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Abstract

The COVID-19 pandemic has forced public health
experts to develop contingent policies to stem the
spread of infection, including measures such as par-
tial/complete lockdowns. The effectiveness of these
policies has varied with geography, population distri-
bution, and effectiveness in implementation. Conse-
quently, some nations (e.g., Taiwan, Haiti) have been
more successful than others (e.g., United States) in
curbing the outbreak. A data-driven investigation into
effective public health policies of a country would al-
low public health experts in other nations to decide fu-
ture courses of action to control the outbreaks of disease
and epidemics. We chose Spain and India to present our
analysis on regions that were similar in terms of certain
factors: (1) population density, (2) unemployment rate,
(3) tourism, and (4) quality of living. We posit that citi-
zen ideology obtainable from twitter conversations can
provide insights into conformity to policy and suitably
reflect on future case predictions. A milestone when the
curves show the number of new cases diverging from
each other is used to define a time period to extract
policy-related tweets while the concepts from a causal-
ity network of policy-dependent sub-events are used to
generate concept clouds. The number of new cases is
predicted using sentiment scores in a regression model.
We see that the new case predictions reflects twitter sen-
timent, meaningfully tied to a trigger sub-event that en-
ables policy-related findings for Spain and India to be
effectively compared.

Introduction
The COVID-19 pandemic has seen several countries become
epicenters for spread. Spain was one such country; however,
their policies were effective in curbing the initial outbreak of
COVID-19 in March-May of 2020. This is arguably due to
people and governments taking precautions to limit the pop-
ulation of people susceptible to the virus — masks, social
distancing, lockdowns, business closures, etc from an early
stage1. Accordingly, the effectiveness of individual coun-
tries’ policy responses to an epidemic or pandemic can be
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Figure 1: Top Row: April 11th, Spain 27.8% and India 4.3%,
where x% refers to the share of COVID-19 tests that came
back as positive in a 7-day rolling average. Bottom Row:
June 5th, Spain 0.9% and India 6.7%, where x% refers to
the share of COVID-19 tests that came back as positive in a
7-day rolling average.

determined by how well citizens respond to those policies2.
A person’s conformity to a policy may be inferred from their
ideologies mined through social media, such as Twitter (van
Holm et al. 2020). As shown in figure 1, over three months,
Spain recorded a decline of 97% in the number of new cases,
whereas India has shown a 36% influx in new patients. Is
it possible to explore policy transfer from Spain to India
to curb the alarming COVID-19 cases? Could the number
of infections be modeled using the Twitter concepts about
causal trigger sub-events in a causality network (Helbing,
Ammoser, and Kühnert 2006)? The reason we are conduct-
ing this study is there is limited prior research relating policy
and changes in case counts, through social media analysis,
for COVID-19. We use Twitter as the active platform for
live information on the spread of COVID-19. Government
policies, especially in developing nations, based on the epi-
demiological data, ignore the population-specific behaviors
of culture, ideology, and politics that hinder these policies’
implementation. For example, a large number of people in
the US are opposed to wearing masks. To this end, we jux-
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tapose Spain and India’s epidemiological data to identify a
date when the curves show the number of new cases diverg-
ing from each other, and India started showing worsening
conditions.Although it could be argued that the differences
we see in cases were due to travel from hotspots, it’s im-
portant to note that India closed its borders by suspending
all international flights starting March 22nd, in addition to
taking steps to suspend inter-state travel by suspending do-
mestic flights and domestic trains throughout the time frame
of our analysis3. We recognized some critical policy-related
concepts which are causally related in the COVID-19 con-
text. For instance, “settlement areas”, “confinement to bar-
racks”, “mistrust of people”, “loss of government authority”
causally follow announcement of “public policy”. Hence,
we used the causality network of policy-related concepts
identified by experts during severe acute respiratory syn-
drome (SARS) to perform a knowledge-guided search on
Twitter (Helbing, Ammoser, and Kühnert 2006) (see Fig-
ure 2). We show Kerala and Mumbai’s policy-related con-
cept clouds. Then we investigate the applicability of inter-
ventional policies in Madrid and Barcelona to Kerala and
Mumbai. Likewise, we observed a policy-level association
between the Canary Islands and Andhra Pradesh as both re-
gions have strong healthcare infrastructure.

The main contributions of this work are thus investigating
Twitter conversations corresponding to explanatory causal
trigger events, to form an ideological map of the popula-
tion that provides insights into response to government pol-
icy (see Methods). In turn, this is validated through the pre-
diction of new cases using the sentiment scores of the twit-
ter conversation (see Regression Analysis and Explanatory
events). Finally, a comparison of policy and responses across
similar regions in Spain and India is discussed (see Discus-
sion and Findings).

Figure 2: Causality network of sub-events during SARS
Pandemic by (Helbing, Ammoser, and Kühnert 2006).
We utilized this graph to represent sub-events within the
COVID-19 pandemic during extraction of the word cloud

Related Work
(Cowling et al. 2020) statistically analyzed the impact of
policy on reducing the transmissibility rate of COVID-19.

3https://www.nytimes.com/article/coronavirus-travel-
restrictions.html

The study was conducted on the epidemiological data of
Hong Kong, and inferences were made using confidence in-
tervals. Our research aims to investigate the applicability of
policies created by developed nations onto developing na-
tions. Such an exploration is not possible in Cowling et al.’s
study. Further, Cowling et al. provide statistical explana-
tions on government policies’ potency in Hong Kong rather
than conceptual explanations, which is required to decide the
“what next.” While probing government policies’ relevance
from one nation to another, population-specific behaviors
negatively affect cross-nation policy transfer. For instance,
a likely source of infection in India was the Tablighi Jamaat
movement, a religious gathering 4, which became a coron-
avirus vector and was not taken into account in government
policy or enforcement (Sivaraman et al. 2020). Likewise, the
return of migrant laborers to their home states in India and
long weekend celebrations and parties in the United States
led to an increase in COVID-19 cases. As a result, poli-
cies such as reopening, contact tracing, and ensuring pub-
lic compliance, which was effective in Europe, are not di-
rectly applicable to India and the United States (Hellewell et
al. 2020). It is essential to relate patterns in epidemiological
data with evolving policy-related concepts and sentiment on
social media to better study the likelihood of policy effec-
tiveness (Kalteh and Rajabi 2020). Other regression models
that predict new cases do not consider social media infor-
mation, which we posit is a significant predictor (Shayak,
Sharma, and Gaur 2020) (Prem et al. 2020).

Materials and Methods
Materials
In this research problem, we use multiple publicly available
datasets and government resources, specific to Spain and In-
dia (e.g., news reports, insights on epidemiological data).

The first country dataset is a COVID-19 dataset for Spain
data. The dataset is available here: Link. It contains at-
tributes including but not limited to: Total # of Cases, To-
tal # of Hospitalizations, Total # of Patients in the ICU, To-
tal # of Recovered Patients, and Total # of New Cases. The
dataset was derived entirely from Spain’s Ministry of Health
website and transformed into CSV files. All of the data is
available by province (the equivalent to states in the United
States). The second dataset we use is a COVID-19 dataset
for India, available here5. This dataset contains attributes in-
cluding but not limited to: # of Confirmed Cases per Day, #
of Recovered per Day, # of Deaths per Day, # of People in
the ICU, # of People on Ventilators. The dataset was sourced
from several sources, a list of which can be found here6. All
of the data is available on a state-by-state level within India.

After having the two datasets for identifying divergence
points and initial identification of a problem, the final dataset
we use is a dataset of Twitter-IDs, for our twitter social
media analysis available here7. As stated in the dataset,

4https://www.aljazeera.com/news/2020/04/tablighi-jamaat-
event-india-worst-coronavirus-vector-200407052957511.html

5https://api.covid19india.org/
6https://telegra.ph/Covid-19-Sources-03-19
7https://github.com/echen102/COVID-19-TweetIDs
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”The repository contains an ongoing collection of tweets IDs
associated with the novel coronavirus COVID-19 (SARS-
CoV-2), which commenced on January 28, 2020. We used
Twitter’s search API to gather historical Tweets from the
preceding seven days, leading to the first Tweets in our
dataset dating back to January 21, 2020.” This dataset gives
us access to the Tweet ID’s pre-filtered concerning the coro-
navirus with keywords accessible here8. From this dataset,
we hydrated 5, 075, 830 tweets from April 15 to May 15,
of which 534 were geotagged from the state of Kerala, and
7094, the state of Mumbai.

Methods
We want to analyze the differences between the spread of the
virus in Spain and India; however, the countries are too di-
verse to compare in their entirety. Thus, we instead propose
comparing the two countries on more granular scales, specif-
ically by identifying pairs of states/regions (India/Spain) that
are similar on the following grounds: (1) population density,
(2) unemployment rate, (3) tourism, and (4) quality of living,
and examining the results. For this study, we restrict to the
following two pairs of states/regions: (1) Kerala and Madrid,
and (2) Maharastra (Mumbai city) and Cataluña (Barcelona
region).

On the data from these states/regions, we did visualiza-
tions of counts of new cases during April and May. This pe-
riod was essential to assess the effectiveness of government
policies in controlling the COVID-19 pandemic. By creating
pairs of states/regions from India and Spain, we identified
divergence points where India started showing worsening
public health. Figure 4 shows May 1st, 2020, as the diver-
gence point for Kerala and Madrid. Likewise, April 22nd,
2020, is the divergence point for Mumbai and Barcelona
(Figure 5).

Once the relevant timeframe is defined, we extract tweets
geotagged to the local Indian regions, such as Kerala and
Mumbai. It allows us to explore the people’s responses to-
wards government policies, which helps assess the rise in
COVID-19 cases. Semantically understanding people’s re-
actions from their twitter conversations is a challenging task
for statistical natural language processing. Hence, we uti-
lize a hypothesized causal graph of policy-dependent sub-
events in Helbing et al., which describes a series of activ-
ities occurring during a pandemic. Some of the concepts
described by Helbing et al. are mistrust, church hospitals,
mask distribution, mental health. We identify a set of rel-
evant concepts that describe Kerala and Mumbai’s tweets
using a pre-trained multilingual ConceptNet model from a
Sem-Eval task (Speer and Lowry-Duda 2017). We use the
Spacy parser to generate phrase embeddings of concepts and
nouns extracted from tweets9. Next, we perform a cosine
similarity between the tweet vector and concept vector, with
an empirically determined threshold of 0.45. The frequency
of concept phrases was recorded and presented as people’s
responses in the given region during the given time frame.

8https://github.com/echen102/COVID-19-TweetIDs/blob/
master/keywords.txt

9https://spacy.io/api/dependencyparser

Exploratory Data Analysis
We begin by performing a preliminary visualization of the
dataset. In Figure 4, we observe the new case counts in Ker-
ala scaled up by a factor of 100 (for trend visibility) com-
pared to Madrid’s region. It seems that the data points re-
mained reasonably close from the period of March 15th to
May 1st, after which there is a second wave of COVID-19
spread in Kerala. In contrast, Madrid remained relatively
close to 0 for the rest of the period. This divergence from
its previous relative similarity to Madrid is a key feature
we intend to explore using real-time conversations on twit-
ter. Through semantic analysis of Kerala’s tweets around the
point of inflection, we recorded mentions of gatherings such
as marriages and poor capacity of the health system, which
are potential causes of the rise in new cases (see Figure 6).

Furthermore, people mentioned information on ways of
transmission with no known source of origin, prompting the
government to reinstate lockdown procedures. Overexten-
sion of lockdown by the government developed a panic re-
action among the individuals in Kerala. The state also saw a
lack of cooperation among authorities in affected regions,
which contributed to a surge in cases. Rumors circulated
through misleading campaigns that developed uncertainty
and fear upsetting people’s livelihood in Kerala, making
them restless in critical containment zones. From April to
May, people’s responses to government policies showed ex-
pressions of social instability, unemployment, uncontrolled
infection transmission, and circulation of rumors.

In Figure 5, we observe the plots of daily new cases in
Maharashtra, whose case counts were almost all from Mum-
bai and Cataluña (Spain, Barcelona). First, it seems that the
data points remained fairly close from March 15th to April
22nd, at which point the new cases in Cataluña remained
fairly close to 0 for the rest of the period. Though the pop-
ulation density and social composition of Mumbai are dif-
ferent from Kerala, we recorded the use of similar concept
phrases reflecting similar consequences of government poli-
cies. For instance, social instability, reaching out to catholic
hospitals10 (or church hospitals), seeking military aid during
lockdown11, mental health, panic reaction, and people seek-
ing therapy. Compared to Kerala, Mumbai showed a signif-
icant rise in unemployment, which is relatively similar to
the trend in unemployment in Barcelona, and Madrid12. The
situation of unemployment remained constant from April to
May in Kerala and Mumbai. Further, the concept of ”gen-
eral population behavior” describes the migrant population,
which constituted 93% workforce in India, contributed to
the rise in the COVID-19 cases as people travelled back to
their homes for security. These external factors, which aren’t
recorded in epidemiological data but explain epidemiology

10https://www.licas.news/2020/06/18/as-indias-healthcare-
system-struggles-with-covid-19-catholic-hospitals-join-the-
front-line/

11https://www.thehindu.com/news/cities/mumbai/lockdown-
state-seeks-armys-help/article31188053.ece

12https://www.theolivepress.es/spain-news/2020/05/12/madrid-
and-barcelona-both-rank-in-the-bottom-10-of-best-cities-for-
jobs-following-coronavirus-crisis/
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Figure 3: Workflow detailing the approach described in this study to analyze citizen response to policies and generate explain-
able inferences on the epidemiological data, in addition to predicting future changes in the spread of an epidemic.

Figure 4: Daily New Cases of COVID-19 in Kerala (scaled
up by 100 for visibility) and Madrid plotted against time
from March 15th to June 1st, with an identified Divergence
Point of where the two curves no longer follow the same
trend.

patterns, should be incorporated in models like SIR to better
estimate the future patterns in the spread of disease (Sivara-
man et al. 2020). As we can see, within both states, the top-
ical content being discussed is relatively the same. In the
time series curve, including April, we saw that the coron-
avirus cases had a steadily increasing number of new cases
per day with a slight curvature. This indicates that the simi-
larity in thinking over time compounded, possibly resulting

Figure 5: Daily New Cases of COVID-19 in Maharash-
tra (Mumbai City) and Cataluña (Barcelona region) plotted
against time from March 15th to June 1st, with an identified
Divergence Point of where the two curves intersected.

in the eventual seemingly exponential growth in the spread
of COVID-19. We will next validate if these thinking pat-
terns captured in Twitter sentiments are a good predictor of
new cases.

Regression Analysis and Explanatory events
We use Multivariate Linear Regression (MVR) with tweet
sentiment to predict future cases in Kerala and Mumbai’s
regions from mid-April to mid-May, over a month across



Figure 6: After the first wave of COVID-19 spread in the
month of March, the government of India instituted various
policies, such as school closings, business closings, travel
bans, over-extensions, which impacted public life, especially
for daily wage families. Hence, we see rise in the frequency
of tweets concerning mental health, medical care, and un-
employment. As a consequence of the policies, we observe
emerging events such as rumors, churches becoming hospi-
tals due to overloaded healthcare facilities, social instability,
and mistrust (in rectangle black box). Through citizen sens-
ing around the point of inflection (Figure 4) , we noticed a
constant frequency of concepts such as poor public life and
bad condition of the state, which reflected on the imperfec-
tion in policy implementation.

different periods. To determine each tweet’s sentiment, we
use the flairNLP Python library 13. We combine sentiments
of concepts (Figure 6 and 7) identified from each tweet into
daily sentiment values – from the period of April 16th to
May 14th/15th. We then perform MVR using the features is
described in materials sections and another with tweet sen-
timent. The first MVR model uses the past 30 days of new
cases and recovered cases to predict the next 30, and the
second MVR model also uses tweet sentiment to predict the
next 30 days. We use a cumulative function on both new
cases and recovered cases to better reflect the upward trend.

We find that the Regression error does indeed decrease
when using the tweet sentiments. We specifically look at
the differences in the RMSE values and the adjusted R2

for quantitative performance gains. Further, we use peri-
ods of 3, 7, and 14 days from May 15th for the two MVR
models, as these have been shown in (Pavlicek, Rehak, and
Kral 2020) to be the periods of days with which COVID-19
deaths show regularities (see Table 1 and 2). Previous litera-
ture suggests that the RMSE uncertainty for this number of
data points would be approximately 12.9% (Faber 1999).

A model’s explainability is vital in such a high stakes ap-
plication for humans to trust and understand its predictions.
While the weights of a linear model lend themselves nicely
to interpretation, they alone do not provide any insight into
the type of events that may have triggered such conversation
on Twitter. For tweets with concepts of high sentiment score
weight in the model, we use the causal graph (Helbing, Am-
moser, and Kühnert 2006) built for the SARS epidemic to

13https://github.com/flairNLP/flair

Figure 7: As we can see, within both states, the topical con-
tent being discussed is relatively the same. Throughout the
frame of the time series, including April, we saw that the
trend in coronavirus cases had a steadily increasing num-
ber of new cases per day, or a positive second derivative.
This indicates that the similarity in thinking over time com-
pounded, possibly resulting in the eventual seemingly expo-
nential growth in the spread of COVID-19 that we witness.

Time period With Sentiment Without Sentiment

for Prediction RMSE adjR2 RMSE adjR2

14 Days 9.54 0.84 11.73 0.76
7 Days 7.85 0.68 7.85 0.68
3 Days 6.46 0.63 6.51 0.63

Table 1: RMSE and adjR2 Regression Results with and
without Sentiment for the State of Kerala, model trained on
values from April 16th to May 14th. All the scores are sig-
nificant with one-tailed t-test at p-value 0.1

provide explanatory sub-event triggers for those concepts.
An example is shown in Figure 2, where the causal structure
of sub-events that guided the extraction of twitter conversa-
tion is marked. The government can use this graphical ex-
planation to shape its policy going forward.

Note that the dataset of Mumbai tweets was 14 times more
extensive than Kerala, resulting in high RMSE. We see a
more noticeable difference in adjR2 and RMSE values for
Mumbai further in time from May 15th, than we do for Ker-
ala except for the 14 days. Thus, we believe that this re-
search can be explored further with potentially more statis-
tically significant findings through access to larger datasets
and more extensive experimentation. However, the increase
of the accuracy of using sentiment does seem to happen for
both states further away from May 15th, i.e., the model ex-
trapolates better.

Discussion and Findings
In this paper, we presented a methodology to determine
crowd responses to governmental policies that can impact
health and new case predictions in real-time, and evaluate
those responses to provide direction for new public health
policy.

In broad terms, the method presented is the first visual-

https://github.com/flairNLP/flair


Time period With Sentiment Without Sentiment

for Prediction RMSE adjR2 RMSE adjR2

14 Days 286.16 0.95 310.60 0.88
7 Days 235.38 0.96 245.27 0.93
3 Days 232.09 0.97 238.57 0.92

Table 2: RMSE and adjR2 Regression Results with and
without Sentiment for the State of Mumbai, model trained
on values from April 16th to May 14th. All the scores are
significant with one-tailed t-test at p-value 0.1

ization of the data to identify the features of interest, elicit
time-frames of events upon which to focus analysis, and ex-
plain the pattern in epidemiological data with social network
sentiment analysis. For our comparison of the effectiveness
of policies in Spain and India, we were able to identify a
critical time-frame across multiple state/province pairs that
proved to be a divergence point in the spread of the virus
where Spain appeared to be succeeding in containing the
virus. In contrast, India seemed to be experiencing exponen-
tial growth. Looking at the timelines of government lock-
downs: After the 10th case, India took action on Day 21 and
Spain on Day 16. After the 1st death, India took action on
Day 13 and Spain on Day 29. Finally, after the 100th case,
India took action on Day 13 and Spain on Day 10.

We see that arguably, the nations took action on a similar
timescale concerning the beginning of the spread. We posit,
therefore, that the differences in responses to policies can be
found in crowd ideology via Twitter. Looking at a few of the
previously identified key phrases, we can see some examples
of selected tweets that display concepts previously identified
in the concept clouds, along with a timely response from au-
thorities in Spain:

1. Tourism tweet (Kerala): “One of the largest sectors of #In-
dianeconomy, #Tourism, lies in tatters due to the #Coro-
naPandemic and the #lockdown”—– Spain chose to han-
dle tourism by closing its border to outsiders, as of April,
only allowing diplomats, traveling for emergencies, or
residents of the European Union, and assorted smaller
states14.

2. Medical Care tweet (Mumbai): “When the richest coun-
try has zero public health care in place and they need
to hire in the middle of a pandemic” —– Spain used a
royal decree to declare a 15-day national emergency back
on March 15th (Legido-Quigley et al. 2020). It dedicated
significant investments to its healthcare system, quoted “It
had allocated C2.8 billion to all regions for health services
and created a new fund with C1 billion for priority health
interventions.”

3. Social Instability tweets (Kerala and Mumbai): (a) “If you
get into a cyclical lockdown it will be devastating for
economic activity because that would destroy trust.”(b)
“People will lose trust if the lockdown continues indefi-

14https://www.euronews.com/2020/05/23/spain-will-
open-borders-to-foreign-tourists-in-july-in-phasing-out-of-
coronavirus-restrict

nitely. Need to work out a way.#RahulShowsTheWay” —–
Spain’s Civil Guard dedicated time to compiling a report
and evaluating possible scenarios of growing social unrest
in conjunction with law enforcement agencies, coming up
with different responses to rising crime rates or civil un-
rest. The report specifically noted that the Spanish popu-
lation has accepted the lockdown, “which started out as
one of the strictest in Europe” 15.

4. Cancelled Events tweets (Mumbai): “#MAMI Mumbai
Film Festival 2020 cancelled. Second major event in
Mumbai to be cancelled this year after Lalbaugcha Raja
Ganeshotsav. Cannot imagine the loss of revenues.” —–
A number of events, such as Easter Sunday, were can-
celled in Spain16. Further, a selective set of interntional
events were allowed with limited capacity and stringent
laws (e.g. Live Music) 17.

This is where real-time NLP analysis plays an instrumen-
tal role. Identifying topical categories and sentiments asso-
ciated with them through social network analyses like Twit-
ter provides an avenue to quantitatively and qualitatively
evaluate and rank responses to different policies. For quan-
titative assessment, we considered intuitive model perfor-
mance metrics, such as RMSE and adjR2. Qualitative in-
spection was performed by mapping the people’s response
to sub-events in SARS’s causality network. We project the
identified causally triggered sub-events onto a concept cloud
and analyze over two critical months post-initiation policies.
Even though a linear model is already interpretable in terms
of weights, this type of explainability is of paramount impor-
tance to understand and trust the model predictions in such
a high stakes application. This can give governments insight
into whether they must make policies stricter, add more poli-
cies, or enforce policies differently than they are at the mo-
ment. Real-time analysis of the social network and virus data
can significantly change the course of health events and are
a promising yet relatively unexplored tool for governments
and policymakers to use.

Future Work
We have presented in this work a case study with two (State,
Region) pairs, specifically (Mumbai, Barcelona) and (Ker-
ala, Madrid). We posit that this work can be extended to
other (State, County) pairs. Considering one pair such as
Andhra Pradesh and the Canary Islands (see Figure 8) —
both of which are known to have strong healthcare systems
relative to the rest of their countries — we can plot the time
series visualization and analyze the divergence point.

It’s important to note that there other uncontrolled vari-
ables that make it hard to draw affirmative causal conclu-
sions, and this is an important aspect we hope to consider in

15https://english.elpais.com/society/2020-05-15/spains-civil-
guard-warns-about-risk-of-social-unrest-due-to-covid-19-
crisis.html

16https://gulfnews.com/world/europe/easter-sunday-events-in-
spain-cancelled-communities-make-masks-amid-virus-outbreak-
1.1586627331285

17https://www.nme.com/news/music/spain-to-phase-in-live-
music-events-in-may-as-part-of-lockdown-exit-plan-2656841
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https://english.elpais.com/society/2020-05-15/spains-civil-guard-warns-about-risk-of-social-unrest-due-to-covid-19-crisis.html
https://gulfnews.com/world/europe/easter-sunday-events-in-spain-cancelled-communities-make-masks-amid-virus-outbreak-1.1586627331285
https://gulfnews.com/world/europe/easter-sunday-events-in-spain-cancelled-communities-make-masks-amid-virus-outbreak-1.1586627331285
https://gulfnews.com/world/europe/easter-sunday-events-in-spain-cancelled-communities-make-masks-amid-virus-outbreak-1.1586627331285
https://www.nme.com/news/music/spain-to-phase-in-live-music-events-in-may-as-part-of-lockdown-exit-plan-2656841
https://www.nme.com/news/music/spain-to-phase-in-live-music-events-in-may-as-part-of-lockdown-exit-plan-2656841


Figure 8: Daily New Cases of COVID-19 in Andhra Pradesh
(not scaled) and the Canary Islands plotted against time from
March 15th to June 1st, with an identified Divergence Point
of where the two curves intersected.

future work. The results from this preliminary work could
be used to explain epidemiological models, specifically, the
Exo-SIR (Exogenous - Susceptible, Infected, Recovered)
model. Exo-SIR is built to model the disease’s spread while
taking into account exogenous factors (e.g., gathering, com-
pliance to public policy). Since our study identified concepts
such as social instability, mistrust, and poor medicare as re-
sponses of the population against the instated policies, it
could be considered potential exogenous factors influenc-
ing SIR models. Our future research may entail including
government policies themselves as the Exogenous impact
on a SIR population, and more accurately identifying and
explaining the spread of a disease in a community by con-
sidering citizen response to policies.

All the code and datasets for this study are available for the
reproducibility of our results here.
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