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ABSTRACT
This paper presents our solution for the COVID-19 Retweet Predic-
tion Challenge, which is part of the CIKM 2020 AnalytiCup. The
challenge was to predict the number of times it will be retweeted
of tweets related to COVID-19. We tackled this challenge using
a deep neural network-based retweet prediction method. In this
method, we introduced useful feature extraction techniques for
retweet prediction. Experiments have confirmed the effectiveness
of the techniques, especially for the primary processes: numerical
feature transformation and user modeling. Finally, the solution used
a stacking-based ensemble method to provide the final predictive
result for the competition. The code for this solution is available at
https://github.com/haradai1262/CIKM2020-AnalytiCup.
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1 INTRODUCTION
To understand the mechanisms of information diffusion is an active
area of research that has many practical applications. In a crisis like
COVID-19, information diffusion directly influences people’s behav-
ior and becomes especially valuable [6]. Retweeting, sharing tweets
directly to followers on Twitter, can be viewed as amplifying the
diffusion of original content. Thus retweet prediction is beneficial
for understanding the mechanisms of information diffusion.

Retweet prediction has been widely studied. In recent years,
there has been growing interest in methods based on deep neural
networks (DNNs), which have reported high performance [10, 15,
19]. DNNs have made it possible to skip many feature engineering,
especially in image processing and natural language processing.
However, in DNNs for tabular data including retweet predictions,
data pre-processing and feature engineering are still often necessary
and significantly impact performance [9, 14].

In retweet prediction, the processing of numerical features re-
lated to tweets, such as the number of followers, strongly affects per-
formance. To train DNNs effectively, it may be useful to transform
the numerical features to different distributions [20]. Furthermore,
it is crucial to learn the expression of the user that publish tweets.
Although the embedding-based method using the user id is often
used in DNN-based methods it may not be that easy to sufficiently
learn the representation of the infrequent users included in the
training data [5]. As mentioned above, it is necessary to design the

Copyright© 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).
In: Dimitar Dimitrov, Xiaofei Zhu (eds.): Proceedings of the CIKM AnalytiCup 2020, 22
October, 2020, Gawlay (Virtual Event), Ireland, 2020, published at http://ceur-ws.org.

input features to the DNN according to the data and tasks, which
can be difficult.

As a case study to tackle these difficulties, in this paper, we
present our solution to the COVID-19 Retweet Prediction Chal-
lenge as part of the CIKM 2020 AnalytiCup. This challenge’s task
was to predict the number retweets for a given COVID-19-related
tweet. We propose a DNN-based retweet prediction method. In the
proposed method, we introduce a useful feature extraction method
as an input to a DNN for retweet prediction. In the feature ex-
traction, we transform numerical features into multiple different
distributions to effectively utilize the metrics related to tweets. Be-
sides, we cluster users based on multiple types of features to enable
infrequent users to represent user attributes. Using the obtained
features, we train a DNN model. In the experiments, we verify
the effectiveness of the transformation of numerical features and
user data handling, which are essential issues in retweet predic-
tion. In addition, as a solution for the competition, we introduce a
stacking-based ensemble method to improve the prediction results’
performance and robustness.

2 CHALLENGE
2.1 Dataset
In the COVID-19 Retweet Prediction Challenge, TweetsCOV19
dataset was provided. This dataset consists of 8151524 tweets con-
cerning COVID-19 on Twitter published by 3664518 users from
October 2019 until April 2020. For each tweet, the dataset pro-
vides metadata and some precalculated features. The contents of
the dataset and the process of their generation are detailed in this
paper [3].

2.2 Task Description
Given a tweet from the TweetsCOV19 dataset, the task was to
predict the number retweets (#retweets). The test data for the eval-
uation are tweets published during May 2020, which the month
subsequent to the tweets included in the TweetsCOV19 dataset.
The mean squared log error (MSLE) is used as the evaluation metric
for the task.

3 METHOD
3.1 Overview
An overview of the proposed method is shown in Figure 1. First,
we extract the features to be inputed to the DNN. The features
input to the DNN are divided into numerical, categorical, and multi-
hot categorical features, and categorical and multi-hot categorical
features are converted into low-dimensional vectors through the
embedding layer. Using the extracted features, we train a multilayer
perceptron (MLP) for retweet prediction.

9

https://github.com/haradai1262/CIKM2020-AnalytiCup


Categorical FeaturesNumerical Features Multi-hot Categorical Features

Embedding Embedding

Flatten and Concatnate

Fully-Conneted (2048) ⇨ Batch normalization ⇨ ReLU ⇨ Dropout

Fully-Conneted (512) ⇨ Batch normalization ⇨ ReLU ⇨ Dropout

Fully-Conneted (128) ⇨ Batch normalization ⇨ ReLU ⇨ Dropout

Fully-Conneted (1) ⇨ ReLU

Prediction Log transformation Target
MSE Loss

#Retweets

Tweet metrics

Tweet metrics log

User dynamics

Tweet metrics rank

Tweet metrics CDF

Tweet metrics z

User metrics

Topic

Count encording

Target encording

User Id User cluster Id

Time Sentiment

Tweet metrics binning

Mentions URLs

Entities Hashtags

Components of URLs

Figure 1: Overview of our proposed method. The notation of fea-
tures corresponds to the name columns in Table 1.

3.2 Features
The features used in the proposed method are shown in Table 1. Nu-
merical feature transformation and user modeling, the critical issues
of retweet prediction, are discussed in the following subsections.
Please refer to the published code1 for strict processing.

3.2.1 Numerical Feature Transformation. #retweets is strongly re-
lated to metrics of a tweet, such as the number of followers (#fol-
lowers) and favorites (#followers), which are expected to have a
significant impact on the performance of our prediction model. In
the proposed method, we attempt to represent various distributions
of these metrics and improve the performance by combining them
as input for the DNN. Specifically, we introduce the following five
numerical feature transformations.
Z transformation. We transform each value 𝑥𝑖 ∈ 𝑋 by the fol-
lowing function using the mean 𝑥 and standard deviation 𝜇 of the
dataset 𝑋 :

𝐹𝑧 (𝑥𝑖 ) =
𝑥𝑖 − 𝑥

𝜇
(1)

CDF transformation. We derived a normal distribution from the
mean and standard deviation observed from the dataset. Using the
distribution, we transformed the original values by the cumulative
distribution function (CDF). To implement this function, we used
the Python library SciPy2.
Rank transformation. We transform each value 𝑥𝑖 ∈ 𝑋 by the
following function:

𝐹𝑟𝑎𝑛𝑘 (𝑥𝑖 ) =
∑
𝑥 𝑗 ∈𝑋

I𝑥 𝑗<𝑥 , I𝑥 𝑗<𝑥 =

{
1 𝑥 𝑗 < 𝑥 is true
0 otherwise

(2)

Log transformation. We transform each value 𝑥𝑖 ∈ 𝑋 by the
following function:

𝐹𝑙𝑜𝑔 (𝑥𝑖 ) = log𝑒 (𝑥𝑖 + 1) (3)

Here we add one to 𝑥𝑖 to avoid the output being infinity when 𝑥𝑖 is
zero.
Binning transformation.We separate each value into buckets of
the same size based on the quantiles of the sample. In the proposed
method, the values are divided into ten quantiles. Unlike other
1https://github.com/haradai1262/CIKM2020-AnalytiCup/blob/master/src/feature_
extraction.py
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html

transformations, we use the transformed values as categorical fea-
tures.

We apply these transformations to tweet metrics (Table 1) and
input the obtained values into a MLP.

3.2.2 User Modeling. Appropriately representing the user who
published the tweet is essential for predicting #retweets. For DNN-
based prediction models, a common and effective method is to learn
by inputting the user id into embedding layers. However, the infre-
quent users included in the training data are not sufficiently trained
[5]. By clustering users from various points of view and embedding
based on their cluster Ids, we can even learn the user attributes for
infrequent users. Specifically, we introduced the following three
types of user clustering.
User topic clustering. We clustered users using topics contained
in tweets. Specifically, we combined the entities, hashtags, men-
tions, and URLs included in the tweet and set them as sequences
for each user. Next, user topic features were extracted by applying
the term frequency-inverse document frequency (TFIDF) [2] to
the sequences and dimensionality reduction using singular value
decomposition (SVD) [4]. Using the extracted features, we applied
the K-means clustering [11] to the users.
User metric clustering. We clustered users using user-related
metrics. User metric features consist of the mean and standard de-
viation of the user’s followers, friends, likes, as well as the unique
numbers of entities, hashtags, mentions, and URLs from the tweet
log posted by each user. Using the obtained features, we applied
the K-means clustering to the users.
User topic and metric clustering. Using the features that com-
bine user topic features and user metric features, we applied the
K-means clustering to the users.

Note that the number of clusters is set to 1000 in each clustering.

3.3 Model
Using the extracted features, we trained the MLP. In the proposed
method, the inputs of the MLP can be divided into numerical, cat-
egorical, and multi-hot categorical features. Numerical features
were applied to min-max scaling and converted to a scale of [0,
1]. In the proposed method, we transformed categorical features
into low-dimensional vectors using the embedding layers. Specif-
ically, we represent one-hot vector 𝒙 𝒊 , a categorical feature, with
low-dimensional vector 𝒆𝒊 ,

𝒆𝒊 = 𝑬𝒄𝒙 𝒊, (4)

where 𝑬𝒄 is an embedding matrix for categorical feature 𝑐 . We
further modify it and represent multi-hot vector 𝒙 𝒊 , a multi-hot
categorical feature, in the following way:

𝒆𝒊 =
1
𝑛𝑐

𝑬𝒄𝒙 𝒊, (5)

where 𝑛𝑐 is the number of items that a sample has for categorical
feature 𝑐 . These processed values are concatenated and flattened
before inputting to the MLP.

As shown in Figure 1, the MLP is a structure that uses ReLU
[13] as the activation function and includes batch normalization
[7] and dropout [17]. In the proposed method, mean squared error
(MSE) loss is calculated as a loss function from the ground truth
of #retweets using log transformation and the prediction of MLP.
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Table 1: Feature table. Numerical, categorical, and multi-hot categorical features are denoted by N, C, and MC in the Type
column, respectively. The values in the #Dim column is the number of dimensions of the features

Name Description Type #Dim

Tweet metrics Metrics related to a tweet. Specifically, we use #followers, #friends, and #favorites, as well as the multiplication of
#followers and #favorites, #friends and #favorites, and #followers and #friends and #favorites N 6

Tweet metrics z Values obtained by applying z transformation to “tweet metrics” N 6
Tweet metrics CDF Values obtained by applying CDF transformation to “tweet metrics” N 6
Tweet metrics rank Values obtained by applying rank transformation to “tweet metrics” N 6
Tweet metrics log Values obtained by applying log transformation to “tweet metrics” N 6
Tweet metrics binning Values obtained by applying binning transformation to “tweet metrics” N 6
Sentiment Positive (1 to 5) and negative (-1 to -5) sentiment scores extracted from the text of a tweet by SentiStrength [18] C 2

Time Features obtained from the timestamp of a tweet. Specifically, we use “weekday,” “hour,” “day,” and “week of month”
as categorical features, and the difference between the timestamp of the tweet and 2020/6/1 as numerical features N, C 5

Entities Entities extracted from the text of a tweet by the Fast Entity Linker [1] MC 1
Hashtags Hashtags included in a tweet MC 1
Mentions Mentions included in a tweet MC 1
URLs URLs included in a tweet MC 1

Components of URLs Components of URLs included in a tweet. We extract the three components “protcol,” “host,” and “top level domain”
from the URL (e.g., “http,” “www.youtube.com,” and “.com” are extracted from http://www.youtube.com/) MC 3

User ID User identifier C 1
User cluster ID Identifier assigned to a user by three clustering methods described in section 3.2.2. C 3

User metrics Metrics related to a user. Specifically, we use the mean and standard deviation of the followers, friends, favorites,
and unique numbers of entities, hashtags, mentions, and URLs from the user’s tweet history. N 10

User dynamics Metrics related to the dynamics in the #followers and #friends of a user. We use the increase in #follower and #friends
from the previous day, the previous week, on the same day, and within the same week N 8

Topic 5-dimensional features extracted by applying TFIDF [2] to sequences consisted of entities, hashtags, mentions,
and URLs included in tweets and dimensionality reduction by SVD [4] N 5

Count encoding Values obtained by applying count encoding [16] to the categorical features “sentiment” and “time ” N 6

Target encoding Values obtained by applying target encoding [12] to the categorical features “tweet metrics binning,” “sentiment,”
“time,” and “user Id” N 11

Note that, at the time of inference, the output value is applied to
the inverse transformation and returned to the original scale.

3.4 Validation Strategy
The method for dividing the dataset into training and validation
data was as follows. In this competition, the test data for evaluation
is May 2020, one month after the data included in the training data.
To bring the distribution of the validation data and the test data
closer, we need to use the validation data that is as close to the test
data as possible in time series. Thus, we used the data from May
2020 as the validation data. We also wanted to utilize the May 2020
data to perform better learning with fresh data close to test data.
For this reason, the May 2020 data was divided into five validation
data point and five models to be trained. Here, when verifying with
one verification data point, the remaining four are used for training
data. Finally, the prediction value of the test data was calculated
for each model, and the evaluation score was calculated from their
average value.

4 EXPERIMENTS
4.1 Settings
The experimental results are not the scores of the test dataset, but
the average of the 5-fold validation described in section 3.4. We
empirically set the sizes of the three fully-connected layers to 2048,
512, and 128, respectively, dimension of embedding to 32, dropout
rate to 0.3, and batch size to 256. We use Adam [8] to optimize

Table 2: Comparison of numerical feature transformations.

Method MSLE
Tweet metrics 0.187028
Tweet metrics + z transformation 0.173821
Tweet metrics + CDF transformation 0.151882
Tweet metrics + log transformation 0.129360
Tweet metrics + rank transformation 0.130994
Tweet metrics + binning transformation 0.174810
Tweet metrics + all transformations 0.127761

all models. Other hyperparameters can be strictly checked in the
published code.

4.2 Results
First, we verified the effectiveness of the numerical feature trans-
formation introduced in section 3.2.1. In the experiment, we tried
using the tweet metrics without the transformation, with the ap-
plication of each transformation, and with the application of all
transformations. The experimental results are shown in Table 2.
It was confirmed that log, rank, CDF, z, and binning transforma-
tion contributed to improving the performance, in this order. Since
the number of followers and favorites in tweet metrics follows the
power law, it is reasonable that log transformation is useful. Also,
the best MSLE was obtained when applying all transformations.
The result shows the effectiveness of transforming tweet metrics
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Table 3: Comparison of user modeling features.

Method MSLE
Both user ID and user cluster ID are unused 0.144809
User ID 0.128004
User cluster ID 0.137432
User ID and user cluster ID 0.127761

Table 4: Models used for the ensemble of our solution. MAE
in the LOSS column denotes mean absolute error loss.

Embedding dim Sizes of FC layers Dropout rate Loss MSLE
32 2048, 512, 128 0.1 MSE 0.128448
32 2048, 512, 128 0.3 MSE 0.127761
32 2048, 512, 128 0.5 MSE 0.128413
40 4096, 1024, 128 0.1 MSE 0.127964
40 4096, 1024, 128 0.3 MSE 0.127810
40 4096, 1024, 128 0.5 MSE 0.128520
40 4096, 1024, 128 0.1 MAE 0.132143

Table 5: Final submission results of the top six teams (semi-
finalists) in the competition.

Rank Team MSLE (Test dataset)
1 vinayaka 0.120551
2 mc-aida 0.121094
3 myaunraitau (ours) 0.136239
4 parklize 0.149997
5 JimmyChang 0.156876
6 Thomary 0.169047

into different distributions and inputting them into the DNN model
for retweet prediction.

Next, we verified the effectiveness of the user modeling intro-
duced in section 3.2.2. In the experiment, in regard to embedding of
user ID and user cluster ID, we tried not using either, using either
one, and using both. The experimental results are shown in Table 3.
It has been found that the performance is improved when the user
cluster ID is also used compared to when only using the user ID.

5 SOLUTION
We used ensemble on multiple models with modified hyperparame-
ters (size of embedding dimension, sizes of fully-connected layers,
and dropout rate) and loss function. Table 4 shows the seven mod-
els used for the ensemble. Stacking ridge regression [2] was used
as the ensemble method. Stacking ridge regression is a method of
blending each model’s prediction results by a linear sum based on
the weights learned by ridge regression. The integer value was
obtained as the final predicted value by rounding according to the
competition’s manners. The final leaderboard looked like Table 5.
Our solution was located in the 3rd place.

6 CONCLUSION
This paper presents our solution for the COVID-19 Retweet Pre-
diction Challenge. We proposed a DNN-based retweet prediction

method. To improve the performance, we introduced a feature ex-
traction method to be input into the DNN (mainly focusing on nu-
merical feature transformation and user modeling) and confirmed
its effectiveness with experiments. As a solution for the competi-
tion, we introduced a stacking-based ensemble method for multiple
models, which positioned us in the 3rd place.
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