
On The Pursuit of Fake News : From Graph Convolutional
Networks to Time Series

Zeynep Pehlivan
Institut national de l’audiovisuel, France

zpehlivan@ina.fr

ABSTRACT
This paper presents the methods proposed by team INAFake team
for MediaEval 2020 FakeNews: Corona virus and 5G conspiracy.
We concentrate our work on the sub-task of structure-based fake
news detection. Our aim is to test existing methods by leaning on
temporal features of networks without taking any textual features
into account. We applied two well known supervised graph classi-
fication approaches, graph convolutional layers (GCN) and Deep
Graph Convolutional Neural Network (DGCNN). We also present
the problem as a multivariate time series classification problem and
tested multivariate long short term memory fully convolutional
network method.

1 INTRODUCTION
Social media, which provides instant textual and visual informa-
tion exchange, plays an important role in information propagation
but plays also a crucial role for the propagation of fake informa-
tion. One study [1] estimates that 42 percent of visits to fake news
websites came through social media. Specially, when fake news
distort real-world information by tweaking or mixing it with the
true information, it spreads faster on social media [10].

The aim of Fake News task [9] is to detect misinformation spread-
ers by analysing tweets related to Coronavirus and 5G conspiracy -
the idea that the COVID-19 outbreak is somehow connected to the
introduction of the 5G wireless technology. The challenge of this
task is not only to detect the fake news but also to make the distinc-
tion between fake news related to Corona virus-5G and other fake
news subjects. This work addresses the issues related to sub-task
of structure-based fake news detection, thus it does not take the
tweets content into account.

2 RELATEDWORK
Fake news detection focuses on using news contents and social
contexts. For social context based approaches, the features mainly
include user-based, post-based and network-based. For this chal-
lenge, we will focus on network based features. Two graph learning
problems have been well studied: node classification and graph
classification. Node classification is to predict the class label of
nodes in a graph, while graph classification aims to predict the
class label of graphs, for which various graph kernels and deep
learning approaches have been designed.

We first apply two different graph classification algorithms to
this challenge’s dataset. First one is based on graph convolutional

Copyright 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).
MediaEval’20, December 14-15 2020, Online

classification model, GCN, proposed in [8] by using the graph con-
volutional layers from [7]. However, [7] is developed for node clas-
sification, it can be extracted to use with the graph classification by
implementing a global pooling layer as a last layer that performs
some form of pooling operation 1.

The second approach is the Deep Graph Convolutional Neural
Network (DGCNN) [13] algorithm. It uses the graph convolutional
layers from [7] and proposes "SortPooling" which sorts nodes ac-
cording the concatenation of the node embeddings of all layers as
the continuous equivalent of node coloring algorithms. Then, such
"colors" define a lexicographic ordering of nodes across graphs. The
top ordered nodes are then selected and fed (as a sequence) to a
one-dimensional convolutional layer that computes the aggregated
graph encoding. roles within the graph [2].

As studied in [10], fake news spread significantly faster and
deeper than the truth. Thus, we would like to put the temporal di-
mension into account for this challenge and problem falls into time
series classification category. Instead of creating univariate time
series from tweets published/retweet dates, we create multivariate
time series (MLTS) by using graph features changing over time.
Recently, most approaches to MLTS have used neural networks,
and in particular convolutional neural networks [6, 12]. We use
MLTSM-FCN [6] which is a combination of long short term mem-
ory (LSTM) [5] and one-dimensional fully convolutional networks
(FCN) [11] joined by a concatenation layer, followed by a shared
dense layer for predictions. In [6], authors propose two versions,
one with attention layer (MALTSM-FCN), one without attention
layer. We choose to use the version with attention layer.

3 APPROACHES
In this section, we are going to give details of our implementations
for GCN, DGCNN and MALTSM-FCN.

3.1 GCN
Our deep learning model is represented in Figure 1. The input is
the graph represented by its adjacency and node features matrices.
The first three layers are Graph Convolutional as in [7] with each
layer having 128 units with relu activations and orthogonal kernel
initializer. The next layer is a mean pooling layer where the learned
node representation are summarized to create a graph represen-
tation. The graph representation is input to three fully connected
layers with 128, 32 and 16 units respectively with relu activations
and orthogonal kernel initializer. The model is trained using a batch
size of 128.

1https://github.com/tkipf/gcn/issues/4



MediaEval’20, December 14-15 2020, Online Z.Pehlivan

Figure 1: GCN architecture from [3]

Figure 2: DGCNN architecture from [3]

3.2 DGCNN
The model is represented in Figure 2. The model’s input is also
the graph represented by its adjacency and node features matrices.
The first four layers are Graph Convolutional layers, each have 128,
128, 128, 3 units and tanh activations. These layers are followed
by a one dimensional convolutional layer, Conv1D, followed by
a max pooling, MaxPool1D, layer. Next is a second Conv1D layer
that is followed by two Dense layers, first one with relu activation
and followed by droput layer (0.2) and second one with softmax
activation for classification.

For GCN and DGCNN, categorical cross-entropy loss is used to
train the neural network. The models are trained using a batch size
of 128 and 256 respectively, Adam optimizer with initial learning
rate 0.001 and decay 0.01, with dropout (0.2). We also reduced the
learning rate by a factor 1/10 and applied early stopping. Stellar-
Graph [3] and networkx [4] packages are used for the implementa-
tion.

3.3 MALSTM-FCN
This model is represented in Figure 3. The model’s input is the
time series generated by using graph features explained below.
This model is implemented by using source code of [6] 2. For the
MALSTM-FCN network, the optimal number of LSTM hidden states
for each dataset was found via grid search over 8, 16, 32. The FCN
block consists of three blocks of 128-256-128 filters. The models are
trained using a batch size of 128. He uniform initializer is used for
the convolution kernels. The activcation function is set to relu.

3.4 Input generation
For GCN and DGCNN, the same input is used. As explained in
the challenge, the provided retweet graphs contain sub-graphs of
the Twitters follower graph and as suggested by the organizers,
since each sub-graph must contain the trajectories of the real world

2https://github.com/titu1994/MLSTM-FCN

Figure 3: MALSTM-FCN architecture from [6]

spreading we pre-processed the provided graphs and discarded
all edges that point against the time. Then, for each node in each
graph, following features are calculated by using networkx package
: degree centrality, closeness centrality, betweenness centrality,load
centrality, harmonic centrality, number of cliques, clustering coeffi-
cient, square clustering coefficient and average neighbor degree.

For MALSTM-FCN, for each graph, time series are created by us-
ing following graph features : average clustering coefficient, graph
clique number, number of connected components, local efficiency,
number of isolates and also normalized time distance to source
tweet. We also discarded all edges that point against the time.

4 RESULTS AND DISCUSSIONS
Stratified K-Fold cross validation model (with k=10) is used to mea-
sure the performance. For each fold, dataset is split into training
(90%), validation (3% of training) and test (10%) sets. Figure 1 shows
the results for K-Fold CV by using categorical accuracy, ROC AUC
and Matthews correlation coefficient (MCC) and also the official
results for test dataset (T-MCC).

Table 1: Stratified K-Fold CV and submission results

Model Accuracy ROC AUC MCC T-MCC

GCN 71.1± 0.2% 82.6 ± 1.1% 0.56 ± 0.003 0.020
DGCNN 71.2 ± 0.2% 81.5 ± 1.0% 0.56 ± 0.004 0.023

MALSTM-FCN 71.5 ± 1.7% 82.1 ± 1.7% 0.54 ± 0.004 0.035

The results are not promising at all. What went wrong? As the
results are really bad, we can not conclude that it was just a problem
of tuning. Probably, there is a bug between the code where we train
and generate results. It can be an explication for the huge difference
between MCC values. We investigate on this.

As a future work, it can be interesting to propose two steps
classifier for this task : First to detect fake and not fake by using [8]
which should give around 92% ROC AUC and then try to make the
distinction between corona and other conspiracy. For the time series
part, we would like to focus on this approach by using different
features in the future.



FakeNews: Corona virus and 5G conspiracy MediaEval’20, December 14-15 2020, Online

REFERENCES
[1] Hunt Allcott and Matthew Gentzkow. 2017. Social Media and Fake

News in the 2016 Election. Journal of Economic Perspectives 31 (May
2017), 211–236. https://doi.org/10.1257/jep.31.2.211

[2] Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda.
2020. A gentle introduction to deep learning for graphs. Neural
Networks 129 (Sept. 2020), 203–221. https://doi.org/10.1016/j.neunet.
2020.06.006

[3] CSIRO’s Data61. 2018. StellarGraph Machine Learning Library. https:
//github.com/stellargraph/stellargraph. (2018).

[4] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Explor-
ing Network Structure, Dynamics, and Function using NetworkX. In
Proceedings of the 7th Python in Science Conference, Gaël Varoquaux,
Travis Vaught, and Jarrod Millman (Eds.). Pasadena, CA USA, 11 – 15.

[5] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term
Memory. Neural Computation 9, 8 (1997), 1735–1780.

[6] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel
Harford. 2019. Multivariate LSTM-FCNs for time series classification.
Neural Networks 116 (Aug 2019), 237–245. https://doi.org/10.1016/j.
neunet.2019.04.014

[7] ThomasN. Kipf andMaxWelling. 2017. Semi-Supervised Classification
with Graph Convolutional Networks. arXiv:1609.02907 [cs, stat] (Feb.
2017). http://arxiv.org/abs/1609.02907 arXiv: 1609.02907.

[8] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and
Michael M. Bronstein. 2019. Fake News Detection on Social Media
using Geometric Deep Learning. arXiv:1902.06673 [cs, stat] (Feb. 2019).
http://arxiv.org/abs/1902.06673 arXiv: 1902.06673.

[9] Konstantin Pogorelov, Daniel Thilo Schroeder, Luk Burchard, Johannes
Moe, Stefan Brenner, Petra Filkukova, and Johannes Langguth. 2020.
FakeNews: Corona Virus and 5G Conspiracy Task at MediaEval 2020.
In MediaEval 2020 Workshop.

[10] Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018. The spread of true
and false news online. Science 359, 6380 (March 2018), 1146–1151.
https://doi.org/10.1126/science.aap9559

[11] Zhiguang Wang, Weizhong Yan, and Tim Oates. 2016. Time Series
Classification from Scratch with Deep Neural Networks: A Strong
Baseline. (2016). arXiv:cs.LG/1611.06455

[12] Sung Whan Yoon, Jun Seo, and Jaekyun Moon. 2019. TapNet: Neural
Network Augmented with Task-Adaptive Projection for Few-Shot
Learning. (2019). arXiv:cs.LG/1905.06549

[13] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018.
An End-to-End Deep Learning Architecture for Graph Classification.
AAAI (2018).

https://doi.org/10.1257/jep.31.2.211
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
https://doi.org/10.1016/j.neunet.2019.04.014
https://doi.org/10.1016/j.neunet.2019.04.014
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1902.06673
https://doi.org/10.1126/science.aap9559
http://arxiv.org/abs/cs.LG/1611.06455
http://arxiv.org/abs/cs.LG/1905.06549

	Abstract
	1 Introduction
	2 Related Work
	3 Approaches
	3.1 GCN
	3.2 DGCNN
	3.3 MALSTM-FCN
	3.4 Input generation

	4 Results and Discussions
	References

