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ABSTRACT

Deep Neural Networks based Object Detection algorithms have
shown their remarkable performance and been widely applied in
various aspects in recent years. However, for those areas which draw
much attention to the robustness and security of the model, like
Autonomous Driving and Biomedical Image Analysis, there are still
challenges to make domain users look at these detectors as reliable
methods. In this paper, we mainly focus on object detection and
propose our method to fool object detectors with with Ly-Norm
patch attack.
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1 INTRODUCTION

Deep Neural Networks based computer vision algorithms have
shown their remarkable performance but also faced with vulner-
ability and security problems. Adversarial attack on Image Clas-
sification has made significant progress [4], also spurred the ad-
vancement of the robustness of the classification models [12], and
some attack research on object detection has also been made [16]. To
make it deeper, CIKM-2020 and Aliyun-Tianchi host the AnalytiCup
workshop competition [3] about generating adversarial sample from
COCO [8] to attack 4 mainstream object detection models. In this
paper, we propose our solution based on Projected Gradient Descent
[10] with ly-norm towards this competition. To meet the rule of the
competition that the modified areas should be as smaller as better
and must be constructed as connected domain, we transfer such rule
into solvable problem, and make our efforts by k-means and Prim
for higher score. Eventually, we get a fine result and rank 10th out
of 1701 teams. Code has been made publicly available at our github
code repo.

2 BACKGROUND

In this section, we first make description and understanding of the
competition, then provide some background knowledge and review
the related works about adversarial attack on Object Detection.
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2.1 Competition Understanding

The competition adopts two object detectors known by the competi-
tors (known as white-box attacks) and another two black-box object
detectors for evaluation. The competitors are asked to generate ad-
versarial examples by adding a small number of patches (less than
10) to each image (also known as LO attacks) offline.

2.1.1  White-box Models: The 2 white-box model are the famous
Faster R-CNN [11] and YOLOvV4 [1] respectively. Faster R-CNN
is known as a 2-stage detectors. The first stage, or RPN [11], will
classify a coarse fore/back-ground binary result for each anchor,
then most of the background anchors will be neglected by threshold,
and the second stage will make final prediction based on remaining
anchors. YOLOV4 is an 1-stage detector, and both of this 2 white-
boxes will predict on two aspects: the object’s bounding box size
and location, which is a regressor, and the object’s category, which
is a classifier.

2.1.2 Data, Constrains and Evaluation Metric: The competi-
tion provides 1000 COCO test samples without annotation, where
object detectors will predict the 81 (80 types of foreground object,
and 1 for background) categories’ confidence and the bounding-box’
size and location.

First limitation is the maximum limit of changed pixels rate. Second
is the maximum limit of patches’ number. The goal of the adver-
saries is to make all bounding boxes failed to be returned, by adding
the patches to images. As for evaluation score, on one hand the less
bounding boxes given by the adversarial example, the higher the
score, on the other hand the less changed pixel rate, the higher the
score. More specific definition can be found in [3].

2.2 Related Work

A number of attacks for object detectors have been developed re-
cently [16]. [15] extends the attack method from classification to
detection and demonstrates that it is possible to attack objectors us-
ing a designed classification loss. [9] generate adversarial examples
that fool detectors for stop sign and face detections. [7] proposes to
attack the RPN with a specially designed hybrid loss incorporating
both classification and localization terms. Apart from the full images,
[6] attack detectors by restricting the attacks to be within a local
region.

2.3 Projected Gradient Descent(PGD)

The PGD [10] attack aims at maximizing the loss: max{Jyrarger, Y prea }
from the viewpoint of robustness optimization. In each iteration, the
PGD first modifies x by VL, then it will take projection to norm
ball.

For some attack problems where the ground-truth label is not
given, we can propose a loss function towards bad prediction by
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Figure 1: PGD iteration: X is the original input, also initial state
of adversarial sample X(‘)”k, in each gradient descent iter step
i=1,2,...,n, Xk will be modified into X;"". Then, if X" lies
outside of the norm box, it will be projected onto the norm box’
edge as X%, else Xk = X",

setting synthetic bad label, e.g. in classification problem we may set
all labels into a specific category, like 0 in MNIST. Then the original
PGD can be used by min{Jysynthetic,Ypred }-

2.4 Sparse [y-attack

In an y-attack one is interested in finding the smallest number of
pixels which need to be changed so that the decision changes. We
show an adversarial image with 10-attack in Fig.1. From a practical
point of view the 10-attack tests basically how vulnerable the model
is to failure of pixels or large localized changes on an object e.g. a
sticker on a refrigerator or dirt/dust on a windshield [2], or stained
points on cell microscopy image.

original

Figure 2: Left: original image with box for zoom. Right: /-
attack, only 0.04% are changed, but the final classification result
is quite different[2].

2.5 Better Black-box Attack, or More
Transferable

There are some techniques proposed for better transferable attack
on black-box. And in this paper, we only discuss 2 gradient-based
methods.

Ensemble of Models has been used to improve traditional prediction.
When attacking ensemble of models, the adversarial sample can

trade-off between the attack ability and the transferability[4]. While
there are K models, we should fuse the output of these models, e.g.
for binary classification logits output, we can use weighted averaging
Lx = wilix.

The momentum iterative-FGSM[4] also trade-off between the white-
box attacks and the transferability. Intuitively, the adversarial exam-
ple can easily drop into poor local optima in searching landscape and
‘overfit’ the specific model. So, using the momentum of gradients
can smooth the above problem and makes it more transferable.

2.6 Minimum Spanning Tree

An edge-weighted graph is a graph where we associate weights
or costs with each edge. A minimum spanning tree (MST) of an
edge-weighted graph is a spanning tree whose weight (the sum of
the weights of its edges) is no larger than the weight of any other
spanning tree.[13]

There are two mainly algorithms to solve the prblem: Prim’s algo-
rithm, and Kruskal’s algorithm.[13]
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Figure 3: A MST sample, V: vertex, E: edge

3 METHODOLOGY

In this section, we elaborate the details of the proposed method. We
first illustrate how to employ the PGD to attack the detectors with
lp-norm. Then we describe our approach to meet the constrains, and
tell how to trade off the dilemma that fewer modified pixels results
in higher score coefficient but lower attack performance.

3.1 Loss Function

Considering the fact that only if the classifier output as foreground
and the class confidence is bigger than NMS threshold, the final
predict result will be given, our method can be quite straight forward:
only attack the classifier of detectors. Even though the competition
does not provide any annotation, thanks for the NMS threshold we
can make attack. The attack loss function is defined as follow:

)

Where N is the number of predicted objects, and sml is the softmax
output, and 7 is a threshold more strict than NMS threshold. 1 is
a indicator function that return 1 if smlx > 7 else 0. The target of
this function is trying to make all foreground prediction can not pass
NMS.

1
Jx= Niivl smix - Lgypesrc,



3.2 Attacking Procedure

Our attacking framework is summarized in Algorithm 1. Input sam-
ple x to the given detectors, then the softmax probability of a specific
category can be obtained. Since background will be neglected by
NMS, we only store the foreground’s probability. Above input to
store process can be denoted as smlx. By calculate the loss function,
we can make back propagation the gradient on x is got.(We just give
a simple description here about how to iterate the momentum, more
details like its cold start problem and various variants can be seen
in [5].) At last, if the attack result is outside of the box, we should
projected it onto the norm bound like Fig.1.

Algorithm 1 PGD /y-attack on ensemble of models

Input: A sample x, the foreground’s softmax function of K models:
smly,smly,...,smlg and weights: wi,wy,...,wk.
Hyper-params: Training epochs 7', gradient momentum update
factor u, learning rate [r.
Output: An adversarial example x*.
xj =X, momentum go = 0;
forr=0toT —1do
Input x, get smlox;,smlyx},...,smlgx;;
Fuse the K logits as Ix} =X wysmly;
Get loss Jx; based on Ix; and Eq.(1);
Obtain current gradient V. Jx;
g =g*x1—uVJxi«pu
X =xf —lrxgn
update x}; by projection onto /p-norm box
end for
return x* =x}

3.3 Construct Connected Domains

We solve the connected domains rule of this competition by K-means
and then convert sub-problem to a MST. We first set a specific pixels’
number as 3 for [y-attack, and train the adversarial sample with
Algorithm.1 for certain epochs. Then, we group these pixels into K
areas by K-means, which can be visualized in Fig.4. The distance
metric of two pixels is given by Chessboard Distance, or known
as Chebyshev Distance[14]. After grouping, we connect the pixels
within their group by method in 2.1.4. During connecting process,
we use these pixels’ value before /p-norm projection, and in fact this
is also a projection. If the value is same to original input, we make
slight modification on that value to keep connectivity.

4 EXPERIMENTS

In this section, we show our experiments based on the methodol-
ogy in section 3. In our experiments, we only attack the 2 provided
white-box models due to the computational resources limitation.
YOLOvV4 make binary classification on whether the object is fore-
ground, and its NMS threshold (0.4) is different from Faster R-
CNN(0.3). We set the threshold 7 in Eq.1 as 0.15 for YOLO and
0.25 for Faster R-CNN. The latter output 81 class while the former
is binary, so the corresponding 7 is relatively bigger. The value also
take the output’s unbalanced distribution into consideration.

We set our learning rate as 60000, because the attack on image’s
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Figure 4: Group pixels to 10 areas with k-means clustering, the
dots are the pixels, the stars are centers of each group.
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Figure 5: The training process for a sample. Due to the fixed
form of mask after epoch 30, the pre-train with more top K pix-
els is useful.

value are 0 — 255 while the gradients are quite small. The momen-
tum update factor u = 0.5 is soft, and weights relatively high on the
gradients of current iteration compared with the usage other task,
like traditional image classification. We set the first 30 epochs to
train sample with 8000 pixels /o limitation, then use 200 epochs to
train sample with less pixels with connecting operation, finally we
train 30 epochs to make sure the the sample quantized into uint8 type
which helps maintain most adversarial ability. The first 30 ‘pre-train’
epochs’ improvement can be visualized in Fig.5.

We show our result in Table.1 by adding the methods during the
competition, the overall score list are recorded at the our subscription
result on the competition entrance. And we visualized a perturbed
image and its patch in Fig.6.

S DISCUSSION AND CONCLUSION

In this paper, we show our PGD [y-attack adversarial solution to-
wards the competition’s target. We find that there is no need to make
hand-crafted patches into the image, because by PGD searching



Modus Score | x| YOLO | Overall | Black
handcraft patch, A - - 61 -
k-means 250 31 304 23
YOLO only 49 683 783 51
A +YOLO 231 651 1036 154
momentum 281 997 1635 357
Prims, 1-stage A 820 | 1255 2547 472
quantized training | 955 | 1335 2836 546

Table 1: The ‘A’ means Faster R-CNN. Firstly we use hand-
crafted patches and only attack A, the pixels side patches will
be modified. Then we use K-means to get 10 proposal areas, and
the score gets better. We also attack YOLO only, and find that
YOLO is much easier to be destroyed. By training on ensemble
of the 2 models, we get higher black box score, even though the
white-box score shows a little decrease. By adding momentum,
the increase is promising. To lower the number of pixels, we op-
timized the connecting method by Prims together with hybrid
stage-1 of A into loss function, and we get a notable improve-
ment. Finally, we quantize the adversarial sample after every 3
epochs, which lowers the train/test error.

(b) modified areas

(a) perturbed image

Figure 6: (a) is a perturbed image result; (b) is the difference
of original image and perturbed image. Most of the perturbed
pixels lie near to the 3 zebra objects.

this can be done automatically. We also use K-means and Prims to
handle the game’s constrain. For /y attack, the top-K selection is
intuitive because the amplitude of gradients on the input interpret
how important they are for the prediction target. For the reason that
the connecting process is too slow, we just connect once and keep
patches fixed, which may hinder the searching result and would be
optimized in future work.
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