for hybrid indoor positioning
systems.

245


