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ABSTRACT
This paper reports on the GTH-UPM team experience in the Pre-
dicting Media Memorability task at MediaEval 2020. Teams were
requested to predict memorability scores at both short-term and
long-term, understanding such score as a measure of whether a
video was perdurable in a viewer’s memory or not. Our proposed
system relies on a late fusion of the scores predicted by three sequen-
tial models, each trained over a different modality: video captions,
aural embeddings and visual optical flow-based vectors. Whereas
single-modality models show a low or zero Spearman correlation co-
efficient value, their combination considerably boosts performance
over development data up to 0.2 in the short-term memorability
prediction subtask and 0.19 in the long-term subtask. However,
performance over test data drops to 0.016 and -0.041, respectively.

1 INTRODUCTION
The improvement in computational capabilities is progressively
allowing researchers to tackle problems long though to be out of
reach due to the subjective nature of the phenomena involved. One
good instance is memorability prediction. The seminal work of Isola
et al. set the ground for later work on computational modelling of
image memorability [11]. Since 2018 the Predicting Media Memora-
bility Challenge, hosted within theMediaEval workshop, has pushed
forward the extent of the original problem to encompass memora-
bility prediction over multimedia sources of information [3, 4]. In
its current edition the goal of the task holds the same as previous
years, yet video clips now cover a kind of material resembling short
videos commonly found in social media. Further information can
be found in the challenge description paper [7].

Several multimodal late fusion strategies have been proposed
regarding the image and video memorability prediction problem [5].
Additionally, attention mechanisms have been successfully applied
to problems in which data come naturally in a sequential form [16].
In particular, self-attention layers have been proved to boost per-
formance when tackling the computational modelling of media
memorability [6].

2 APPROACH AND EXPERIMENTS
Every video sample in the dataset presents the following sources of
information: between 2 and 5 text captions that roughly describe the
content of the video, the video audio signal and its visual frames. As
stated before, multimodal systems are able to learn modality-wise
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data representations, and combine their predictive power in order
to make a final, unique memorability prediction. We hypothesize
that a late fusion scheme will benefit from incorporating a self-
attention mechanism that learns to focus on what it is particularly
relevant on a given sample’s prediction.

We propose a system based on the late fusion by a Support
Vector Regressor (SVR) of the predictions made by three single-
modality models whose architecture is depicted in Figure 2. In
all cases the biLSTM encoders have 75 units, with all the learners
sharing the same architecture but trained independently. Prediction
comes as the outcome of the last sigmoid layer. Learned layers
suffer from a dropout rate fixed at 0.3. For every single-modality
learner the training pipeline holds the same; batch size is set at 128,
with initial learning rate 0.001 and Adam optimizer [12]. Figure 1
shows the general prediction pipeline from these models. Results
shown in this paper are obtained following a 5-fold cross-validation
procedure over the 1000 videos of the development data. Training
is stopped after 5 epochs with no improvement over the Spearman
correlation coefficient, computed over the fold’s validation data.
Experimental results are summarized in Table 1. Next we introduce
in greater detail the feature extraction processing carried out for
every modality.

2.1 Text captions
We merge all the captions of a sample into a single one in a Bag-Of-
Words fashion. Afterwards, we extract the lemma of every word in
the text using NLTK’s WordNet-based Lemmatizer [1, 14]. Finally,
the input of the text modality is made by the sequence of fasttext
300-dimensional word embeddings corresponding to every word
in the sample’s BOW-text [2]. At training time, random noise with
𝜇 = 0 and 𝜎 = 0.15 is added to the niput embeddings in order to
improve learning robustness.

2.2 Audio signal
Based on previous experience, we hypothesize that event detection-
oriented embeddings provide a robust basis to studymultimedia per-
ceptual variables such as attention or memorability [13]. Therefore
we compute aural embeddings using the default VGGish configura-
tion, which is pretrained on Audioset, a large audio event-detection
database [8, 9]. That way every video audio signal is defined by a
sequence of 128-dimensional embeddings, each spanning 960 ms
of audio and without overlap between them.

2.3 Video image
Videos in the dataset are no longer than a few seconds, characterized
by an event happening quickly and conforming the most relevant



MediaEval’20, December 14-15 2020, Online R. Kleinlein et al.

Figure 1: Proposed video memorability prediction pipeline. The system is the same when dealing with both short- and long-
term memorability scores, but single-modality learners are trained independently for every time interval and modality.

Spearman coeff. for fold # – Development Set Test Set
Time range Model 1 2 3 4 5 AVG Spearman Pearson MSE

Short-term

Word2Vec Captions 0.00 0.05 0.13 -0.03 -0.06 0.02 – – –
Audioset embeddings -0.06 -0.04 0.07 0.02 0.01 0.00 – – –
Optical Flow + PCA(128) 0.11 0.01 0.07 -0.1 0.08 0.03 – – –
Prediction ensemble + SVR 0.22 0.20 0.20 0.23 0.17 0.20 0.016 0.011 0.01

Long-term

Word2Vec Captions 0.08 0.06 0.06 0.12 0.13 0.09 – – –
Audioset embeddings 0.07 0.05 -0.10 0.12 0.17 0.06 – – –
Optical Flow + PCA(128) -0.02 0.13 -0.05 0.10 0.19 0.07 – – –
Prediction ensemble + SVR 0.19 0.19 0.19 0.23 0.18 0.19 -0.041 -0.028 0.05

Table 1: Spearman correlation coefficient scores computed for every validation fold in the dataset, as well as the overall average
and official test results. Both short- and long-term scores are shown for every predictive model studied.

Figure 2: Architecture of the single-modality learners.

part of the clip. Because of that, videos are expected to display
quick changes in pixel values between consecutive frames due to
visual events taking place. In order to capture the degree of visual
change along a clip, we compute optical feature maps for its frames,
extracted at 3 FPS, using a LiteFlowNet model [10]. We further
reduce optical flow features’ dimensionality by projecting them
into a 128-dimensional subspace computed by PCA [15]. A sample
is represented by a temporally-sorted sequence of 128-dimensional
features that retains most of the information regarding the optical
flow features maps.

2.4 Ensemble of modality-wise models
We independently train single-modality models from the features
explained in the sections above. Thereafter, a memorability predic-
tion is computed for every sample in the dataset. The combination
of the three memorability scores is the input for a SVR that makes
a final prediction that reflects the knowledge extracted from the
different the modalities.

As it can be seen from Table 1, individual learners are not able
to fully characterize a video sample and learn the relationship with
its memorability score. However, the ensemble of the three of them
achieves a Spearman correlation coefficient value of 0.2 in the short-
term problem and 0.19 in the long-term one over development

data. However, we notice that the performance on the test data
significantly drops, achieving much lower scores on both subtasks.

3 DISCUSSION AND OUTLOOK
Despite individual learners showing very low or even zero coef-
ficient values, a SVR based on their posteriors seems to weakly
capture the relationship between media content and its memora-
bility score, with similar correlation values obtained at both short-
term and long-term subtasks. This might be partially caused by the
limited amount of data available, which is likely to be dragging
the learning process, and therefore making the SVR to learn the
development dataset’s score distribution. Prediction’s distribution
suggests that the system might be learning to approximate every
sample to the mean memorability score, rather than exploiting the
knowledge extracted from the computed features. Future work in-
cludes extending the amount of training data with similar datasets.
It is also left for future studies to explore different data encodings,
with special emphasis on smaller, more compact data representa-
tions that might better suited for cases where large datasets are not
available.
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