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Automatic Polyp Segmentation Using U-Net-ResNet50
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ABSTRACT

Polyps are the predecessors to colorectal cancer which is considered
as one of the leading causes of cancer-related deaths worldwide.
Colonoscopy is the standard procedure for the identification, lo-
calization, and removal of colorectal polyps. Due to variability in
shape, size, and surrounding tissue similarity, colorectal polyps are
often missed by the clinicians during colonoscopy. With the use of
an automatic, accurate, and fast polyp segmentation method during
the colonoscopy, many colorectal polyps can be easily detected and
removed. The “Medico automatic polyp segmentation challenge”
provides an opportunity to study polyp segmentation and build an
efficient and accurate segmentation algorithm. We use the U-Net
with pre-trained ResNet50 as the encoder for the polyp segmenta-
tion. The model is trained on Kvasir-SEG dataset provided for the
challenge and tested on the organizer’s dataset and achieves a dice
coefficient of 0.8154, Jaccard of 0.7396, recall of 0.8533, precision of
0.8532, accuracy of 0.9506, and F2 score of 0.8272, demonstrating
the generalization ability of our model.

1 INTRODUCTION

Identification and removal of polyps during colonoscopy have be-
come a standard procedure. It is often challenging to detect polyps,
as they are often hard to differentiate from surrounding normal
tissue. These polyps are usually covered with stool, mucosa, and
other materials that can obscure the correct diagnosis. This is espe-
cially true for the small, flat, and sessile polyps that are typically not
visible during colonoscopy. Moreover, this increases the miss-rate
of polyps up-to 25% [8] and increases the risk of colorectal cancer
in the affected patient. An increase in the 1% adenoma detection
rate leads to a 3% decrease in the risk of colorectal cancer [3]. Re-
cently, deep learning techniques have been developed to overcome
these challenges and improve polyp detection accuracy during
colonoscopy. Polyp segmentation based deep learning methods
has been successfully applied for automatic polyp detection in a
real-time.
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The automatic polyp segmentation plays an important role in the
identification and localization of the polyps in the affected regions.
It helps in analyzing the images or even video frames and classify
each pixel into polyp or non-polyp class instances. This allows the
clinician in easy, fast, and more accurate identification of the polyp
in the affected region. The automated polyp segmentation can help
in the development of a Computer-Aided Diagnosis (CADx) system,
which is specially designed for colonoscopy procedures.

The “Medico Automatic Polyp Segmentation Challenge” [6] con-
sists of two tasks. The first task is “Polyp segmentation task” and
the second is “Algorithm efficiency task”. We have submitted our
model in task 1 only.

2 RELATED WORKS

For semantic segmentation task, encoder-decoder networks like
FCN [9], U-Net [10], etc are mostly preferred over other approaches.
U-Net and its variants are used for both natural image segmentation
and biomedical image segmentation. In general, the encoder uses
multiple convolutions to learn and capture the essential semantic
features ranging from low-level to high-level. These upscaled fea-
tures are then concatenated with the features from the encoder
using the skip connections and then followed by convolution layers
to generate the final output in the form of a binary mask.

The encoder acts as a feature extractor, where the decoder uses
features extracted from the input to produce to desired segmenta-
tion mask. The encoder can be replaced by a pre-trained network
such as VGG16 [12], VGG19 [12], etc. These pre-trained networks
are already trained on the ImageNet [11] dataset and have the nec-
essary feature extraction capabilities. Architectures like SegNet [2]
and TernausNet [5] use pre-trained VGG16 and VGG11 respectively
for segmentation task.

With the success of the residual network [4], ResNet50 is one
of the commonly used architecture for any transfer learning task.
The residual network uses two 3 X 3 convolutional layers and an
identity mapping. Each convolution layer is followed by a batch
normalization layer and a Rectified Linear Unit (ReLU) activation
function. The identity mapping is the shortcut connection connect-
ing the input and output of the convolutional layer. The identity
mapping helps in building a deeper neural network by eliminating
the problem of vanishing gradients and exploding gradients.
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Figure 1: The proposed U-Net-ResNet50 architecture

3 APPROACH

Figure 1 shows an overview of the proposed U-Net-ResNet50 archi-
tecture. It is an encoder-decoder based architecture, where ResNet50
trained on ImageNet dataset [11] is used . The use of a pre-trained
encoder helps the model to converge easily. The input image is
fed into the pre-trained ResNet50 encoder, consisting of a series of
residual blocks as their main component. These residual blocks help
the encoder extract the important features from the input image,
which are then passed to the decoder. The decoder starts a trans-
pose convolution that upscales the incoming feature maps into the
desired shape. Next, these upscaled feature maps are concatenated
with the specific shape feature maps from the pre-trained encoder
via skip connections. These skip connections help the model to
get all the low-level semantic information from the encoder, which
allows the decoder to generate the desired feature maps. After that,
it is followed by the two 3 X 3 convolution layer, where each layer is
followed by a batch normalization layer and a ReLU non-linearity.
The last decoder block’s output is passed to a 1X 1 convolution layer,
which is further passed to a sigmoid activation function, finally
generating the desired binary mask.

The FastAlI (version 2.0) library [1] is used to train and evaluate
our model. We have employed resizing, flipping, rotating, zoom-
ing, lightning, warping, and normalizing intensity based on the
ImageNet dataset to augment the input images for training. The
model uses Adam optimizer with an initial learning rate of 1072,
and cross-entropy loss as its loss function. We have employed the
one-cycle policy where the learning rate changes during training
and achieves super-convergence [13]. We have run just 50 epochs
for training, and the model has converged.

4 RESULTS AND ANALYSIS

The Medico Automatic Polyp Segmentation challenge [6] provides
an opportunity to study the potential and challenges of automated
polyp segmentation. This study aims at building a model that per-
forms well on the organizer’s dataset while training on a separate
Kvasir-SEG dataset [7].

Table 1 shows the overall results of the U-Net-ResNet50 architec-
ture on the Kvasir-SEG test dataset and the organizer’s test dataset
provided for the final evaluation of the model. For the evaluation
of the model, the Jaccard index, Serensen-Dice coefficient (DSC),
recall, precision (Prec.), accuracy (Acc.), and the F2 are used as the
evaluation metrics. Our trained U-Net-ResNet50 model achieved

Table 1: Quantitative Results on Kvasir-SEG and Test Set
(Challenge) Dataset for Task 1.

Dataset  |Jaccard | DSC |Recall|Prec. |Acc. |F2

Kvasir-SEG [0.7871 [0.8926|0.8433 |0.9207 |0.9639|0.8585

Test Set 0.7396 |0.8154|0.8533 |0.8532|0.9506|0.8272

a dice coefficient of 0.8154, Jaccard of 0.7396, recall of 0.8533, pre-
cision of 0.8532, accuracy of 0.9506 and F2 score of 0.827 on the
organiser’s test dataset which can be seen from the table 1. These
results demonstrate the generalization ability of our model. More-
over Table 1 also shows that the recall value of the organizer’s test
dataset is 1.00% higher than the Kvasir-SEG test dataset. This shows
that the model is not overfitting.

5 CONCLUSION & FUTURE WORK

With our U-Net-ResNet50, we achieved competitive performance on
the organizer’s dataset with a dice coefficient of 0.8154. By replacing
the U-Net encoder with a pre-trained ResNet50 and employing a
one-cycle policy during training, we are able to converge the model
in a short time. Thus, it helps in reducing the training time as
the encoder weights are not initialized from scratch. This is an
important step towards faster convergence, which would be useful
when the availability of high-performance computing resources is
limited.

In the future, we would like to experiment with more than one
pre-trained encoder by fusing their feature maps and using them
for training our model.
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