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Abstract

Recent wildfires in the United States have caused many lives
and billions of dollars, destroying countless structures and
forests. Fighting wildfires is extremely complex. It is difficult
to observe the true state of fires due to smoke and risk asso-
ciated with ground surveillance. There are limited resources
to be deployed over a massive area and the spread of the
fire is challenging to predict. This paper proposes a decision-
theoretic approach to combat wildfires. We model the re-
source allocation problem as a partially observable Markov
decision process. We also present a data-driven model that
lets us simulate how fires spread as a function of relevant
covariates. A major problem in using data-driven models to
combat wildfires is the lack of comprehensive data sources
that relate fires with relevant covariates. We present an algo-
rithmic approach based on large-scale raster and vector anal-
ysis that can be used to create such a dataset. Our data with
over 2 million data points is the first open-source dataset that
combines existing fire databases with covariates extracted
from satellite imagery. Through experiments using real-world
wildfire data, we demonstrate that our forecasting model can
accurately model the spread of wildfires. Finally, we use sim-
ulations to demonstrate that our response strategy can signif-
icantly reduce response times compared to baseline methods.

Introduction
In 2018, a large wildfire (named Camp Fire) in California re-
sulted in the loss of 88 lives, displaced countless more, and
destroyed more than 18,500 structures. The estimated cost
of the destruction was a staggering $15 billion. As we write
this manuscript at the start of the wildfire season in the state,
more than a million acres have already burned in California
this year alone due to more than 7,000 wildfires. Wildfires
have destroyed many towns and structures across the state.
At one point in August 2020, the entire northern half of the
state had been instructed to prepare for evacuation (State of
California 2020). Crucially, the time of the year that is re-
ferred to as the “wildfire season” in the state has only just
begun.

Fighting wildfires is difficult. Rapid urbanization and the
effects of climate change make urban and suburban areas
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particularly susceptible to wildfires. Known to be notori-
ously unpredictable, sudden changes in wind directions or
weather can change the way fires spread (Garza 2020). Fire-
fighters need to allocate limited resources in dynamic and
uncertain environments to intervene and stop the spread of
fire.

The problem of combating wildfires is an example of dy-
namic resource allocation. Such an approach to combat natu-
ral calamities like wildfires, floods, and earthquakes are dif-
ficult for several reasons. The dynamics of the events are
unknown and complicated to model in closed-form. There
are multiple covariates that affect the spread of fire like
the vegetation, fuel, altitude, and wind, and the exact re-
lationship between each covariate and fire spread is uncer-
tain. Resource allocation is extremely challenging because
of the difficulty of making predictions about the spread of
fire and expected damage. Designing principled approaches
to deploy resources is important to mitigate the effects of
wildfires and emergencies in general (Mukhopadhyay et al.
2020).

Events like fires affect large areas, and it is difficult to
correlate large-scale data from various sources to analyze
and study fires. To the best of our knowledge, there exists
no comprehensive data source that combines fire occurrence
with geospatial features, fuel levels, and weather to allow the
research community to develop approaches to combat wild-
fires. Finally, the problem of deploying resources to manage
wildfires is full of uncertainties. As fires spread, it becomes
increasingly difficult to observe the true state on the ground
due to the presence of smoke. As a result, first responders
only have imperfect information to allocate their resources.

Contributions: We make the following contributions in
this paper. 1) We present a decision-theoretic approach to
dynamically allocate resources in uncertain environments to
intervene against wildfires. Specifically, we model the re-
sponse problem as a partially observable Markov decision
process (POMDP) and present an approach to find opti-
mal actions for suppression for a given state of the prob-
lem. Our approach accommodates the constraint that the
true state of the fire is difficult to observe in practice. 2)
Instead of focusing on physics-based models, we present a
data-driven approach that can simulate the spread of wild-
fires. We extract relevant covariates such as fuel levels, veg-
etation type, height of canopy, and elevation from satellite



imagery to drive the simulation. 3) The calculation of accu-
rate zonal statistics is a bottleneck for large scale geospa-
tial data analysis (Singla and Eldawy 2018). We demon-
strate how extremely large-scale geospatial data pertaining
to wildfires can be combined with other covariates through
large-scale distributed raster and vector analysis. Crucially,
we release the dataset open-source for the research com-
munity. 4) Through experiments using real-world wildfire
data from California, we demonstrate that our forecasting
model can accurately model the spread of wildfires and our
response strategy results in significant improvement in sup-
pression efforts compared to baseline methods that do not
consider potential fire spread.

Prior Work
The dynamics of fire spread are usually modeled us-
ing physics-based models. Popular fire spread models in-
clude BehavePlus (Andrews 1986) and Farsite (Finney
1998). They are based on mathematically modeled surface
fire spread as a function of heat flux and fuel availabil-
ity (Rothermel 1972). Such models are widely used by first
responders and fire fighters to forecast the spread of fires. A
relatively modern approach is to predict the rate of spread by
integrating real-time information about weather from sen-
sors (Altintas et al. 2015). Data-driven modeling has also
been used to model fire spread. Supervised machine learn-
ing techniques have been applied to uncover strong associ-
ations of factors to wildfire sizes and frequency using dif-
ferent data sources. For example, Joseph et al. (2019) in-
vestigated weather conditions and geographic characteris-
tics of extreme fire patterns in the contiguous United States
and Ghorbanzadeh et al. (2019) examined wildfire suscepti-
bility using geographic data in northern Iran.

Response to wildfires traditionally uses simulation-based
approaches to select locations of intervention that maximize
the expected utility of suppression efforts. Petrovic, Alder-
son, and Carlson (2012) model wildfire dynamics and ex-
amine the trade-off between multiple competing suppres-
sion efforts to compute an optimal strategy for fire re-
sponses. Stochastic simulation and multi-agent coordination
has also been explored to combat wildfires (Fried, Gilless,
and Spero 2006; Martin-fernÁndez, Martı́nez-Falero, and
Pérez-González 2002).

Griffith et al. (2017) explore how suppression efforts can
be optimized by solving a mixed-integer linear program and
by using Monte Carlo approaches to find optimal actions in a
Markov decision process (MDP). Our approach to optimize
suppression improves upon prior work (Griffith et al. 2017)
to address the uncertainty in state information. We also inte-
grate a data-driven generative model to simulate the spread
of fire to aid decision-making under uncertainty.

Problem Description
We consider a spatial area divided into a set of spatial cells
G. Let gi ∈ G denote the ith cell. We represent the neigh-
bors of a cell gi by Ni, for some definition of neighborhood
(for example, neighbors of a cell can be the set of its
adjacent cells). Consider that the total time in consideration

is divided into T time steps. We assume access to histor-
ical data of fire incidents D, which is a vector of tuples
{(t1, `1, u1, w1), (t2, `2, u2, w2), . . . , (tn, `n, un, wn)},
where each incident di ∈ D is identified by its time of
occurrence ti, location `i (mapping to a cell in G), intensity
of fire observed ui ∈ R+, and a vector of spatio-temporal
features wi ∈ Rm. The features w capture potential deter-
minants of fire such as weather and the type of vegetation in
a cell.

Observing the true state of the world is almost always
impossible when wildfires occur. Gathering real-time in-
formation by visiting the affected areas by land is nat-
urally difficult. Therefore, information must be gathered
through air surveillance obstructed by smoke. Consequently,
the true dynamics of wildfires are only partially observ-
able. We model the fire suppression problem more real-
istically as a partially observable Markov decision pro-
cess (POMDP). A POMDP can be defined by the tuple
{S,A,O, Z, T,R, γ} (Kochenderfer 2015). We define each
component of the POMDP formulation below:

1. States: S is a finite set of states. The state at time t is de-
noted by st = {Xt, Ft}, where Xt = {X1

t , X
2
t , . . . , X

k
t }

and Ft = {F 1
t , F

2
t , . . . , F

k
t } denote the status of the fire

and fuel level in each of the cells in G, respectively. We
consider the status of the fire X as a binary variable such
that

xit =

{
1 if uit ≥ ε
0 otherwise

where uit ∈ R+ denotes the measured intensity of the fire
in cell gi ∈ G at time step t. We consider that the fuel level
F is a discrete variable, such that F ∈ {0, 1, . . . ,m}. The
exogenous parameters ε andm can be estimated from data
or through domain knowledge.

2. Actions:A is a finite set of actions. The actions denote the
different permutations of cell indices that fire suppression
efforts can be applied to, up to a maximum number of
cells specified as a resource constraint.

3. State Transitions: T defines conditional transition proba-
bilities, with T (s′ | s, a) denoting the transition probabil-
ity from state s to s′ when action a is taken. The transition
model T includes the following three components:

(a) Burning: If cell gi ∈ G is burning at time step t, we
assume that the fuel level decreases by one unit in the
next time step. Therefore, F i

t+1 = F i
t − 1 if xit ≥ ε.

(b) Action effectiveness: At any time step t, if an action,
i.e. fire suppression effort(s) is applied to a cell gi ∈ G
such that xit ≥ ε, there is probability q that the effort
successfully puts out the fire.

(c) Fire dynamics: We use a generative model to simu-
late the spread of fire. We represent spread dynamics
by the probability distribution f(Xi

t+1 | x
j
t , w), where

gi ∈ Nj . Therefore, given that a specific cell gj ∈ G
is on fire at time step t, f denotes the likelihood of its
neighboring cells being on fire at the subsequent time
step t+ 1.



We assume that in each time step, fire from a cell can
spread only to its neighboring cells. This assumption aids
computational tractability, but is without loss of gener-
ality because the decision-maker can discretize time fine
enough such that the assumption is realistic.

4. Reward function: R : S × A → R is the reward func-
tion, such that R(st, a) =

∑
gi∈G x

i
tU(gi), where U(gi)

denotes the utility for a cell gi ∈ G to be on fire. Nat-
urally, U varies across the cells. A cell with human oc-
cupants is presumably more valuable and more costly to
burn than a cell composed of forested land. Cells can also
carry unequal ecological utilities (Bradshaw and Lueck
2012). Without loss of generality, we consider three tiers
of damage across cells, representing costs of residences
(red), valuable ecological resource (yellow), and wildland
(green) in decreasing values. Figure 1 shows an example
grid with different types of cells.

5. Observations and Observation Transitions: O represents
the set of observations with Z(o | s, a) denoting the prob-
ability of receiving observation o at state s when action
a is taken. We denote specific observations by oit, which
correspond to whether cell gi ∈ G is seen to be burning or
not at time step t. Its transitions Z(o | s, a) are determin-
istic, i.e. oit,a = uit if an action has been applied to cell
gi ∈ G. This is because we assume to have “eyes on lo-
cation” when an action is applied to a cell. Otherwise, for
cells where action for suppression is not applied (denoted
by ā in the expression below), a generative representa-
tion is used based on prior work (Julian and Kochenderfer
2019) such that

oit,ā =

{
1 if Prt(Xi

t) > η in state s
0 otherwise

where η is an exogenous parameter.

6. Discount factor: γ ∈ [0, 1] denotes the discount factor.

In a POMDP, the decision-maker cannot directly observe
the state. Instead, they only have access to beliefs that are
generated probabilistically based on the actions taken. In-
formation about states can be inferred from the history (h)
of observations and actions. It is common to maintain a dis-
tribution over states given the history; this distribution is
known as the belief B, such that B(s | h) denotes the prob-
ability of being in state s given history h. The goal for the
decision-maker is to find a mapping from belief states to ac-
tions that maximizes the expected future discounted reward.

Approach
Modeling Fire Spread
In order to accurately simulate the spread of fire, we model
the fire dynamics f using a data-driven model. Recall that f
is a probability distribution over a cell being on fire in time
step t + 1, conditional on its neighbors being on fire at the
previous time step t. The goal of modeling the function f is
to understand the effect of various covariates like wind, veg-
etation type, canopy height, altitude, etc. on fire spread. Typ-
ically, covariates in geospatial analysis are heterogeneous.

Figure 1: An example of a spatial area discretized in a grid
with different costs and the colors correspond to varying
costs to burn: red, yellow, and green in decreasing cost.
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Figure 2: POMDP (factored) representation of the dynamic
decision problem. Shaded ovals reflect what is known to the
decision maker.

We use random forests (Liaw, Wiener et al. 2002) which
involves constructing a large number of decision trees at
training time and then aggregating the outputs of the trees.
The aggregation technique is typically using the mode of
the outputs for classification and the mean of the outputs for
regression. The central idea behind using random forests is
to average many noisy but (approximately) unbiased mod-
els, thereby reducing the variance of the overall forecasting
model.

Resource Allocation
The general dynamic decision framework following the
POMDP formulation is shown in Figure 2. Recall that the
sources of uncertainty are the current state of the fire (S)
and the dynamics of the spread (driven by the set of co-
variates w). At each time step, the available set of actions
(A) is a combination of the fire location(s) to suppress. The
decision-maker acts based on a belief distribution of the true
state of the world and receives an observation. Utility (U) re-
flects a measure of the expected damage of having a fire in a
specific cell (e.g. residence versus wildland).

Due to the large state space and action space (the ac-
tion space is combinatorial), we use the sampling-based on-



line Monte Carlo tree search (MCTS) (Kochenderfer 2015).
To address the computational complexity of POMDPs, ap-
proaches based on MCTS typically use a particle filter to
represent beliefs in the search tree. Specifically, an approach
that is of relevance to our problem is the partially observable
Monte Carlo planning algorithm with observation widen-
ing (POMCPOW) (Sunberg and Kochenderfer 2017). POM-
CPOW differs from other online MCTS algorithms in that in
the simulation step, given a state (s), history (h), and depth
(for tree exploration), it weights the belief nodes and ex-
pands the belief updates gradually as more simulations are
added. At each step, a single simulated new state is added to
the particle collection, weighted to approximate the belief in
every tree node, which is then used to sample the next new
state.

Although POMCPOW is shown to outperform other algo-
rithms (Sunberg and Kochenderfer 2017), an issue with di-
rectly using POMCPOW on our problem is that the observa-
tion space is large and complex. This leads to a severe spar-
sity of particles, i.e., the probability of sampling a relevant
observation is very small. To alleviate this, we modify the
routine used to update belief in POMCPOW. Specifically,
we replace the weighted particle filter with the standard par-
ticle filter without rejection (Kochenderfer 2015). As shown
in Algorithm 1, given a current belief (b), action (a), and
observation o, |b| samples are generated from the simulator,
weighted, and subsequently resampled by its weights. Be-
fore the resampling step, all weights of an observation omay
be 0 due to the large observation space. If all the weights of
an observation are 0, the probabilities of the sampled states
are normalized to be proportional to the number of states al-
ready sampled. This reweighting step makes an approxima-
tion to importance resampling that seeks to estimate prop-
erties of a target distribution by sampling from a different
distribution.

Algorithm 1: UpdateBelief (b, a, o)

Input : Belief b, action a, observation o
Output: Updated belief b′

1 b′ ← ∅
2 for i← {1, . . . , | b |} do
3 si ← random state in b
4 s′i ∼ G(si, a)
5 wi ← O(o | s′i, a)
6 end
7 if

∑|b|
i=1 wi = 0 then

8 wi = 1
len(w) ; // reweight states

9 end
10 for i← {1, . . . , | b |} do
11 Randomly select k with probability proportional to

wk

12 Add s′k to b′

13 end
14 return normalized b′

Data Processing
Data needed to model the spread of wildfires comes from
varied sources. The temporal and spatial resolutions of such
data sources are typically different. The data sources can
also be of different forms (vector or raster). The vector
model uses points and line segments to identify spatial lo-
cations while the raster model uses a set of cells for the
same purpose. Combining large-scale vector and raster data
is known to be a difficult problem (Singla and Eldawy 2018).

We collected fire occurrence data in vector form from the
Visible Infrared Imaging Radiometer Suite (VIIRS) thermal
anomalies/active fire database (Schroeder et al. 2014). The
spatial resolution of VIIRS data is in the form of pixels rep-
resenting 375 × 375 meter square cells (Schroeder et al.
2014). The latitude and longitude values correspond to the
center. Evidence of fire was read from the daily fire radia-
tive power (FRP) levels in the VIIRS dataset. The data used
to build the feature space was collected in raster form from
the LANDFIRE project (Ryan and Opperman 2013). The
foundation of the LANDFIRE project is based on satellite
imagery. The raster files had a spatial resolution of 30 × 30
meter square cells. This included features like canopy base
density, canopy cover, and vegetation type. We list features
used and the years from which the data was collected in Ta-
ble 1.

Name Year(s)

Canopy Base Density 2012, 2014, 2016
Canopy Base Height 2012, 2014, 2016
Canopy Cover 2012, 2014, 2016
Canopy Height 2012, 2014, 2016
Existing Vegetation Cover 2012, 2014, 2016
Existing Vegetation Height 2012, 2014, 2016
Existing Vegetation Type 2012, 2014, 2016
Elevation 2016
Slope 2016

Table 1: LANDFIRE Raster Data

To reconcile the different spatial resolutions, we divide
the state of California into a grid G of 375 × 375 meter
cells. The center of each fire pixel from the vector data can
therefore overlap with exactly one cell in G. To compute
the feature vector associated with each data point, we com-
pute zonal statistics for the vector data using the raster data.
The method of zonal statistics refers to calculating summary
statistics using a raster dataset within zones defined by an-
other dataset (typically in vector form).

Traditional systems to compute zonal statistics require the
data to be converted into the same format, either raster or
vector. Automated tools can then be used to either vectorize
the raster dataset or rasterize the vector dataset. The first ap-
proach converts each pixel in the raster to a point and then
tests the point against each polygon in the vector data to find
a match. This approach has a computational complexity of
O(np log np · c · r), where np is the number of polygons in
the vector data, and c and r are the number of columns and
rows in the raster data respectively. The second approach
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Figure 3: Architecture for calculating zonal statistics for large-scale raster and vector data

rasterizes the vector data by converting each polygon to a
raster (mask) layer with the same resolution as the input
raster layer. It then combines the two raster layers to com-
pute the desired aggregate function. Most systems that use
this approach keep the mask layer in memory. If the input
raster layer has a very high resolution, the size of the mask
layer can become too large to be kept in memory. This ap-
proach has a computational complexity of O(np · c · r).

Neither of the two approaches mentioned above scale for
the high resolution raster and vector data due to the re-
quirement of converting between vector and raster formats.
Specifically, in our problem, the vector data consist of over 3
million polygons and each of the raster data sources consists
of over 1 billion entries. To deal with the large-scale geospa-
tial data, we create a fully decentralized approach to com-
pute large-scale zonal statistics based on Singla and Eldawy
(2020). Our approach does not require data to be converted
from one form to another (vector or raster). Instead, it com-
putes an intermediate data structure, called an intersections
file between the raster and vector data. The intersections file
can be computed using only the vector data and the meta-
data of the raster data (coordinate reference, resolution, etc.).
Further, our approach can leverage parallel computation by
using the intersection files. Our approach, with a computa-
tional complexity of O(np log np + c · r), is scalable and
efficient for large raster and vector datasets. Furthermore, as
a by-product, our approach makes it easier to find the neigh-
borhoods of polygons by performing a spatial self-join op-
eration using the predicate intersects on all the cells in the
vector data. We show the architecture of our approach in
Figure 3.

Experiments
We used fire data from California, USA spanning 2012–
2018 for the prediction modeling. We divided the state into
a set of 375 × 375 meter cells. Our goal was to capture how
fire spreads given an initial occurrence of fire. As a result, we
only considered cells and days that exhibited the possibility
of fire spreading from an existing fire. Specifically, each cell
in our data has a fire in its neighborhood. Our data has a total
of 2,367,209 data points. Each row in our data represents a
cell gi at a specific time t, a set of spatial-temporal features
wit, and the status of fire uti as well as the spatial-temporal
features wjt+1 and the status of fire ut+1

j of gj ∈ Ni, a

neighboring cell of gi at time step t + 1. To calculate the
features for a specific cell gi ∈ G at a specific time step,
we calculated summary statistics (maximum, minimum, me-
dian, sum, mode, count, and mean of the feature values) us-
ing all raster cells within gi at time step t. To the best of our
knowledge, our data is the first comprehensive open-source
dataset that combines fire occurrence with relevant covari-
ates extracted from satellite imagery. The data is available at
https://wildfire-modeling.github.io. We used data from 2012
to 2017 as our training set and data from 2018 as our test set.
We set the time step for our experiments to a day, based on
the minimum time fidelity of the VIIRS dataset. All exper-
iments were run on an Intel Xeon 2.2 GHz processor with
125 GB of memory.

Fire Spread
We label a forecast as a true positive prediction when both
the predicted fire intensity and the recorded fire intensity are
greater than the pre-specified threshold ε. We observe that
the random forest regression model is insensitive to the num-
ber of trees used (5, 50, 100, and 500). We also observed
similar accuracy across training and test sets. We tested sev-
eral realizations of ε to examine the robustness of our fore-
casting approach on different sizes of fire. Our results show
that while it is relatively difficult to predict spread from ex-
tremely small fires (ε = 0.5), our forecasting model achieves
high accuracy (> 90%) in predicting spreads from relatively
larger fires. We summarize the results in Table 2.

FRP Threshold (ε) Accuracy on Test Set

0.5 77%
1 81%
5 92%

Table 2: Accuracy with 5-tree Random Forest Regression

Fire Response
Our goal is to create a pipeline for modeling response to
wildfires by utilizing the data-driven model of fire spread
to optimize response decisions. However, in this paper,
we present experimental results based on a simple spread
model. Specifically, we simulate the spread of fire using
fixed environmental conditions (for example, we use a fixed
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Figure 4: Effectiveness measured by negative utility on test data (lower is better) on varying grid sizes: (a) 4 × 4 (b) 6 × 6 (c)
8 × 8 (d) 10 × 10 (e) 12 × 12 and (f) 16 × 16.

wind direction and rate of spread in each simulation). We
calculate the probability of fire spread following a simpli-
fied version of the deterministic fire dynamics model in prior
work (Griffith et al. 2017).

We conducted experiments on different sized square grids
(42, 62, 82, 102, 122 and 162). We varied the starting states
by random initialization of fire maps and cell types. We
experimented with 6 different initial states. For each ini-
tial state, we created 256 spread scenarios by varying wind
and rate of spread. For each initialization, a fixed percent-
age (10%) of cells was considered to be on fire. The pro-
portions of red, yellow, and green cells were set to be 20%,
30%, and 50% respectively, consistent with the distribution
of land use in California (United States Department of Agri-
culture 2016). In all experiments, we set the fuel level in
each cell to 5, i.e., each cell takes 5 days to completely burn
out and deplete its fuel. We use a baseline model consistent
with fire suppression strategies used in practice. Specifically,
our baseline fire suppression targets the cell with the max-
imum utility that shows evidence of fire (through observa-
tions). Our open-source code is built using the POMDPs.jl
framework (Egorov et al. 2017) and is available at https:
//github.com/wildfire-modeling/response model.

Figure 4 shows the mean negative utility averaged across
start states and spread scenarios. We also vary the action ef-
fectiveness q since in practice, suppression efforts do not
always completely puts out wildfires. We see that our ap-
proach (referred to as “Uncertainty Aware Fire Response”
or UAFR) consistently outperforms the baseline method in
all scenarios with more significant improvements in larger
grids and increased action effectiveness.

Discussion
Wildfires have caused massive damage in the last decade.
They are particularly challenging for first responders to

combat due to difficulties in surveillance and scarcity of
resources. In this paper, we built a data-driven forecast-
ing model by extracting relevant determinants of fire spread
through satellite imagery. Then, we developed an approach
to wildfire suppression that explicitly takes state uncertainty
into account. To the best of our knowledge, we were the first
to create a comprehensive dataset on wildfires that combines
historical fire data with relevant covariates. Our dataset, with
over two million data points, and our codebase are open-
source for the research community to use.

There are some limitations to our current work. While our
forecasting model shows high accuracy, we observe that the
random forest regression model is insensitive to the number
of decision trees in the ensemble. As a result, simpler meth-
ods like classification and regression trees (CART) (Breiman
et al. 1984) might result in better generalization to unseen
data. Second, our approach to suppression needs to be inte-
grated with the data-driven fire spread model. Finally, while
we simulated wind for our experiments, our open-source
dataset does not contain information about wind. We are
currently incorporating hourly wind data from the National
Oceanic and Atmospheric Administration (NOAA)1 with
our fire data to develop a more comprehensive dataset.
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