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ABSTRACT
Emotion is an essential aspect of music, and its recognition is a
prevalent research topic in the field of computer audition. Machine
learning-based Music Emotion Recognition (MER) systems could
boost the accessibility of music collections by providing standard-
ised methodologies of music categorisation. In this paper, we intro-
duce our (team name: AugsBurger) machine learning architecture
sequentially composed of a convolutional feature extractor with
block attention modules and a recurrent stack with self-attention
for automatic MER. We train 5 models and conduct various late
fusion experiments. Utilising a Convolutional Recurrent Neural Net-
work (CRNN) with convolutional block attention applied through-
out a 18-layer ResNet and a single recurrent layer with a Gated
Recurrent Unit cell, a ROC-AUC of 73.9% can be achieved on the
test partition of the MediaEval 2020 Emotion & Themes in Music
task. Applying late fusion on the individual model predictions and
another challenge submission, this result is further increased to
75.3 % ROC-AUC.

1 INTRODUCTION
The ability of music to express emotions is a demonstrable and
eminent fact [18]. Emotional experiences of music are complex
and dependent on factors related to the states and traits of the
listener, the performer, and the listening context, with research
suggesting that musical structure alone is a key determinant of
the emotional indication of music [25]. Different music emotion
categories can induce emotional states, such as happiness, sadness,
hope, excitement, and joy in listeners [16, 19]. This is primarily
due to the affective information encoded in musical parameters,
including melody, timbre, rhythm, and dynamics which are implic-
itly decoded by listeners [13, 17]. Conventional feature extraction
methods (e. g., openSMILE [15]) have shown their suitability to ex-
tract such features from music recordings [28, 32]. However, the
state-of-the-art for MER is defined by contemporary machine learn-
ing approaches which utilise convolutional and recurrent neural
networks and learn data representations directly from the audio
signals (or spectrograms) instead of extraction of pre-defined hand-
crafted features [3, 20, 21, 29]. Moreover, the integration of an
attention mechanism in such systems has shown promise for var-
ious audio recognition tasks [6, 26]. Motivated by our previous
works with CRNNs [2, 3, 5] and the success of attention mech-
anisms [4, 6, 26, 31], in this paper, we introduce an end-to-end
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framework composed of two attention blocks: a Convolutional
Neural Network (CNN) with Convolutional Block Attention Mod-
ules (CBAMs), and a recurrent block with self-attention for the task
of emotion and theme recognition in music [8–10].

2 APPROACH
A high-level overview of our approach is depicted in Figure 1. The
framework consists of a CNN feature extractor enhanced byCBAMs
and an RNN with self-attention. The convolutional block aims to
learn high-level shift-invariant features, whilst long(er)-term tem-
poral dependencies of music data [8–10] are mainly extracted by
the recurrent block [1]. For all experiments in this paper, the MTG-
Jamendo dataset [10] is solely used. The 18 486 audio tracks of
the MTG-Jamendo dataset [10] are annotated in 56 distinct mood
and theme categories, with every track having at least one tag.
The dataset provides 60-20-20 % splits for training, validation, and
testing. A full description of the dataset can be found in [10].

2.1 Pre-Processing and Augmentation
Our model uses the pre-computed mel-spectrograms that are part
of the challenge dataset. Furthermore, we only use random win-
dows of 8 seconds (500 timesteps) during training, reducing the
memory footprint of our models and also serving as a form of data
augmentation. Additionally, we apply SpecAugment [22], randomly
applying masks of a maximum width of 10 (timesteps or frequency
bands) to both the frequency and time domains of the spectrograms.
We do not, however, use warping. During validation and testing,
we take an 8 second chunk from the middle of each spectrogram
and do not apply SpecAugment.

2.2 Convolutional Block Attention Module
In the CNN part of our modes, we use CBAMs [30] to refine the
learn feature maps. CBAMs sequentially apply channel and spatial
attention to the max and average pooled outputs of a convolutional
layer. The attention maps are applied by element-wise multipli-
cation. As these modules are a very lightweight extension, and
show consistent performance increases for a wide range of popu-
lar image-recognition benchmarks [30], we evaluate their efficacy
when added to a CRNN for music emotion and theme recognition.

2.3 Recurrent Self-Attention
In the RNN head of our CRNN framework, we use an attention
mechanism to help themodel focus on important parts of the feature
sequences extracted by the CNN. This is done by applying self-
attention [12] to the RNN outputs and states at each time step,
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Figure 1: Overview of our system composed of a CBAM enhanced convolutional feature extractor followed by a Recurrent
Neural Network (RNN) stack with self-attention. A detailed account of the framework is given in Section 2.

finally forming a compact representation for the whole sequence.
We use the scaled dot product attention of Vaswani et al. [27].

2.4 Attention CRNN
Combining a CNN feature extractor with CBAMs and an RNN head
with self-attention leads to our final attention CRNN. Specifically,
we use an 18-layer ResNet architecture and replace the global pool-
ing layer with an RNN stack. In the ResNet, we apply CBAMs in
every convolutional block right before adding the residual. For the
RNN, we evaluate using Gated Recurrent Unit (GRU) and Long
Short-Term Memory (LSTM) cells. We started with a single layer
with 256 units for both cell types. As we found GRUs to perform
better, we additionally trained a model containing two recurrent
layers of this type with 128 units each. Finally, the step-wise outputs
and the final hidden state are used in the self-attention mechanism
as keys and values, and query, respectively. Finally, a fully con-
nected layer with sigmoid activation is used to perform the theme
and mood tagging of the input audio samples. We train all of our
models for a maximum of 100 epochs with an Adam optimiser with
the learning rate set to 0.0003 but stop the training early if the
validation ROC-AUC does not improve for 20 epochs. We use the
weights from the best epoch (measured in validation ROC-AUC)
for evaluation on the held-out test set.

2.5 Fusion Experiments
We apply late fusion to the results achieved by our attention CRNNs
(models with CBAMs) through averaging prediction scores. Further-
more, we fuse our predictions with another system submitted to the
challenge [23] which uses standalone self-attention an attention-
based Rectified Linear Units (ReLUs) [11] added to the challenge
baseline’s vggish model [9].

3 RESULTS AND ANALYSIS
The results of our experiments are shown in Table 1. The best
individual model can be found with a CBAM enhanced CRNN with
a single GRU layer. This model reaches 73.9% ROC-AUC on the
test partition, compared to the challenge baseline of 72.5 %. Using
the same architecture but without applying CBAMs, only 69.4%
are achieved on test. Furthermore, we observe that models with a
single GRUs layer outperform their LSTM counterparts. Fusing the
two best CRNNs – CBAMs in the CNN and GRU cells in the RNN –
further leads to a slight performance boost to 74.1 %. More effective
is fusing with the attention enhanced CNN from [23], achieving
our best result of 75.3 % ROC-AUC and 13.1 % PR-AUC on test. This
hints at complementarity of the two systems.

Table 1: Performance of our proposed approaches measured
in macro ROC-AUC. Baseline ROC-AUC on test is 72.5 % [9].

CRNN
conv. attention RNN cell RNN units validation test
no attention GRU 256 69.9 69.4
no attention LSTM 256 70.0 69.3
block attention GRU 2 × 128 67.9 71.6
block attention GRU 256 71.8 73.9
block attention LSTM 256 69.4 69.4
attention CNN [23] - - 72.8 72.8

Fusion
block attention with GRU 74.1
block attention with GRU+ [23] 75.3

A noteworthy characteristic of all the systems used in our sub-
mission to the challenge is that they do not make use of any external
data and only train on short extracts of the songs (about 10 seconds
long). Furthermore, none of the models were trained for more than
50 epochs, against the challenge baseline’s 1 000 epochs. In this way,
our attention models reduce data, memory and time requirements
while achieving stronger performance than the baseline. Compared
to the other challenge submissions, only one submission that does
not rely on external data outperforms our best fusion model1.

4 DISCUSSION AND OUTLOOK
We have introduced a CRNN architecture with attention modules
for both convolutional (cf. Section 2.2) and recurrent blocks (cf. Sec-
tion 2.3) for emotions and themes recognition in music. In the
pre-processing step, in order to achieve a better model generalisa-
tion, we have augmented the spectrograms from the music record-
ings with SpecAugment [22] and trained our models with both
challenge and augmented data (cf. Section 2.1). Furthermore, as a
post-processing step, we have conducted a set of late (decision-level)
fusion experiments to check the complementary of the predictions
from each trained model (cf. Section 2.5). The results indicate the
efficacy of our applied methodologies for this challenge(cf. Sec-
tion 3). Considering the performance increase achieved by utilis-
ing attention-based ReLUs with the baseline’s vggish architecture
in [23], it is worth investigating this activation mechanism in com-
bination with the CBAM enhanced CRNNs presented herein. As
our models only make use of the challenge data itself, one should
also consider exploiting external data, such as the Million Song
Dataset [7], Music4All [24] or NSynth [14] for possible improve-
ments in model accuracy.
1https://multimediaeval.github.io/2020-Emotion-and-Theme-Recognition-in-Music-
Task/results
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