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ABSTRACT

This paper introduces our approach for the automatic segmentation
of polyp images in the Gastro-Intestinal (GI) tract. We employ
an EfficientNet as an encoder backbone with UNet decoder and
leverage the concept of UNet++ of redesigning the skip connections
to use multi-scale semantic details. Further, the addition of deep
supervision and channel-spatial attention module on the network
results in good segmentation performance. The experimental results
show the efficiency of the proposed method, which achieves an
accuracy of 95.46 %, a recall of 90.31 %, a precision of 86.07 %, and
F2-score of 87.4%.

1 INTRODUCTION

The aim of Medico automatic polyp segmentation challenge is to seg-
ment irregular, small or flat polyps automatically applying different
robust and efficient algorithms [1]. A training set of 1000 polyp
images with their corresponding masks labeled by medical experts
is provided for the participating team. Each team is expected to de-
velop a powerful architecture that can predict the region of interest
(ROI) on the testing set. Organizers compare and evaluate all the
submitted approaches based on two primary measures: (1) better
polyp segmentation task, and (2) efficiency task. In this paper, an
encoder-decoder based convolutional neural network (CNN) is in-
troduced to facilitate good segmentation results and efficient polyp
detection using the provided data.

2 METHODS

In our method, we utilize the pre-trained weight of variants Effi-
cientNet [2] for the encoder path. Even though medical images are
different from the natural images, it is often beneficial to use the pre-
trained weights of state-of-the-art CNN architectures for a small
datasets 3, 4]. Considering the presence of polyps of varying scales,
we utilize the redesigned skip connections from the UNet++ [5].
The densely connected skip connections to the decoder side enable
flexible multi-scale feature fusion both horizontally and vertically at
the same resolution. Besides, the proposed method powered by deep
supervision and channel-spatial attention [6] enables significantly
better performance and fast convergence. Integrating channel and
spatial attention modules restrain irrelevant features and allow only
useful spatial details.

Figure 1 shows a broad overview of our proposed method. Effi-
cientNet uses the MobileNet inverted block (MB) [7] with squeeze
and excitation network [8], and a combination of these components
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works as the good feature extractor module. We keep a network
level of s=1 to s=5 depending upon the size of feature map. We
reduce the size of feature maps by 2 at each level. The size of the
spatial feature map at the last layer (s=5) is 7x7, which indicates
that the feature maps are down-sampled by five times and is halved
according to the previous level. At different levels, each node con-
catenates the feature maps from its previous node of the same level
and the upsampled feature maps of the next level, enabling aggre-
gation of multi-scale features. Next, the concatenated features are
passed through the channel-spatial network at each node. On the
decoder side, a transposed convolution is used for upsampling the
feature maps. Similarly, we upscale the outputs of the decoder block
at level s=2 to s=5 and apply a 1x1 convolution with 1 kernel and a
sigmoid function. Then, all the outputs (after deep supervision) are
averaged and a final result is generated. We performed experiments
on five different settings as explained below:

e Method 1 uses the UNet++ [5] as a baseline model (skip-
ping deep supervision) and with the EfficientNetB0 as an
encoder backbone.

e Method 2 extends Method 1 with the addition of Deep su-
pervision horizontally. The feature maps are upsampled to
the input image size at each decoder level, and the sigmoid
activation function was applied accordingly.

e Method 3 employs EfficientNetB1 with the same settings
as Method 2.

e Method 4 employs EfficientNetB2 with the same settings
as Method 3.

e Method 5 employs EfficientNetB3 with the addition of
channel-spatial block at each node to restrict the irrele-
vant features.

For task 2, we use the same architectural design as Method 5.
However, we utilize the compound scaling method proposed by
EfficientNet [2] in decreasing order to find the optimum scaling
dimension of the network. We decrease the network’s depth and
width and keep the fixed image size of 224x224 to prevent loss of
spatial details.

3 DATASET

The dataset includes a total of 1000 polyp images with their corre-
sponding ground truth [9]. The images have a resolution of 332x487
to 1920x1072 pixels. The images are split into training, validation
set at a ratio of 80:20. Both training and validation were conducted
using images with a pixel resolution of 224x224. We perform a
heavy augmentation using albumentation library [10] which in-
cludes rotation, vertical and horizontal flipping, cutout, shearing,
scaling, zooming.
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Figure 1: Overview of proposed method.
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Table 1: Jaccard index, Dice Similarity Coefficient (DSC), Recall, Precision, Accuracy, F2-score for the segmentation of Task 1.

Model  Jaccard DSC Recall Precision Accuracy F2 Params (in million)
Model 1 0.7446 0.8230 0.8835 0.8323 0.94702 0.8469 6.8241

Model 2 0.7688 0.8434 0.8476 0.8954 0.9603 0.8402 6.8338

Model 3 0.7538 0.8305 0.8931 0.8316 0.9448 0.8548 9.3595

Model 4 0.7552 0.8364 0.8901 0.8366 0.9470 0.8563 10.7474

Model 5 0.7897 0.8607 0.9031 0.8673 0.9546 0.8748 14.0491

Table 2: Frame per second (FPS), Mean time taken, Jaccard index, Dice Similarity Coefficient (DSC), Recall, Precision, Accuracy,

F2-score for the segmentation of Task 2.

Model FPS Mean time taken Jaccard DSC

Recall

Precision Accuracy F2 Params (in million)

Model 1 2.2514 0.4441 0.5083  0.6265

0.6003

0.7870 0.9149 0.6029 2.5

4 IMPLEMENTATION DETAILS

The implementation is based on Keras, and the backend is Tensor-
Flow. We use a stochastic gradient descent with a batch size of 16
and use a weight decay of 0.0001 with a momentum of 0.9 without
an accelerated gradient. The experiments were conducted using
an Intel® Core™ i7-7700 CPU @ 3.60GHz x 8 with a GeForce GTX
1080 Ti with 36 GB of RAM.

5 RESULTS AND DISCUSSION

We submitted the predictions of five methods for the testing set
(160 images) to the organizers for the evaluation. Table 1 and Table
2 report the experimental results achieved by different models
on the segmentation dataset for taskl and task2. Table 1 shows
that the addition of deep supervision in model 2 enables better
segmentation performance. The model achieves a 2% improvement
in performance in terms of the Dice coefficient score. However,
under the same settings, applying EfficientB1 and EfficientNetB2 on
the encoder path gives a similar performance and a small marginal
gain in F2-score. The channel-spatial attention module’s addition
in model 5 turns out to be the best model achieving 86.07 dice
coefficient score and 78.97 Jaccard index. This suggests that the
attention module contributes more in comparison to other modules.

Similarly, for task 2, the efficient model achieved an accuracy of
91.49 % with F2-score of 0.60, with just 2.5 million parameters.
Further, the frame rate in Frames per Second (FPS) while testing in
CPU is 2.25142.

6 CONCLUSION

This paper presented five different methods for the accurate seg-
mentation of polyps in GI tract diseases. The proposed methods use
an encoder-decoder based architecture where the variants of Effi-
cientNet are applied as an encoder backbone with the UNet decoder.
Further, the combination of deep supervision and channel-spatial
attention module with an additionally redesigned skip connections
achieved the best performance on the test set. We plan to continue
researching efficient tasks and further improve the results.
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