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ABSTRACT
This paper presents our team’s (AI-JMU) approach to the Medico
automated polyp segmentation challenge. We consider deep convo-
lutional neural networks to be well suited for this task. To determine
the best architecture we test and compare state of the art backbones
and two different heads. Finally, we achieve a Jaccard index of
73.74% on the challenge’s test set. We further demonstrate that big-
ger networks do not always perform better. However, the growing
network size always increases the computational complexity.

1 INTRODUCTION
Worldwide colorectal cancer (CRC) represents the third most com-
monly diagnosed cancer [6, 17]. According to Herszenyi and Tulas-
say [10] CRC attributes to 9% of all cancer incidence globally and
is the fourth cause of cancer death worldwide [6, 17]. In order to
detect potentially cancerous tissues early, physicians conduct a so-
called colonoscopy. During this procedure, the physician searches
for polyps inside the colon in order to remove them. Polyps are
abnormally growing tissues that usually look like small, flat bumps
or tiny fungal stems. Due to the aberrant cell growth, they can
eventually become malignant or cancerous. Nevertheless, even the
best physicians have a risk of overlooking a polyp. Missed polyps
are not removed and can therefore have fatal consequences. Auto-
mated detecting and segmenting polyps is the task of the medico
challenge [12]. This challenge is special because it is not allowed to
include training data other than the 1000 provided polyp images of
Jha et al. [13]. In this paper, we present our challenge results and
explain how we select the networks for our final predictions.

2 RELATEDWORK
In the domain of object segmentation with deep learning, there
are two general state of the art approaches: Fully convolutional
networks [7, 16, 21] and encoder-decoder architectures [1, 5, 24].
Some state of the art polyp segmentation methods include encoder-
decoder architectures. However due to the high computational
complexity of those models, polyp segmentation research focuses
mostly on fully convolutional architectures to enable real-time
segmentation systems [11, 28]. We consider our approaches to
belong to the field of fully convolutional networks. The chosen
models are based on our previous study [14], which we advance
for this challenge by: Focusing exclusively on polyp segmentation,
testing a new state of the art backbone in polyp segmentation [27]
and comparing different architectures comprehensively.
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3 APPROACH
This section focuses on our approaches for the Medico automated
polyp segmentation tasks. We train all our models using a Tesla Tur-
ing RTX 8000 Nvidia GPU. For this challenge, Deep CNNs are best
suited as they provide very stable outcomes in multi-class segmen-
tation tasks like the COCO challenge [15]. Since both bounding
boxes and segmentation masks are available in the dataset, we
choose networks that can handle both inputs. Therefore we select
the Mask R-CNN [8] and the Cascade Mask R-CNN [3]. We build
both architectures based on two-stage object detection models us-
ing Faster R-CNN [19]. Therefore a region proposal network first
suggests candidate bounding boxes (Regions of Interest, RoI) before
making the final prediction. In this case, an additional branch is
added designed to predict segmentationmasks, where the suggested
RoIs enhance the segmentation mask predictions. A Cascade Mask
R-CNN uses an extended framework which is defined by a cascade-
like composition utilizing several Mask R-CNNs with shared weight
on the backbones. We train both the Cascade Mask R-CNN and
Mask R-CNN with the open-source Detectron2 framework [23].

We select these types of models because of two rationales: First,
the availability of both bounding boxes and segmentation masks for
training purposes allows us to maximize the Mask R-CNN perfor-
mance, because RoI and segmentation are closely related. Second,
because the mask of polyps included in the KVASIR-SEG dataset
[13] often vary significantly in size and shape we desire a network
that is unaffected by those variations and determines a pixel-wise
mask of the polyp. Because we use semantic segmentation, we
deal with this as an instance segmentation defined by a single in-
stance per incident per class. Therefore, we alter the ground truth
bounding boxes in our data to include only one instance instead of
multiple instances.

We test the Cascade Mask R-CNN and Mask R-CNN with ResNet
[9] as well as the new ResNeSt [27] backbone. The latter adds a
split attention block to the ResNet backbone and reconfigures the
ResNet structure. This block and structure enable the network to
share attention across feature-map groups. This might offer some
benefits to the polyp segmentation task. Additionally, we vary the
depth of both backbones, with depths of 50 and 101 for ResNet
as well as 50, 101, and 200 for ResNeSt. The backbones we use
consist of CNN classifiers pre-trained using the ImageNet-1k dataset
[20]. The whole architecture is pre-trained on the COCO dataset
[15]. Consequentially we use transfer learning to compensate for
the small size of the training dataset. We train networks with the
Detectron2 framework [23] and a fork of the Detectron2 framework
published by Zhang et al. [27]. Both provide a wide range of pre-
trained object detection and segmentation models. Prior to the
actual processing, we convert our data to the COCO dataset format.
Afterward, the required image preprocessing steps, i.e. padding,
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Table 1: Segmentation results on the validation data. R50
and R101 denote ResNet50 and ResNet100. Rt50, Rt101 and
Rt200 denote ResNeSt50, ResNeSt101 and ResNeSt200. Cas-
cade R-CNN denotes Cascade Mask R-CNN. All values ex-
cluding FPS are in %.

Mask R-CNN Cascade R-CNN
IoU Dice Acc FPS IoU Dice Acc FPS

R50 71.0 78.9 90.9 13 73.2 81.4 93.8 9.8
R101 72.3 80.0 91.8 11.8 74.1 82.1 94.3 8.7
Rt50 72.8 78.7 90.4 10.9 75.2 81.9 94.2 8.2
Rt101 73.9 80.8 93.2 9.0 75.9 83.1 95.7 7.1
Rt200 - - - - 73.3 81.6 93.4 2.9

resizing, rescaling the pixel values, etc., are automatically performed
within the framework.

We define the total loss as the sumof classification, box-regression
and mask loss 𝐿 = 𝐿cls + 𝐿box + 𝐿mask [8], where 𝐿mask is the bi-
nary cross-entropy for autonomous segmentation of all masks. The
training of all models includes a stochastic gradient descent us-
ing a learning rate of 0.00025 and a batch size of 16. Every model
trains for up to 80000 iterations, maintaining checkpoints every
300 iterations. Afterward, we adopt the checkpoint with the low-
est validation loss for the final outcome. Additionally, we utilize
random horizontal flipping, vertical flipping, and random resizing
as data augmentation while retaining aspect ratio to diminish the
generalization error.

4 RESULTS AND ANALYSIS
We evaluate the models on our validation dataset which is a subset
of the Kvasir-SEG data [13]. For the evaluation we consider quality
and speed. For quality we compute the dice coefficient, intersection
over union (IoU), and accuracy (Acc). For speed we specify frames
per second (FPS). All our validations are carried out using an Nvidia
V100 GPU within the cloud solution of Google Colab [2]. Table 1
depicts our results. While Cascade Mask R-CNN outperforms Mask
R-CNN in every quality metric, Mask R-CNN is faster with compu-
tation. However, the architecture’s speed shows a clear pattern: the
Mask R-CNN using the smallest backbone (lowest computational
complexity) is the fastest, and Cascade Mask R-CNN (highest com-
putational complexity) with the largest backbone is the slowest.
Comparing the ResNet and RestNeSt backbone: Using the ResNeSt
backbone results in higher scores in all metrics. Nevertheless, the
RestNeSt backbone increases the computational complexity and
therefore decreases FPS. Concerning the depth of the network:
Changing the depth from 50 to 101 increases the quality of the
results. This implies that a deeper backbone may always result in
better quality. However, our results show that a larger backbone not
always causes better quality, but always diminishes the speed due
to higher computational complexity, in our case dropping FPS down
to 2.9 for ResNeSt200. We evaluate ResNeSt200 backbone only with
the Cascade Mask R-CNN because there are no pre-trained weights
available for the Mask R-CNN version.

Overall, Cascade Mask R-CNNwith a ReStNest101 backbone pro-
vides the best quality results. Therefore, we consider this backbone

a) Best performing

b) Worst performing

Figure 1: Qualitative results of the Cascade Mask R-CNN
with ResNeSt101 backbone. Binary images are ground truth
and rgb imageswith are predictions. Different colors are just
highlighting the predictions.

for the quality task of the Medico challenge. For the efficacy task of
the challenge we choose the Cascade Mask R-CNNwith ReStNest50
backbone. It is faster and less taxing on memory than ReStNest101
while still maintaining high-quality results. Our challenge scores
for the quality task are an IoU of 0.737. For the efficacy task our
results are an IoU of 0.721 while computing with 3.36 FPS on an
Nvidia GTX 1080. To qualitatively demonstrate a set of our results,
we depict the four best and worst classified images of our validation
set in figure 1. The algorithm performs best on big, unconcealed
polyps. Nevertheless, small polyps like shown in the first three
images of figure 1𝑏 are harder to segment. In addition, concealing
the polyp with a tool like in the last image of figure 1𝑏 prevents the
algorithm from detecting the polyp.

5 CONCLUSION AND OUTLOOK
In summary, our results suggest that using a deeper neural network,
extending it with another backbone, or adding a computationally
more expensive architecture like Cascade Mask R-CNN leads to
higher quality segmentations. Nevertheless, the increasing network
size is not always beneficial. Moreover, we demonstrate that the
ReStNeSt101 backbone combined with the Cascade Mask R-CNN
structure is the best segmentation algorithm among our examples.

Further research could extend our architectures and compare
them with other state of the art segmentation models like the
DeepLabv3+ [18], HRNet [22], MRFM [26]. Those three architec-
tures and the proposed architecture are currently the best perform-
ing architectures on object segmentation benchmarks [18, 22, 26,
27]. Especially promising is the speed and quality trade off using
HarDNet [4] and BiSeNet [25] for further evaluations.
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