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Abstract

UNICEF and Development Seed are working to leverage
machine learning, high-resolution imagery, and inexpensive
cloud computing to create a comprehensive map of school at
the global scale. This paper details a case study using satellite
imagery to detect previously un-mapped schools throughout
parts of South America, Africa, and South East Asia in part-
nership with UNICEF Project Connect. This paper focuses
on results of school detection models from South America
and the Caribbean, but work is in progress extending these
models for school detection in Africa and South East Asia.
This paper illustrates that a combination of machine learning
with satellite imagery for school detection, and humans in the
loop validation process can be effective to discover and map
schools. After training the South American and Caribbean
school model, inference yielded 73,000 predicted school tiles
which the Development Seed Data Team validated. From
those 73,000 tiles, almost 11,000 schools were added to the
map in Colombia and the Caribbean islands, of which approx-
imately 7,000 were unmapped schools. Accurate data about
school locations is critical to provide quality education.

Introduction
Development Seed is pleased to present a paper detailing
a case study/deployed project about using satellite imagery
to detect previously unmapped schools throughout parts of
South America, Africa, and Central Asia in partnership with
UNICEF Project Connect. This paper focuses on results
of school detection models from South America and the
Caribbean, but we are working on extending these models
for school detection in Africa and South East Asia.

Accurate data about school locations is critical to pro-
vide quality education and promote lifelong learning, listed
as UN sustainable development goal 4 (SDG4), to ensure
equal access to opportunity (SDG10) and eventually, to re-
duce poverty (SDG1) (UN 2020). However, in many coun-
tries educational facilities’ records are often inaccurate, in-
complete or non-existent. Understanding the location of
schools can help governments and international organiza-
tions gain critical insights around the needs of vulnera-
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ble populations, and better prepare and respond to exoge-
nous shocks such as disease outbreaks or natural disasters
(UNICEF 2020).Unfortunately, some national governments
still don’t know where all the schools in their country are.
Crowdsourcing can be used as an alternative for these cases:
e.g. through OpenStreetMap (OpenStreetMap 2020), vol-
unteers can map schools at their crowdsourcing platform.
These kinds of maps are hard to verify and keep up-to-date,
leading to inaccurate, outdated information. UNICEF and
Development Seed are working to leverage machine learn-
ing, high-resolution imagery, and inexpensive cloud com-
puting to create a comprehensive map of school at the global
scale.

Despite their varied structure, many schools have identi-
fiable overhead signatures that make them possible to detect
in high-resolution imagery with modern deep learning tech-
niques. One goal of this project was to test the generalizabil-
ity of these models. We believed that the digital signature of
schools in Colombia was close enough to that of neighbor-
ing countries that a model trained on Colombia would per-
form well there. To test this, we used the model developed
in Colombia to detect schools in eleven Eastern Caribbean
nations: Anguilla, Antigua, Barbuda, British Virgin islands,
Dominica, Grenada, The Grenadines, Montserrat, St Kitts
and Nevis, St Lucia, St Vincent.

We trained a binary school classifier with existing and
cleaned schools dataset in Colombia. We created a Con-
volution Neural Network (CNN) school classifier based on
Xception (Chollet 2017), modified for use on overhead im-
agery and tuned with a new, highly accurate school dataset
that we created for Colombia. We then selected the best-
performed model–0.94 area under the ROC curve and 9 per-
cent of the false positive rate–from our nearly 200 train-
ing iterations. We then applied this model across Colombia
and the Eastern Caribbean islands to detect potentially un-
mapped schools. Running the model over such a large area
of high resolution imagery is a huge task, requiring process-
ing over 52 million DigitalGlobe Vivid imagery tiles (Di-
gialGlobe 2020). Development Seed created an open source
tool, chip-n-scale-queue-arranger, to manage high volume
satellite imagery inference tasks.

After the model inference, we downloaded the model pre-
dicted schools from our inference pipeline. The Develop-



ment Seed Data Team validated 73,000 predicted school
tiles from machine learning. We added about 11,000 schools
to the map in Colombia and the Caribbean islands, of which
approximately 7,000 were unmapped schools.

Training Data Set
A high-quality training dataset is essential for machine
learning models to accurately learn object features. Our first
step was to prepare a set of verified school locations, as well
as a set of locations that are verified not to contain schools.
The CNN will use its knowledge of both to build a model of
determining whether any given image contains a school.

School Locations
UNICEF was able to provide a preliminary list of 44,665
school locations in Colombia. Five expert mappers from
Development Seed’s Data Team, reviewed that dataset, and
compared it to the DG Vivid RBG imagery. The Data team
classified each location into those where 1) overhead im-
agery clearly contain schools (’confirmed’), 2) overhead im-
agery clearly does not contain a school (’not-school’), 3) it is
uncertain whether or not overhead imagery contains a school
(’unrecognized’). Confirmed schools are observed from the
high-resolution satellite imagery and have very clear school
features, e.g. building size, shape, and facilities. The unrec-
ognized schools referred to geolocations that were part of the
original 44,665 school dataset but that had no clear school
features, especially in urban areas with high building den-
sity or, in rural areas that can’t be distinguished from resi-
dential buildings. Another case of unrecognized schools is
school building(s) that can not be seen on DG Vivid because
of cloud/tree cover. These locations were not used in training
the model. The not-schools refers to locations from the orig-
inal 44,665 school dataset where the expert mappers could
not find any school looking buildings at the provided school
geolocations 1. As an example, some of the schools were
mislocated in the middle of the ocean. This can be because
the school geolocation was recorded incorrectly or because
the DG Vivid imagery has been updated in particular areas
of Colombia after schools were built.

Figure 1: School data cleaning and training dataset creation
for machine learning.

.

Two categories of datasets, ‘school’ and ‘not-school’,
were generated as the training dataset for the machine learn-
ing model 1. We randomly sampled half of the school geolo-
cations from the validated “confirmed schools”, and gener-
ated 5,904 tiles as “school” training dataset in the following

table. The not-school category is not as trivial. This cate-
gory can contain forest, grassland or agricultural fields with-
out any buildings, among others. It can also be a building
complex or facility that looks very similar to “school” from
space, e.g. hospitals, market places, courthouses etc.

To enrich the “not-school” category, and allow our ma-
chine learning algorithm to detect real schools more ac-
curately, we queried available hospitals, farmlands, parks,
courthouses and marketplaces from OpenStreetMap and
added them to the “not-schools” category. We ended up with
9,092 ‘not-school’ tiles, see the above table. Through the
machine learning model training iterations, we learned that
the model was over-confident in certain areas, and therefore
we adjusted the training dataset accordingly. For instance,
we randomly included more schools as well as purposely
added more regular building tiles that are not schools.

To assess the model performance fairly, our training
dataset which contains two categories, school and not-
school tiles, was then split into 70:20:10 ratio as train, vali-
dation and test datasets. We randomly selected 70% of tiles
to train the model, the remaining 20% was used to validate
the model. The training set was seen and used by the model
intensively to train the school classifier, and the validation
set is occasionally seen and used to fine-tune the classifier.
The last 10% of the test dataset was not seen by the model,
and is used to evaluate the model performance. To explore
the geo-diversity of the ‘schools‘ and ‘not-schools‘ in the
data set we used t-SNE to group the RBG pixels of the
datasets, as shown in Figure 2. t-SNE is one helpful way
to start to understand the geographic diversity of a dataset
to show schools that occur in heavily forested regions vs.
schools that occur in desert regions, and the spectrum in be-
tween.

Figure 2: Kazakhstan Schools t-SNE
.

The first round of models detailed in the results section
were generated with zoom 18 tiles[5], current school mod-
els under development are exploring using a zoom 17 super-
tile, which is (512, 512, 3) instead of (256, 256, 3), so it cov-
ers the same area as a zoom 17 tile, but without sacrificing
the resolution of a zoom 18 tiles. We anticipate super-tiles



yielding and improvement in performance because some-
times schools got split between multiple zoom 18 tiles.

Methodology
At a high level our methods involved 5 key steps 3:

• Create map of known schools

• Generate a training dataset

• Iterate and tune a school CNN model

• Run our model over all of Colombia and the Eastern
Caribbean to identify candidate unmapped schools

• Validate these predictions with Development Seed expert
mappers

Figure 3: School detection high level overview
.

Selecting a machine learning framework
We did initial testing on two promising ML frameworks:
Xception and MobileNetV2(Chollet 2017), two pre-trained
models built in our Sat-Xception. To facilitate hyper-
parameter search and efficient model training we use the
Kubeflow tool Katib. Xception is one of current state-of-
the-art CNN architectures and pre-trained models on top of
ImageNet (Russakovsky et al. 2015). It’s a high perform-
ing and efficient network compared to other pre-trained net-
works. MobileNetV2[14] on the other hand, is a model that
is slightly less accurate compared to Xception. However, it’s
very light-weight, fast, and easy to tune when limited re-
sources are available. We broke the training sessions into
two sessions. The first session was designed to test the feasi-
bility of using Sat-Xception to train a well-performed school
classifier in Colombia. The model was over-confident in ru-
ral Colombia in the first session, leading to too many false
predictions in the area. To overcome the issue, the expert
mapper team created a new training dataset that was slightly
different from the training dataset in the first session. In the
second training session, 2,048 ‘not-school’ buildings were
added. In addition, for the “school” category, we only kept
rural schools that have very clear school features. We also
randomly selected another 2,500 confirmed school tiles to
add to the category. 4

We trained about 200 model iterations on two separate
AWS EC2 P3.2xlarge(Services 2020). They are AWS’s deep
learning AMI machines that have deep learning virtual en-
vironment setup, e.g. python3 with Tensorflow GPU version
pre-installed in our case, and ready-to-use [16]. We found

Figure 4: Model performance. First row two figures repre-
sent the model trained with Xception and the second row
are model validation accuracy and loss that trained with Mo-
bileNetV2.

.

the best-performing model from MobileNetV2 with a vali-
dation accuracy of 0.88. However, Xception reached a vali-
dation accuracy of 0.89, and therefore, we picked the model
trained with Xception. We packaged the best-trained Xcep-
tion model with Tensorflow Serving (Olston et al. 2017).
Tensorflow Serving helps to package the Keras (Chollet
et al. 2015) and Tensorflow(Abadi et al. 2015) model as a
Docker image. The image can serve as an endpoint for large
spatial scale model inference, which allows us to run model
inference on tens of millions of image tiles per hour.

Large Scale ML Inference
We applied our model to 52 million zoom 18 tiles of Digi-
talGlobe Vivid Basemap, representing all of Colombia and
eleven Eastern Caribbean nations. To run the inference at
a country-wide scale on high-resolution imagery, we de-
veloped an open source library called chip-n-scale-queue-
arranger 5.

Figure 5: chip-n-scale: to run machine learning models over
satellite imagery at scale.

.

Chip-n-Scale is a collection of AWS CloudFormation
templates deployed by kes, lambda functions, and utility
scripts for monitoring and managing the project. Key steps



that chip-n-scale helps facilitate inference at scale include:
• A user sends ‘x/y/z‘ tile indices to an AWS SQS queue to

indicate which geographic region to run our model over.
• Each SQS message triggers the Lambda function ‘Down-

loadAndPredict‘ which downloads images, posts to a pre-
diction cluster (via a Load Balancer endpoint), and saves
the result to an RDS database.

• The prediction cluster on ECS runs the TensorFlow Serv-
ing image to predict each tile. All instances are behind an
Application Load Balancer which will dynamically regis-
ter new instances that appear on the cluster and allocate
jobs to them evenly.

• A user manually downloads predictions from RDS after
the full inference process is complete.
The predictions were converted to a shapefile for expert

mappers to validation using a map editor. In the editor, the
mappers can overlay the predicted school tiles only and fo-
cus their attention on confident predictions, avoiding the te-
dious task of reviewing the entire area for Colombia and the
eastern Caribbean islands.

ML Prediction Validation
In the validation process, expert mappers validated each
of predicted schools as either “confirmed”, “unrecognized”,
and “not-school”, based on the learned school features from
the cleaned school dataset. With the increase of the thresh-
old, e.g. from 0.44 to 0.99, we would limit the false predic-
tion but we will also lose an increasing proportion of correct
prediction. When the threshold is set to 0.92, we have 73,717
tiles that are predicted school tiles for our expert mappers
to go through. With the validation speed of 10,000 tiles per
day, we were able to complete the predicted school valida-
tion within eight working days.

Total Tiles Reviewed Confirmed

Confirmed ML School Tiles 73,717
Confirmed and Added School Geolocations 12,250
ML School Unrecognized 60,568
ML School No 899

Table 1: DevSeed Data Team validated 73,000 predicted
school tiles from machine learning. We added about 11,000
schools to the map in Colombia and the Caribbean islands,
and around 7,000 of them were unmapped schools.

Results and Discussion
Our machine learning model took individual tiles as input
and provided an output in the form of a probability between
zero and one for each. By running the model prediction over
the test set (about 2000 tiles) we plotted a ROC curve 6.
The ROC curve gives us an overall model performance and
guidance on threshold cutoff.

The ROC curve indicates the area under the curve is up
to 0.94 from the test set with the given threshold of 0.44 -

Figure 6: The ROC curve and false positive rate for the
school classifier in Colombia.

.

we got a false positive rate of 9 percent. The ROC curve
(A) shows that the model we selected was a high-performed
model, where only 9 percent of detected schools are ex-
pected to be false positive.

The ROC curve and false positive rate for the school clas-
sifier in Colombia. The ROC curve indicates the area un-
der the curve is up to 0.94 from the test set with the given
threshed of 0.44 In initial testing, we found that the Xcep-
tion model was slightly more accurate than MobileNetV2.
However we also noticed that MobileNetV2 was much faster
for each model training iteration. Specifically, MobileNetV2
only used a quarter of time per training iteration on exactly
the same training set. During the validation process, the ex-
pert mappers validate each predicted school tile and tag it as
“yes”, “unrecognized” and “no” based on the school features
part of the selection criteria defined during the initial data
cleaning process. With the increase of the threshold (e.g.
from 0.44 to 0.99) we would limit the false predictions but
in the process, we will also lose an increasing proportion of
correct predictions.

With a threshold score of 0.92 our model predicted that
73,717 tiles across Colombia and the eastern Caribbean is-
lands contained schools. While this set certainly contained
false positives and unverifiable tiles, it also significantly re-
duced the search space for schools in these countries to less
than 0.15 percent of 52 million tiles. This shifted what was
previously a nearly impossible task to one that could be done
by 5 expert mappers in eight days.

With a validation speed of 10,000 tiles per day, the map-
pers identified 10,998 school geolocations, where 6,954 of
them are unmapped schools (schools that were not part
of the initial dataset of 44,665 schools). 60,568 predicted
school tiles were tagged as “unrecognized” by our expert
mappers 1. These tiles do not have clear school features.
During the machine learning prediction validation, we found
that schools in rural areas are hard to verify as schools be-
cause residential houses may be used as school locations.

Machine learning model generalizability is an active re-
search area (1, 2), and in our study, the school classifier
we trained in Colombia generalized well in the Eastern
Caribbean islands. We added 262 schools to the islands that
had not been mapped before. Our school classifier, the Ten-
sorflow Serving image(GPU version), lives on DockerHub
now. It is open-source and free to run as an end-point to users



Figure 7: Schools are represented as black dots in figures
A - C. UNICEF provided 44,655 school locations (A). Of
those 10,951 schools were confirmed as schools by expert
mappers (B.). 70% of these verified schools were used to
train the machine learning model. After the validation of our
model predictions, 10,988 schools were added to the map
(C.), around 7000 of these are previously unmapped schools
that we recently added after the ML validation. The school
heatmap was created from the machine learning predicted
and validated as “unrecognized” by our expert mappers (D).
The heatmap is an interactive map that the field agents can
use to prioritize ground validation of school locations.

.

who want to send zoom 18 images tiles to classify schools
in their area of interest.

Conclusion
The school classifier explored in this work, including model
training and model inference, can be fully automated and
scaled up to much larger geographic areas in the future.
These results suggest considerable potential for mapping
schools at a scale, quickly with human mappers’ in the loop
for validation. This will support the improvement of educa-
tion information management systems, reduce gaps in ac-
cess to information and opportunity, improve the quality of
education, and further disaster response to vulnerable pop-
ulations. Thereby aid the achievement of the relevant UN
Sustainable Development Goals of equal access to quality
education.
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