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Abstract
Online learning platforms also known as Computer Aided Education Systems have recently grown in
importance owing to their ability to personalize study plans in accordance with individual student re-
quirements. Learning platforms have modeled student knowledge state using student responses with
the recently popular Deep Knowledge Tracing (DKT) technique. Using context information has also
proven effective in various predictive problems prompting learning platforms to store a variety of con-
text features about a student’s performance history. An example context may be response time, where
shorter times to answer questions may indicate higher mastery of a skill. Therefore, it is crucial to in-
corporate context features in the most effective way possible. Most of the research in DKT either use no
context features, or use a set of context features that span only a narrow set of student characteristics.
To overcome this, we identify a wide set of context features and incorporate their interactions into the
DKT model. We then observe the effects of incorporating these additional context feature interactions
and also propose an adaptive weighting technique that learns the appropriate context feature interac-
tion weights. These techniques are compared with state-of-the-art baselines and their performances
were evaluated using AUC scores.
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1. Introduction

Computer Aided Education (CAE) systems aim to personalize the study plan of a user to best
suit his/her needs. This is achieved through the process of Knowledge Tracing where the
current knowledge state of the user is estimated using the history of their interactions with the
system, and this estimated knowledge state is used to predict the future performance of the user.
Accurately predicted future student performances are then used as cues to better personalize
the study plan of each user. In addition to a history of user responses, CAE systems usually
also store additional metadata related to user performance history, like response time, type of
question, number of attempts, etc. Adomavicius et al. [1] refer to this additional information
as contexts or context features, and give an interactional view of context as having a cyclical
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relationship with an underlying activity. In our case, the activity is a student’s response and
context is the additional information.

A popular approach to knowledge tracing over the past few years had been Deep Knowl-
edge Tracing [2] (DKT) which learns a continuous representation of the knowledge state as
compared to the discrete variable representation used in Bayesian Knowledge Tracing [3, 4, 5]
(BKT). The drawback with DKT is that it used only the history of student responses, while there
are other factors that affect a student’s performance while using an online learning platform,
such as forgetting, learning ability, etc. This is partially overcome in [6] which uses a technique
called bi-interaction in a framework called Bi-interaction Deep Knowledge Tracing (BIDKT).
This technique incorporates context in the form of second degree interactions between input
question response and context features relating to forgetting behavior, where interactions are
the inner product or Hadamard product of the embedding vectors of the context features. This
technique showed us that using context feature interactions is an effective way of incorporating
the above mentioned factors in a knowledge tracing model.

A drawback of BIDKT was using only a small set of additional context features (narrow), in
this case, student forgetting behavior. While including only a few features led to a reasonable
improvement in performance, it would be of interest to know if the trend would have continued
to rise as more related contexts were identified and included in the model. Additionally, the
bi-interaction technique used, assigned the same weight to all feature interactions. This might
be a problem if a larger set of context features are used, as important interactions might get
diluted along with unimportant ones. This may result in either saturation or even a drop in
model performance.

In this paper we posit that using additional context features (wide) should lead to improved
performance of knowledge tracing models. We further hypothesize that existing models may
not be well suited to effectively use additional contexts since they do not weigh contexts by
their importances. To verify these ideas, we first identify additional contexts which may pro-
vide important cues for future student performance prediction. We then analyze how current
best model performance changes with wider contexts. Finally, we propose a new technique
by modifying BIDKT which adaptively learns weights for contexts via an Attention network
similar to [7] and see how it compares to identified baselines.

2. Related Work

Knowledge Tracing: Since the emergence of Long Short-term Memory(LSTM) Networks,
the Deep Knowledge Tracing model has been the most popular knowledge tracing technique
[2, 6, 8]. There have been variations and extensions of DKT such as [9] that use Memory
Networks to model individual skill levels more effectively, while [10] use hop LSTMs to use
only relevant past exercises to estimate the current skill level. There have also been efforts
to separately model the student’s ability in the Dynamic Key-Value Memory Networks for
Knowledge Tracing framework [11]. Although most efforts at knowledge tracing only use
sequential models [12], [13] use Convolutional Neural Networks for knowledge tracing, while
[14] uses sequential models such as LSTM to estimate parameters of IRT. There have also been
a few attempts at using Attention Networks in knowledge tracing. Pandey et al. [15] use



a self-attention mechanism to identify relevant Knowledge Components from past learning
interactions of the student.
Using Context Features in Knowledge Tracing: Given the success of using context fea-

ture and their interactions in other domains [16, 17, 18, 19, 20, 7, 21], recently there have been
efforts in knowledge tracing to incorporate context features in predictive models as well. Sun
et al. [22] try to use a wide variety of context features for the task of knowledge tracing, they
achieve this by ensembling one of various algorithms such as Decision Tree or Support Vector
Machines or Linear Regressor with the Dynamic Key-Value Memory Network architecture of
[9]. Zhang et al. [8] propose an Autoencoder architecture to reduce the dimensionality of a
large number of features being input to DKT. Attention Networks have been used to incorpo-
rate context features as well. Pandey et al. [23] use a self-attention mechanism to incorporate
contextual information relating to exercise relations and forgetting.

There have also been efforts to incorporate context features in the form of interactions for
the task of knowledge tracing. Vie et al. [24] uses Factorization Machines to model the inter-
action between a wide variety of features. Nagatani et al. [6] on the other hand models feature
interactions using Bi-interaction, a variant of Factorization Machines and additionally inputs
these interactions to an LSTM and achieves reasonable results. The model in [6] also forms the
basis of our work. Our proposed model aims to improve the model proposed in [6] by increas-
ing the variety of context features and also by proposing a technique to utilize the additional
context information in an effective way using the attention mechanism from [7]. While there
have been other efforts at using contextual features in the DKT framework [8] and Factoriza-
tion Machines framework [24], this is the first attempt at using Attentional bi-interation to
incorporate context feature interactions in the DKT model.

3. Background

In this section, we will provide some background to the domain of knowledge tracing and also
describe the architectures of the DKT and BIDKT models. These models are the basis for our
proposed architecture.

3.1. Knowledge Tracing

Knowledge tracing is the process of estimating a student’s current knowledge state and using
it to predict future performance. Given a sequence of past learning attempts 𝐱0⋯ 𝐱𝑡 , we need
to predict the student’s performance for attempt 𝐱𝑡+1. In general, an attempt 𝐱𝑡 = (𝑞𝑡 , 𝑎𝑡 ) is
defined as a tuple that contains the skill set id (𝑞𝑡 ) of a question at time step 𝑡 and whether the
student response (𝑎𝑡 ) to the question is correct or not. In this case, 𝑞𝑡 is identified as a skill set
id from a set of skills 𝑄 and 𝑎𝑡 is a binary variable. We need to predict 𝑎𝑡+1 for 𝑞𝑡+1.

3.2. Deep Knowledge Tracing

Deep Knowledge Tracing (DKT) shown in Figure 1(a), models students’ knowledge state tran-
sition using an LSTM, which is a modified version of the RNN. The architecture of the DKT
model is from [2] where, at time step 𝑡 , the knowledge state is represented as 𝐡𝑡 ∈ ℝ

𝑘 where 𝑘



is the hidden state dimension. The DKT model in Figure 1(a) shows the 2 processes the model
is supposed to perform i.e. estimating the current knowledge state and predicting future per-
formance.

In the case of DKT, the input 𝐱𝑡 is a one-hot vector, which is the Cartesian product of 𝑞𝑡
and 𝑎𝑡 . 𝐱𝑡 is then embedded into a dense real-valued vector 𝐯𝑡 . During the knowledge state
estimation process, for a given input 𝐱𝑡 = (𝑞𝑡 , 𝑎𝑡 ) at each time step 𝑡 , the knowledge state 𝐡𝑡

is updated. The knowledge state 𝐡𝑡 is estimated using the embedded vector 𝐯𝑡 and previous
knowledge state 𝐡𝑡−1 using the LSTM module. For the prediction process, the output layer is
implemented as a linear layer with sigmoid activation. The predicted probability of correct
responses to all skill sets 𝐲𝑡 ∈ ℝ

|𝑄| formed the model output.

3.3. Bi-Interaction Deep Knowledge Tracing

Bi-Interaction Deep Knowledge Tracing (BIDKT) [6], shown in figure 1(b) is an extension to the
DKT model, which integrates interactions between the input question response and context
features related to forgetting behavior into the DKT model. The context features used were
repeated time gap, sequence time gap and past trial counts which have been described further
in Section 5.2.

Figure 1: Architectures for (a) deep knowledge tracing (b) bi-interaction deep knowledge tracing and
(c) Proposed model: Attentional bi-interaction deep knowledge tracing. In each architecture, the blue
arrows describe a process of modeling a student’s knowledge while orange arrows describe a process of
predicting a student’s performance. In our proposed model, the context information (shown in green) is
incorporated in the form of context interactions (represented in purple) which are weighted according
to importance to obtain a weighted interaction vector (purple with multi-colored components). The
incorporation of context information happens at time steps 𝑡 and 𝑡 + 1 as 𝐜𝑡 and 𝐜𝑡+1
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Here, 𝑛 is the number of context features. The current knowledge state is computed using the
previous knowledge state 𝐡𝑡−1 and the product of integration 𝐯
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To predict the student’s performance at the next attempt, the interaction between the current
knowledge state 𝐡𝑡 and context at the next attempt 𝐜𝑖
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is computed. The context embedding

parameters are shared between the current knowledge state estimation step and the future
performance prediction step.
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And finally the probability of answering correctly 𝐲𝑡 ∈ ℝ
|𝑄| is computed as:

𝐲𝑡 = 𝜎 (𝐛
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𝐡
𝑐
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where 𝜎 (⋅) is the sigmoid function, 𝐖𝑜𝑢𝑡
∈ ℝ

|𝑄|×𝑘 is the weight matrix, and 𝐛
𝑜𝑢𝑡

∈ ℝ
|𝑄| is the

bias vector of the output. The implementation of the output layer is similar to that of DKT.

4. Proposed Approach

Our proposed model Attentional Bi-Interaction Deep Knowledge Tracing (ABIDKT), shown in
figure 1(c) is an extension to the BIDKT model, which weights interactions between the skill
id and context features in the BIDKT model. The original BIDKT model uses a narrow set
of context features related only to the long term trait of forgetting. But our goal is to use a
wider set of features so as to better estimate the knowledge state and accurately predict future
performance. The additional context features are wins, fails, question type, previous attempt
response time and difference in previous attempt response time which have been described in
detail in Section 5.2.

The wins and fails context features have been picked up from [11], as the paper says that
these features can be a good indication of the student’s learning ability. The question type fea-
ture is important because each question type is associated with a different level of difficulty and
therefore this feature serves as a great indicator of correct response probability. The previous
attempt response time feature was picked up from [8] and the difference in previous attempt
response time feature was used because preliminary analysis showed that it is a good indicator
of skill mastery.

However, using this wider set of features could lead to the issue of the important interactions
being averaged out. Therefore, the ABIDKT model uses an attention network in a modified



integration technique to weight the important interactions and ensure that they do not get
averaged out.

In this case the input to the RNN module 𝐯
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Here 𝑛 is the number of context features and 𝑝𝑖 ∈ ℝ is the normalized attention weight of the
interaction calculated using the attention layer. The attention weight 𝑝
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weight normalized by the Softmax function are computed as:
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Similar to BIDKT, the current knowledge state is computed using the previous knowledge
state 𝐡𝑡−1 and the product of integration 𝐯

𝑐

𝑡
as:

𝐡𝑡 = 𝜙(𝐯
𝑐

𝑡
, 𝐡𝑡−1) (7)

To predict the student’s performance at the next attempt, the weighted interaction between
the current knowledge state and context at the next attempt is computed as:
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The probability of a correct answer 𝐲𝑡 ∈ ℝ
|𝑄| is computed in the same way it is for BIDKT. The

implementation of the output layer is also the same as the DKT and BIDKT models. Similar
to the architecture of BIDKT, the parameters of context embedding are shared between the
current knowledge state estimation step and the future performance prediction step in the
ABIDKT model as well. In the case of the attention network parameters, 2 variations were
experimented with, one where the attention network parameters are shared and the other
where the parameters are not shared.

The training parameters for BIDKT are the skill id (𝐱𝑡 ) embedding matrix 𝐀, weights of
the RNN, weight 𝐖𝑜𝑢𝑡 and bias 𝐛

𝑜𝑢𝑡 for prediction and embedding matrix 𝐂 for the context
information. In the case of ABIDKT we additionally have to train weight 𝐖𝑎𝑡𝑡 , bias 𝐛𝑎𝑡𝑡 and
parameter 𝐡

𝑇 of the attention layer. These parameters are jointly learned by minimizing a
standard cross entropy loss between the predicted probability of correctly answering the next
question for the skill id 𝑞𝑡+1 and the true label 𝑎𝑡+1:

 = −∑

𝑡

(𝑎𝑡+1log(𝐲𝑇
𝑡
𝛿(𝑞𝑡+1)) + (1 − 𝑎𝑡+1)log(1 − 𝐲

𝑇

𝑡
𝛿(𝑞𝑡+1))) (9)

where 𝛿(𝑞𝑡+1) is the one-hot encoding for which skill id is answered in the next time step 𝑡 + 1.
The training process for the ABIDKT model is the same as the training process for BIDKT

and DKT. The main difference between the models lies in the set of trainable parameters.



5. Experiments

Experiments were conducted to compare the performances of the proposed architecture ABIDKT
with BIDKT and DKT with different combinations of context features. The experiments were
conducted to verify the following 2 hypotheses:

1. The bi-interaction technique used in the BIDKT architecture cannot effectively leverage
a wider set of context features than those used in [6]

2. Weighting context feature interactions using an attention network ensures that the per-
formance does not saturate even on increasing the number of context features

5-fold cross validation was performed by using a 70% ∶ 10% ∶ 20% ratio for the train:validation:test
split as done in the experimental setting of [6]. The details of the databases used, experiments
conducted and results obtained are given below.

5.1. Datasets

The datasets chosen for the experiments are the Assistments 2012-2013 [25] dataset which
contains information about students studying school level Mathematics with multiple question
types, and the Slepemapy.cz [26] dataset which contains data from an online platform that
teaches primary school Geography mainly consisting of 2 question types.

Table 1
Statistics of the data.

Dataset #records #users #items
Assistments 2012-2013 5,818,868 45,675 266
slepemapy.cz 10,087,305 87,952 1,458

5.2. Preprocessing

Records where user made only a single attempt of a single skill set item were removed as
in [6]. Additionally a few noisy records with negative response times were also removed.
Continuous valued context features were preprocessed and discretized to use in BIDKT and
ABIDKT models. Further details are as follows:

1. repeated time gap: calculated using the difference in time stamp between the current and
previous attempt of same skill in minutes.

2. sequence time gap: calculated using the difference in time stamp between the current
and previous attempt (independent of skill id) in minutes.

3. past trial counts: calculated as the count of the number of times the same skill has been
attempted in the past.

4. wins: calculated as the count of correct responses in the past trials of the same skill.
5. fails: calculated as the count of incorrect responses in the past trials of the same skill.
6. question type:

• discrete value in the range 0-5 for the Assistments 2012-2013 dataset.



• binary discrete value 0,1 for the Slepemapy.cz dataset.

7. previous attempt response time: time taken for the response of the previous attempt of
the same skill, in seconds.

8. difference in previous attempt response time: calculated as the difference in response
times of the last 2 attempts in seconds, of the same skill.

All features except for question type were discretized using the 𝑙𝑜𝑔2 scale. The repeated time
gap, sequence time gap and past trial counts features are same as the context features used
in BIDKT [6]. The additional context features were determined based on common features
available across datasets and common features used in KT literature [8, 11].

5.3. Hyper-parameters

The set of hyperparameters which maximized averaged AUC over 5-fold cross validation were
chosen for final model implementations. Final results on corresponding test sets were also
reported using the AUC metric.

The hyper-parameters were set as follows:

1. learning rate: varying the learning rate did not have a significant effect on the maximum
value of AUC. Various learning rate values between 0.001 and 1 were tried, at values that
were approximate multiples of 3 i.e. 0.001, 0.003, 0.01, 0.03, etc. The value was further
fine-tuned around the best performing value. Finally, the learning rate was set at 0.7 for
the Assistments 2012-2013 dataset, except for the DKT architecture which was fixed at
0.5. For the Slepemapy.cz dataset, the learning rate was fixed at 0.9 for all architectures.

2. hidden layer dimensions: Different values of hidden layer dimension between 10 and 100
were tried at differences of 10, and the value was empirically set at 30 for all variations
of architectures and datasets.

3. dropout: The value of dropout had been set using the best value of dropout from the
experiments in [6] at 0.3.

4. weight decay: weight decay values were varied between 10
−6 and 10

−3 at multiples of
10 i.e.10−5, 10−4, and the best value varied between different folds in the k-fold cross
validation.

5. mini batch size: this value was set at 100 for both datasets. For the Slepemapy.cz dataset,
although the batch size value in [6] was set at 30, we set it at 100 to speed up processing.

6. epochs: the epochs were set as 1.5 times the maximum number of epochs till the point
of convergence of AUC across all 5 folds for the BIDKT architecture. The number of
epochs was set at 600 and 200 for the Assistments 2012-2013 and Slepemapy.cz datasets
respectively and the highest test AUC score among all these epochs was reported.

6. Results and Discussion

The results shown are for the DKT, BIDKT and 2 variations of the ABIDKT architecture respec-
tively. The results for the BIDKT and ABIDKT architectures are shown for different number of
features. The feature combinations are:



(a) (b)

Figure 2: Average test AUC scores of different architectures on (a) the Assistments 2012-2013 dataset
and (b) the Slepemapy dataset

• forgetting: repeated time gap + sequence time gap + past trial counts

• forgetting+3: forgetting features + wins + fails + question type

• forgetting+5: forgetting+3 + previous attempt response time + difference in previous
attempt response time

The variations of the ABIDKT architecture are as follows:

• ABIDKT-SP: The parameters of the attention network and bi-interaction layer are shared
between the knowledge state estimation step and the future performance prediction step
similar to the BIDKT architecture

• ABIDKT: The parameters of the bi-interaction layer are shared between the knowledge
state estimation step and the future performance prediction step, while the parameters
of the attention network are trained independently

Figures 2(a) and 2(b) show the average test AUC results across 5 folds, for different com-
binations of features and being incorporated in different architectures. From the results we
can observe that sharing trainable parameters between the knowledge state estimation step
and future performance prediction step (ABIDKT-SP) does not have any significant impact on
the performance, although not sharing parameters (ABIDKT) does perform marginally better
when the number of features are increased for both datasets. The main takeaways from the
results are as follows:

Hyperparameter Tuning and Reproducibility. All baselines were reproduced and their hyper-
parameters were tuned using the same methodology as for the proposed model. We found that
our tuning method led to an AUC improvement of 0.7% for both models for the Assistments
2012-2013 dataset compared to values stated in [6]. For Slepemapy.cz, while DKT could be re-
produced, we could not match the AUC for BIDKT, primarily because the batch size parameter
mentioned in the paper was too small and computation proved very time consuming. On the



other hand, while setting a larger batch size led to a more reasonable runtime, the model saw
a 1.1% drop in AUC.

Effect of Additional Context Features. Including wide context features led to improvements
in AUC for both BIDKT and ABIDKT models and on both datasets, suggesting that identified
features encapsulated information indicative of future student performance. Also, in support
of hypothesis 1 stated in Section 5, the extent of improvement in BIDKT tapered off and there
was negligible change when number of features was increased from 5 to 8.

Effect of Attention Layers. Contrary to hypothesis 2, adaptive learned context weights in
the form of attention layers did not provide a substantial improvement in model performance,
instead consistently achieving an AUC 0.1% less than its BIDKT counterpart. This may be
because the added context features are not large in number, and attention layers involve more
trainable parameters. Trained on the same amount of data, the benefit from fewer trainable
parameters in BIDKT outweighs the adapative weight assignments learned by attention layers.

We conducted further analysis by computing the micro-AUC by binning the predictions
based on past trial counts as shown in Figure 3 and computing the percentage improvement
of the ABIDKT architecture over the BIDKT architecture for each bin. The bin sizes were
chosen so as to balance the number of samples in each bin. This analysis was performed on the
Assistments 2012-2013 dataset as this is a Mathematics tutor dataset where each user is bound
to have a large number of trials. From these results we can observe that for low trial counts,
ABIDKT does not show an improvement over BIDKT, but as the number of trials increase, the
percentage improvement of ABIDKT over BIDKT also steadily increases for all sets of features.
This shows that ABIDKT may be useful in databases where each student has a large number
of trials.

Figure 3: Percentage improvement in micro-AUC of the ABIDKT architecture over the BIDKT archi-
tecture on the Assistments 2012-2013 dataset for different feature sets. The AUC scores have been
computed by binning the predictions based on past trial counts.



7. Conclusion

The focus of this paper was to observe the effect of using a wider range of context features in the
BIDKT model and to propose techniques to effectively incorporate them. We first identified a
wider set of context features and incorporated them in the BIDKT model. Experimental results
on 2 datasets showed that increasing the number of context features improves the performance
of BIDKT significantly, but the performance begins to taper off as the number of features are
increased from 5 to 8. We postulated that this could be because of important feature interac-
tions being diluted with other unimportant ones. To overcome this drawback, we proposed a
technique that adaptively learns the weights of feature interactions and incorporated this as an
attention layer in the BIDKT model. Experimental results of these models on 2 datasets show
that this weighting technique was not sufficient to improve the performance of our models.
This could be because we were trying to learn additional parameters using the same amount
of data. We therefore analyzed the performance of our model across different trial counts and
found that our model does outperform BIDKT when the number of past trial counts are high.

In future work, we first plan to implement our models on datasets that have a higher number
of trials counts per student. We also plan to modify the architecture of Attention and see if this
can perform better than the ABIDKT model. Additionally, we plan to try these approaches in
an architecture where skill is modeled separately as in Dynamic key-value Memory Networks
for Knowledge Tracing.
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