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Abstract
Over the past several years, across the globe, there has been
an increase in people seeking care in emergency departments
(EDs). ED resources, including nurse staffing, are strained
by such increases in patient volume. Accurate forecasting of
incoming patient volume in emergency departments (ED) is
crucial for efficient utilization and allocation of ED resources.
Working with a suburban ED in the Pacific Northwest, we de-
veloped a tool powered by machine learning models, to fore-
cast ED arrivals and ED patient volume to assist end-users,
such as ED nurses, in resource allocation. In this paper, we
discuss the results from our predictive models, the challenges,
and the learnings from users’ experiences with the tool in ac-
tive clinical deployment in a real world setting.

Introduction
Emergency departments (EDs) are a critical component of
the healthcare infrastructure and ED crowding is a global
problem. In 2016 there were over 140 million ED visits
in the US (NCHS 2009). The number of ED patients is
growing and, according to US data, this increase has out-
paced population growth for the last 20 years (Weiss et al.
2006). As a result, EDs are increasingly crowded (Mc-
Carthy et al. 2008) and ED overcrowding has been linked
to decreased quality of care (Schull et al. 2003) (Hwang
et al. 2006), increased costs (Bayley et al. 2005), and in-
creased patient dissatisfaction (Jenkins et al. 1998). Using
machine learning models to predict ED load could amelio-
rate the adverse effects of crowding, and multiple strategies
have been proposed, including forecasting future crowding
(Hoot et al. 2009), predicting the likelihood of inpatient ad-
mission (Peck et al. 2012), and predicting the likelihood that
a patient will leave the ED without being seen (Pham et al.
2009). These solutions use a variety of administrative and
patient level data to attempt to mitigate common ED bot-
tlenecks, bottlenecks that uncorrected may lead to delays,
inefficiencies, and even deaths (Carter, Pouch, and Larson
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Figure 1: Overview of set of prediction models that can help
optimize Emergency Department efficiency.

2014). Multiple factors influence ED crowding including the
number of new patients coming to the ED (arrivals), how
severely sick or injured patients are (acuity), and the total
number of patients in the ED (census). Each of these factors
have both stochastic and deterministic components (Jones
et al. 2009) (Jones et al. 2008) and are influenced by both ex-
ogenous (e.g., vehicle crashes) and endogenous factors (e.g.,
hospital processes). In order to optimize ED flow, it is there-
fore necessary to integrate multiple predictions as shown in
Figure 1.

If ED load could be accurately predicted, staffing could
be adjusted to optimize patient care. The ability to predict
the number of patients seeking ED care on a given day is
essential to optimizing nurse staffing (Batal et al. 2001).
Currently, ED nurse staffing is assigned using heuristics
and anecdotes such as higher census on Mondays, on days
following federal holidays, and with other factors such as
changes in weather, traffic, and local sporting events. Inac-
curate prediction can lead to inappropriate nurse to patient
ratios which can lead to dangerous under-staffing, poor clin-
ical outcomes, nursing dissatisfaction, and burnout (Aiken
et al. 2002). Matching staffing levels to the variation in daily
patient demand can improve the quality of care and lead to
cost savings.



Related Work
In this paper, we present our work with a busy suburban
ED in the Pacific Northwest that services a rapidly grow-
ing metropolitan area. We describe the development of novel
models to predict ED arrivals and census, the design of
an easily consumable dashboard integrated into the clinical
workflow, and deployment of the dashboard using a live data
feed. The current work also addresses a gap in the literature
where there is a dearth of published work related to ED op-
timization in a real world setting and in production.

The availability of accessible data and computational re-
sources has enabled the application of machine learning
(ML) to healthcare at an unprecedented scale (Krumholz
2014). While several research groups have developed ML
predictions on retrospective and static ED data, operational-
ized ML solutions in the ED are rare. Chase et al. developed
a novel indicator of a busy ED: a care utilization ratio (Chase
et al. 2012). The authors report that the prediction of this ra-
tio, which incorporates new ED arrivals, number of patients
triaged, and physician capacity, provides a robust indicator
of ED crowding. McCarthy et al. utilized a Poisson regres-
sion model to predict demand for ED services (McCarthy
et al. 2008). They determined that after accounting for tem-
poral, weather, and patient-related factors (hour of day is
most important), ED arrivals during one hour had little to
no association with the number of ED arrivals the following
hour. Jones et al. (Jones et al. 2008) explored seasonal au-
toregressive integrated moving average (SARIMA), time se-
ries regression, exponential smoothing, and artificial neural
network models to forecast daily patient volumes and also
identified seasonal and weekly patterns in ED utilization.

ED Predictions
The goal of our work was to optimize ED operations by ac-
curately predicting ED arrivals and ED patient census to fa-
cilitate staffing optimization to better manage the influxes
and patterns of ED patients to provide safe and timely care.
Here we describe our approach to building the prediction
models and we describe the metrics we used to evaluate the
model accuracy.

Problem Description
There are two distinct yet related ED load optimization prob-
lems that we address in this work, as described below:

ED Census ED census is defined as the total number of
patients in the ED at a specified time. ED census includes
patients in the waiting room, in triage, those receiving care,
and those awaiting ED disposition: hospital admission, dis-
charge, or transfer. ED census is a ”snapshot” of ED utiliza-
tion and includes elements related to ED arrivals as well as
ED throughput. Predicting ED census can serve to inform
both short-term (minutes to hours) operations, such as re-
assigning staff or diverting ambulance arrivals and longer-
term (hours or longer) administrative decisions, such as call-
ing in additional staff or sending staff members home early.
We formulated this problem as a prediction of ED census
at t + 2 hours, t + 4 hours, and t + 8 hours, where t
is the prediction time. In production, these predictions are

Table 1: ED Arrivals and Census Features. The prior census
and slope Census are used only in census prediction model
and prior arrival and slope arrival only in arrivals model.

Feature Description
Prior Census/Arrival 4 features; census/arrival at 4 time

events (at 15 min intervals) prior to pre-
diction time, i.e. 15 min, 30 min, 45
min, 60 min.

Month of year January - December (12 features)
Hour of day Hour of the day (24 features)
Day of Week Day of the week (7 features)

Quarter of Year Season: Q1 Winter, Q2 Spring, Q3
Summer, Q4 Autumn

Weekend Flag Flag if prediction on Saturday or Sun-
day

Evening Flag Flag if prediction time between 20:00
and 08:00

Slope census/arrivals Slope of change from prior census or ar-
rival

made every 15 minutes, resulting in near real-time predic-
tions. For instance, at 3:15 PM (t), we predict census for
5:15 PM (t + 2 hours), 7:15 PM (t + 4 hours), and 11:15
PM (t + 8 hours). Then at 3:30 PM (t), we predict 5:30
PM (t + 2 hours), 7:30 PM (t + 4 hours), and 11:30 PM
(t+ 8 hours).

ED Arrivals and Acuity ED arrivals reflect the number of
individual patients who are arriving at the ED over a period
of time. Arrivals can be described by the acuity level of the
individual patient, an indicator of illness or injury severity
assessed by nursing staff at the time of patient triage (Gilboy
et al. 2012). Predictions of patient volume by acuity level
can further inform staffing needs - higher acuity patients
tend to have greater intensity of staff and resource needs.
Similar to the Census prediction, we framed the Arrivals
prediction by acuity for 2, 4, and 8 hour forecasting. To ac-
commodate different patterns in the acuity of patients, we
built models for each individual acuity level.

Methods
For both Census and Arrivals we include temporal features
such as hour of day, day of week, month of year, and quar-
ter of year. To include the unique variations in census and
arrival patterns in the evening compared to the morning as
well as weekend versus weekday patterns, we included cor-
responding binary variables.

While ED census or ED arrival may be independent from
one hour to the next, we use the current ED census trend
to inform future ED census. To include signals for the cur-
rent census trends in ED in our predictive models, we de-
termine the slope from the census values in the previous 1
hour for every 15 minute intervals. In addition, we weighted
values from these 15 minute intervals to that more recent
values had higher weights. The census at t − 15 minutes,
t − 30 minutes, t − 45 minutes, and t − 60 minutes
is weighted with 2, 0.5, 0.25, and 0.05 respectively. The
weights were chosen empirically based on the performance
metrics of the model. Similar to Census, the arrivals for the



Table 2: Distribution of ED Encounters by Acuity

Acuity ESI Number of Encounters
Emergent 1 1,435

2 46,436
Urgent 3 116,808
Non-Urgent 4 33,023

5 2,315
Total 199,957

Arrival prediction are weighted in the same way. The final
set of features is shown in Table 1.

Dataset Description
The data for the experiments came from a suburban level
three trauma center at a hospital in the Pacific Northwest
with > 60, 000 annual ED visits. The ED comprises multi-
ple treatment spaces including 40 acute treatment rooms and
4 trauma rooms for the resuscitation of critically ill patients.
Individuals are registered at the time of entry to the ED
and all registered ED patients were included in this analy-
sis. ED encounters occurring between January 2014 through
January 2018 were included in the experiments. The dataset
included electronic health record (EHR) data elements such
as time, date, location, chief complaint, acuity score, vital
signs, and others. This included 205, 929 ED encounters, of
which 199, 957 encounters documented patient acuity. ESI
is a categorical variable representing patient acuity (based
on vital signs and symptoms) where ESI 1 connotes highest
urgency and ESI 5 the lowest urgency (Gilboy et al. 2012).
We grouped these into three categories reflecting emergent
(ESI 1 or 2), urgent (ESI 3), and non urgent (ESI 4 or 5).
The distribution of of the encounters split by ESI groups is
shown in Table 2.

Models
Multiple regression models were evaluated for both Census
and Arrivals predictions. We choose to use a Generalized
Linear Model with Poisson Regression (GLM) for its sim-
plicity and capability to model count data (Gardner, Mul-
vey, and Shaw 1995). We included regularization variants
of GLM that include Lasso, Ridge, and Elastic Net for vali-
dation. We also included linear Gradient Boosting Machine
(GBM) due to its robustness to missing data and predictive
power (Friedman 2001). We used the average arrivals and
census values at that same time point from the prior two
years as our baseline. We used scikit-learn package avail-
able in Python 3.6 to implement all models.

Evaluation metrics
We evaluate the performance of our models using root mean
squared error (RMSE) and mean absolute error (MAE) (Ver-
biest, Vermeulen, and Teredesai 2014) which are suitable
metrics for regression. However, the real utility of ED load
prediction is in staffing optimization. Most common mid-
size US ED departments have an ED patient to nurse ra-
tio of 4:1. Based on this, we devised an additional metric:
we determined the percentage of times the model prediction

Figure 2: Schematic showing the data sources, models, and
resulting User and Model Health Dashboards. The actual
dashboard image is hidden due to privacy and data compli-
ance.

is within a threshold of ±4 (Absolute Error <= 4). Fur-
thermore, we also calculate the percentage of times that the
model is accurate to within 70% of the actual value (Accu-
racy>70%). These additional metrics frame the models per-
formances in terms of their effects on user workflows and
provide a simple understanding of the model performance
under the system constraints while ensuring interpretability
to end users.

Furthermore, combining these models with a model man-
agement process to detect changes in model performance or
shifts in underlying patient distributions, prevails as novel
work. Model management is an iterative process that in-
cludes monitoring and evaluating model performance to de-
tect subtle (or unsubtle) changes in the underlying distri-
bution of the data, permitting investigation and, if neces-
sary, model re-training. We have implemented a workflow
for automatic model monitoring; the overview of this is rep-
resented in Figure 2. As part of this workflow we created a
user friendly dashboard to track the model performance and
distributions, an example visual can be seen in Figure 3.

Results
Data from January 2014 to October 2017 was used to train
the models and data from November 2017 to January 2018
was used to test the models. The performance metrics of the
census models for 2 hour prediction are shown in Table 4.
The Gradient Boosting Method (GBM) performed the bet-
ter among the set for all metrics which we believe is due to
its robustness to the sparsity in the data. The 4 and 8 hours
GBM census model MAEs are 4.0739 and 4.2960 respec-
tively. The metric (Accuracy > 70%) shows that GBM is
accurate 81.52% of times for a prediction within 70% of ac-
tual census. And, the GBM is accurate 72.90% time for a
prediction within a value of ±4 of actual census.

For arrival models, we built 9 models, one for each acuity
level and for each 2, 4 and 8 hours prediction. We observed
that the gradient boosting model performed better than other
models and the baseline for Emergent acuity encounters,
where as for Urgent, Non-urgent acuity GLM models per-
formed better. The results are shown in Table 3. The abso-



Table 3: Results of 2, 4 and 8 hour Arrival prediction for GLM variants, GBM, and Baseline model for Emergent, Urgent and
Non-urgent patients

Acuity Time window Model RMSE MAE Absolute Error<4 Accuracy >70%
17*Emergent 6*2 hour GLM 1.9747 1.4267 96.33 32.80

GLM-Lasso 2.1492 1.5400 94.96 31.96
GLM-Ridge 2.0039 1.4451 96.05 32.45
GLM-Elastic Net 2.1494 1.5396 95.08 31.91
GBM 1.9768 1.4283 96.38 32.97
Baseline 2.0278 1.5174 96.59 21.63

6*4 hour GLM 1.9749 1.4272 NA NA
GLM-Lasso 2.1913 1.5642 NA NA
GLM-Ridge 2.0318 1.4615 NA NA
GLM-Elastic Net 2.1700 1.5467 NA NA
GBM 1.9786 1.4276 NA NA

5*8 hour GLM 2.9998 2.1928 NA NA
GLM-Lasso 3.5831 2.6451 NA NA
GLM-Ridge 3.1154 2.2680 NA NA
GLM-Elastic Net 3.4307 2.5060 NA NA
GBM 3.0391 2.2217 NA NA

17*Urgent 6*2 hour GLM 1.5022 1.1088 NA NA
GLM-Lasso 1.5837 1.1576 NA NA
GLM-Ridge 1.5116 1.1168 NA NA
GLM-Elastic Net 1.5630 1.1451 NA NA
GBM 2.4042 1.6891 NA NA

6*4 hour GLM 1.5010 1.1082 NA NA
GLM-Lasso 1.5883 1.1511 NA NA
GLM-Ridge 1.5065 1.1102 NA NA
GLM-Elastic Net 1.5514 1.1311 NA NA
GBM 2.4066 1.6914 NA NA

5*8 hour GLM 2.1792 1.6305 NA NA
GLM-Lasso 2.4764 1.8841 NA NA
GLM-Ridge 2.2214 1.6917 NA NA
GLM-Elastic Net 2.3984 1.8109 NA NA
GBM 3.9960 2.8792 NA NA

17*Non-Urgent 6*2 hour GLM 2.5903 2.0017 NA NA
GLM-Lasso 2.6859 2.0874 NA NA
GLM-Ridge 2.5911 1.9996 NA NA
GLM-Elastic Net 2.6572 2.0412 NA NA
GBM 4.0945 3.5052 NA NA

6*4 hour GLM 2.5987 2.0069 NA NA
GLM-Lasso 2.7321 2.0956 NA NA
GLM-Ridge 2.5989 2.0038 NA NA
GLM-Elastic Net 2.7022 2.0918 NA NA
GBM 4.1064 3.5214 NA NA

5*8 hour GLM 3.7944 2.9291 NA NA
GLM-Lasso 4.2303 3.2661 NA NA
GLM-Ridge 3.8033 2.9463 NA NA
GLM-Elastic Net 4.3284 3.3386 NA NA
GBM 7.6992 6.8340 NA NA



Figure 3: Monitoring model performance in deployment -
Example of predicted vs actual census for the 2 hour census
prediction model over the course of one day

lute error and accuracy were only available for a subset of
models. We observe that the MAE and RMSE for all models
across different levels of acuity is similar if we consider 2
hour and 4 hour windows. However, the performance goes
down if we consider 8 hour windows. This is not unexpected
since trends can greatly vary across longer time spans e.g.,
compare ED trends at 2 am vs. 10 am.

ED Experience
A key differentiator of the work that we present here is that
our prediction models were fully operationalized into the
clinical workflow, that of the ED charge nurse. Through col-
laborative design and planning sessions with ED nurses and
other health system stakeholders, we developed an ED dash-
board to surface the results of our predictions. Prediction
based tools are often beset by difficulties in end-user un-
derstanding of probability based results (Jeffery et al. 2017).
Part of the solution to this problem is the early incorporation
of end-user feedback and open discussions around tool util-
ity.
Our dashboard was deployed for 6 months as part of pilot
in a large suburban ED. As part of this pilot, data quality
was monitored continuously and multiple ML models were
scored at 15 minute intervals. End-user training was con-
ducted during the pilot period. During this period charge
nurses completed forms at the conclusion of each shift doc-
umenting their use of the dashboard and any actions the
dashboard prompted (such as calling in additional staff for
projected high load or sending staff home early for pro-
jected low load). In addition to the potential impact on nurse
staffing, accurately forecasting ED arrivals and census may
optimize care delivery in other ways - such as reducing wait-
ing times, ED length of stay, and rates of patients leaving
without being seen. These additional key performance indi-
cators (KPIs) were also be evaluated to determine the clini-
cal utility of the deployed predictions. The iterative nature of
this approach speaks to the engagement needs of the clinical
end-users and the imperative of operationalizing machine
learning in healthcare. While accurate predictions are key to
implementation success and end-user adoption, simple met-
rics such as prevalence of accuracy above a threshold (Accu-
racy > 70%) will help health system stakeholders evaluate

the impact and maintenance cost over a period of time.

Discussion
Our work demonstrates that subtle patterns in exogenous
and endogenous variability in patient flow can be utilized
to predict, with high accuracy, ED patient arrivals and cen-
sus. Deployment of ML-based predictive models into a com-
plex clinical workflow is challenging. However, predicting
ED census is an ideal ML healthcare problem to study for
several reasons. First, predicting ED census every 15 min-
utes across 12 different models allows for 1, 152 predictions
daily. Each prediction is clearly falsifiable with a measurable
outcome (the actual number of arrivals and patient census),
and the follow-up interval is short (e.g., one must only wait 8
hours to determine the accuracy of all predictions). Second,
many healthcare ML models are degraded by data censoring;
for example, when predicting 30-day hospital readmissions,
patients may avoid readmission, they may be readmitted at
another facility. Additionally, according to the work of Jef-
fery and colleagues, prediction based tools are most useful
when prompt decision and action are warranted by the end-
users (Jeffery et al. 2017), however in some cases, such as
predicting hospital readmissions, the action of the clinician
can alter the outcome, thus making the prediction appear er-
roneous. In predicting ED load, there are no actions that the
users can take (other than the ED going on diversion status,
which is done only seldom) that will alter the number of ar-
rivals or census. The large number of predictions, the short
follow-up interval, and the availability of ’perfect informa-
tion’ about outcomes (akin to ’perfect information’ games
like chess) makes ED load prediction an ideal place to opti-
mize model management processes.

We are continuing to improve the performance and clin-
ical utility of these models by integrating additional data
sources into our predictions. These sources can include
events or include: local weather data, local sporting events,
local traffic, local emergency medical services (EMS) activ-
ity, and Google Trends searches. We plan to further improve
this solution by providing interpretability for the predictions
to help ED staff make informed decisions. (Ahmad, Eckert,
and Teredesai 2018)
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