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Abstract  

Forecasting hospitalization census for the novel COVID-19 
virus is a challenging task for numerous reasons including 
many unknowns, limited historical data, and other issues re-
lated to model misspecification. Most modeling techniques 
aimed at predicting hospitalization census for respiratory ep-
idemics often create contradictory projections from a wide 
variety of scenarios. This often creates massive confidence 
intervals for projections as most models are based on manu-
ally adjusted assumptions which ultimately provide incon-
sistent, unreliable results. This case-study introduces a ma-
chine learning approach that helps overcome limited histori-
cal data while adjusting for model misspecification and cre-
ating consistent, easily understood results. This model has 
been deployed and automated with daily updates within a 
large health system for executive use and is reliably forecast-
ing a one-month projection within an acceptable margin of 
error as determined by executive leadership. 

 COVID-19 Background  

COVID-19 is a highly infectious novel disease that was de-

clared a pandemic by the World Health Organization on 

March 11th, 2020 (Meehan et al, 2020; Baloch, 2020; Roda 

et al 2020). Modeling for the novel severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) which causes the 

coronavirus disease (COVID-19) has challenged data scien-

tists and statisticians across the world for numerous reasons, 

to include but not limited to a novel disease with many un-

knowns, limited historical data, and policy shifts affecting 

the trajectory of the disease (Roda et al, 2020; Wang, 2020). 

Accurately predicting an outcome of COVID-19 positive 
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patient hospitalization census has become an extreme task 

in this regard as rapidly changing policy enactments, shifts 

in human behavior, and other events such as masking ordi-

nances and masking compliance strongly influence an out-

come such as hospitalization census (Roda et al, 2020; Eik-

enberry, 2020). A strong modeling system that accounts for 

such factors is needed to inform future policies such as or-

ganizational decision making at an executive level 

(McBryde, 2020). 

Early indications of COVID-19 hospitalization census are 

known to display cyclic tendencies due to influxes and out-

flows of patients over an extended time-period (Roda et al, 

2020; Fiore et al, 2020). Traditional epidemiologic forecasts 

used to study disease behavior, such as basic SEIR (Suscep-

tible Exposed Infectious Recovered) models, generally do 

not account for these cyclic tendencies and assume a 

smooth, normally distributed projection generally for a large 

scale population which creates discrepancies for localized 

clinical projections such as a singular hospital (Anirudh, 

2020; Chen et al, 2020). If a traditional model is aimed at 

adjusting for an influx or outflow of patients for a particular 

population, the modeler can manually adjust certain as-

sumptions, such as transmissibility, susceptible patients, and 

hospitalization rate within the model but such assumptions 

are highly prone to inaccuracies in future projections (Eksin, 

Paarporn, Weitz, 2019; Huppert and Katrield. 2013). This 

not only creates inaccuracies in the distribution of patients 

over time but competing assumptions within various models 

often contradict each other resulting in unknown accuracy 

across modeling techniques (Wang et al, 2016). 

 



 Model Selection 

Direct Multi-Step Forecasting with Multiple Time Series is 

a method that directly projects a continuous outcome spe-

cific to each time-step (Redell, 2020; Guillaume and Chevil-

lon, 2005; Taieb and Atiya, 2016). Other forecasting meth-

odologies generally predict in a recursive nature to follow 

the trajectory of a projection (Guillaume and Chevillon, 

2005). Direct Forecasting specifies a target date and uses 

lagged variables and dynamic predictive features across 

forecasting horizons to predict certain outcomes at a desig-

nated point in time (Redell, 2020). Strengths to this forecast-

ing methodology include robustness to policy enactments, 

the ability to train on less data eliminating the cold-start 

problem, addresses a concept called model misspecification 

within a reasonable time-period and provides consistent 

model results (Redell, 2020; Guillaume and Chevillon, 

2005; Chen et al, 2020). 

XGBoost is an ensemble learning method that follows a 

gradient boosted tree format and is frequently used in other 

healthcare machine learning models because of its perfor-

mance (Chen et al, 2020; Xu et al, 2019; Liu et al, 2018). 

This algorithm is run for a continuous outcome (XGBoost 

for regression) and is particularly useful in analyzing varia-

ble importance eliminating the “black-box” issue common 

among other machine learning techniques (Chen and Carlos, 

2016). 

Sample and Data Sources 

The dataset used is an automated blending of two data 

sources. The first is a dataset updated daily from an internal 

data management team that provides a refreshed dataset on 

hospitalization census, including admissions and discharges 

from prior mid-night census. The patient volumes for this 

model are refreshed daily and the groupings for hospitaliza-

tion census include all COVID-19 positive patients within 

four separate hospitals and intensive care unit census split 

between two regions (Two intensive care units for one re-

gion and four for the other region). 

An additional data source is collected from the Johns 

Hopkins University Center for Systems Science and Engi-

neering using the R package covid19.analytics. This dataset 

measures the total of new positive COVID-19 cases as re-

ported by the State of Idaho (Ponce, 2020). New positive 

COVID-19 cases are defined by county and allocated to rel-

evant hospitals within the determined service region of each 

hospital (i.e. if a county is located within a hospitals service 

region, the positive cases from that county as reported by the 

covid19.analytics package will be attributed to that particu-

lar hospital). State reporting was ultimately chosen to depict 

new cases of COVID-19 as internal data sources for testing 

remain unstandardized in terms of shifting market shares for 

testing across competing health systems. Counties and 

hospital locations are specifically withheld from this report 

to ensure patient privacy. 

Additionally, Idaho State Reopening Phases (i.e. man-

dates that require certain businesses such as bars and restau-

rant’s to close or remain partially open for a specific period 

of time) were incorporated as well as holiday weekends and 

both were included as binary dynamic features (State of 

Idaho, 2020). Day numbers and week numbers were also in-

cluded as dynamic features. 

The final dataset ultimately includes two separate types 

of features or predictor variables. The continuous lagged 

features are total hospitalization census, total discharges, to-

tal admissions, and total positive cases. The dynamic fea-

tures included are Idaho State Reopening Phases, day num-

ber, week number, and holiday weekends. 

HIPAA Compliance  

All patient data has been aggregated and anonymously dis-

played within de-identified hospitals. No individual patient 

data was used for analysis and the project followed the Pri-

vacy Rule as stated by the Health Insurance Portability and 

Accountability Act for de-identifying all 18 elements of 

identity (US Department of Health and Human Services, 

2020). In addition, no demographics were reported to ensure 

patient privacy. 

Analyses 

R was used for all analyses (R Core Team, 2013). Direct 

Multi-Step Forecasting with Multiple Time Series using the 

Machine Learning Algorithm XGBoost was employed as 

the model to forecast hospitalization mid-night census and 

intensive care unit mid-night census. The R package used 

for analysis was forecastML (Redell, 2020). The parame-

ters used for the two outcomes of hospitalization census and 

intensive care unit census are as follows; Lookback: 140 

days for both Hospital and ICU, Horizons: 1, 14, and 30-

days for both Hospital and ICU, Frequency: 1-day for both 

Hospital and ICU. 

XGBoost was employed to project the value per time-

step. Regression for squared error was chosen as the objec-

tive. Default settings within the XGBoost parameters and 

function were employed. The validation metric used is 

Mean Absolute Error. Prediction confidence intervals of +/- 

2 were used. 

Validation Process 

The validation process follows a nested cross-validation 

setup (Redell, 2020; Bergmeir, Hyndman, Koo, 2017). Val-

idation is examined by extracting validation windows and 

analyzes model performance with those validation windows 



across selected horizons. The amount of time (in this report, 

days) within the validation window ultimately serves as the 

testing set for model performance. So, if a validation win-

dow of 9 days is selected, 9 projections will be created for 

each of those days within the validation window. The differ-

ences between the projection and actual will serve as the val-

idation metric and this report has selected mean absolute er-

ror to represent the metric for model performance. This re-

port evaluates the validation window selected for three sep-

arate horizons (1-day, 14-day, and 30-day) and combines the 

results from all validation windows and horizons to provide 

a global mean absolute error. The report also examines val-

idation windows across time, separated by model horizons 

to depict accuracy of the model horizon performance 

throughout time. 

Results 

The global mean absolute error (GMAE) for both models 

(Hospitalization and Intensive Care Units) at the window 

and skip ratio of 9-day windows and 21-day skips was used 

to assess model performance. Validation was also analyzed 

over-time via mean absolute error (MAE) to assess the ac-

curacy of the model’s performance at the same 9-day win-

dow and 21-day skip ratio. 

 

Hospital Global Mean Absolute Error 

Hospital 1 1.43 

Hospital 2 2.37 

Hospital 3 2.00 

Hospital 4 1.22 

  

ICU 1 1.21 

ICU 2 1.08 

 

Table 1: Global Mean Absolute Error across Hospitals and Inten-

sive Care Units (ICU) 

Global Mean Absolute Error 

The forecasting GMAE stayed consistent across Hospitals 

and Intensive Care Units with highest GMAE found at 2.37 

which is displayed in Table 1. Other validation window and 

skip ratios were evaluated and the highest GMAE found was 

at a 30-day window and 30-skip with a value of 3.55. The 

ranges for the 30-day window and 30-day skip were 1.26 – 

3.55 across both the hospitalization and intensive care unit 

models. 

 

Figure 1: Forecasting Error Across Validation Windows for a 9-

Day Window and 21-Day Skip for Hospitalizations 

 

Figure 2: Forecasting Error Across Validation Windows for a 9-

Day Window and 21-Day Skip for Intensive Care Units (ICU) 

Mean Absolute Error Across Windows and Horizons 

The forecasting MAE displayed in Figures 1 and 2 display 

the fluctuations across forecasting windows which remain 

consistent across time with a maximum MAE of 5.96 for 

Hospitalizations and 6.17 for ICU. The other validation ratio 

of 30-day windows and 30-day skips found a maximum 

MAE of 9.61 with a range of 0.63 – 9.61 for Hospitaliza-

tions. The same 30-day window and 30-day skip for ICU’s 

found a maximum MAE of 5.38 with a range of 0.90 – 5.38. 

Variable Importance Assessment 

Variable importance was analyzed and assessed daily. Most 

variable importance gain was identified in total hospitaliza-

tions lag variables, discharge and admissions lagged varia-

bles and positive testing lagged variables. The consensus of 

variable importance indicates the model was dependent on 

which model horizon the model was assessing. For instance, 

the one-day projection was relatively dependent on the pre-

vious weeks’ total hospitalizations, admissions, discharges, 

and positive testing. However, a thirty-day forecast would 

utilize much different variables that were dependent on 

longer term historical data. Additionally, Idaho State Phases 

were rarely identified in the model importance. However, a 



holiday weekend would indicate a high value in gain if a 

holiday were within a horizon. 

Discussion 

This paper describes a novel approach toward predicting 

COVID-19 positive patient hospitalization census that has 

not been seen in recent literature as of current date. The 

model is currently in use and projecting within a reasonable 

mean absolute error and most training validations were per-

formed with less than 6-months’ worth of historical data. 

The value of this predictive model also includes the intro-

duction of future policy decisions of which can be auto-

mated to be included in future iterations of the model (Re-

dell, 2020). 

The models forecast also adjusts for the forecasting hori-

zons for the final projection delivered to executive leaders. 

This ultimately lowers error across forecasting horizons as 

the model uses the one-day forecast for the first prediction 

in the final projection, the fourteen-day forecast for days 

2:14, and the thirty-day forecast for days 15:30 (Selim et al, 

2020; Taieb et al, 2020). After evaluating the results of the 

forecasting error validation windows, this will start at gen-

erally the strongest model projection and lead into slightly 

weaker forecasting projections. 

Variable importance depicted within the model help illus-

trate why the model is predicting what it is predicting and 

uncovering the “black-box” of the algorithm. Understanding 

variable importance often allows a decision-maker to under-

stand potential interventions that could limit a negative out-

come (i.e. if a decision-maker is able to understand a future 

negative-outcome relationship with a modifiable predictor 

variable, the decision-maker may be able to adjust that pre-

dictor variable to establish a potential positive outcome). 

Unfortunately, most lagged features within this model will 

not be able to be influenced as the occurrence has already 

happened. However, a dynamic feature such as State Reo-

pening Phases may be altered if a decision-maker chooses 

to assess and enact potential interventions. 

Limitations 

This model is still evolving and being tuned during a highly 

unpredictable time-period. This methodology can also be 

prone to issues described as a broken-curve and is slightly 

prone to overfitting historical data (Selim et al, 2020). 

At this point, the model is strongly recommended to as-

sess the trajectory of hospitalization census and not be used 

for individual day decision-making. The current models’ 

projection, in comparison to actuals, tends to project in-

fluxes and outflows consistently with actual data. However, 

the specific date of the influx or outflow tends to occur 

within one to three days of the actual result. An actual influx 

of hospitalization census may occur on a Wednesday, but 

the projection may predict the influx would happen on the 

prior Tuesday or the following Friday. 

Strengths 

The model is currently validated within reasonable margin 

of error as determined by executive leadership for business 

decision making. Given most time-series models require an 

abundant data source with multiple years to project future 

outcomes, this model can assess a future projection with a 

limited dataset (Redell, 2020). The addition of future poli-

cies may also be incorporated to help predict future interac-

tions within the model (Redell, 2020). The model is also in-

tended to gain strength in predictions as more data is incor-

porated into the models. Added robustness towards model 

misspecification is an additional strength within direct fore-

casting (Marcellino, Stock, Watson. 2006). Other strengths 

include that the model is currently refreshed daily to provide 

more accurate results as the future dates occur. A robust in-

ternal dataset is also an asset as most organizations outside 

of health systems are not granted access to live data sources 

with a large quantity of potential predictive features. Ulti-

mately, the model can help determine future trends to assist 

executive leadership with resource utilization across a 

health system. 
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