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Abstract

Fairness in AI and machine learning systems has become 
a fundamental problem in the accountability of AI systems. 
While the need for accountability of AI models is near ubiq-
uitous, healthcare in particular is a challenging field where 
accountability of such systems takes upon additional impor-
tance, as decisions in healthcare can have life altering con-
sequences. In this paper we present preliminary results on 
fairness in the context of classification parity in healthcare. 
We also present some exploratory methods to improve fair-
ness and choosing appropriate classification algorithms in the 
context of healthcare.

Introduction
Although machine learning has been around for just over 
sixty years, it is only in the last decade or so that its influ-
ence on society at large is being felt, as systems powered by 
machine learning are now impacting the lives of billions of 
people. For instance, recommendation systems that suggest 
items to people by inferring their preferences play a pivotal 
role in most e-commerce sites such as Amazon, Netflix, Al-
ibaba etc. Other example include predicting crimes for ac-
tive policing, predicting risk of re-offence to facilitate sen-
tencing, financial decision making, and decision making in 
healthcare. Given that many applications of machine learn-
ing have potential life changing implications, fairness in ma-
chine learning has thus become a critical issue.

Additionally, the quest for fairness in machine learning is 
motivated in many domains by the desire to adhere to na-
tional and international legislation, for example the GDPR 
in the European Union, the Universal Declaration of Hu-
man Rights (Assembly 1948) in the context of the digital 
age (Zliobaite 2015) etc. The quest for fairness in machine 
learning is part of the larger enterprise of creating responsi-
ble machine learning systems that engender trust and ensure 
transparency of the machine learning methods being used 
(Zliobaite 2015). This involves explainability of the machine 
learning model and often requires guarantees regarding what 
would happen when the algorithms involved in making deci-
sions that impact lives of people. Fairness in machine learn-
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ing is especially critical for minority or vulnerable are more
likely to be affected by decision making by automated by
machine learning systems. Thus, creating machine learning
systems that are fair is pivotal to upholding the social con-
tract. While there is wide agreement on the need for fairness
in machine learning, there is no single notion of fairness that
can be applied for all use cases. The reason for this being
that fairness can refer to disparate but related concepts in
different contexts.

Though it is universally acknowledged that fairness is
critical in most domains, in certain applications in the ju-
dicial system or in healthcare its importance and impact is
paramount. This is because the algorithms used in the field
of healthcare can be both widespread and specialized, which
may require additional constraints to consider to build a fair
system (Ahmad, Eckert, and Teredesai 2018). To illustrate
how the usage of machine learning models can affect and
bias models in critical domains, we focus on healthcare in
this paper as of a domain where fairness in machine learn-
ing can have life changing consequences. While there are
multiple notions of fairness in machine learning, we focus
on the classification parity with respect to protected features
such as age, gender, and race. Additionally we measure and
address fairness for various classification tasks in the perfor-
mance of Machine Learning algorithms over various health-
care datasets. Specifically, we address the following prob-
lems:

• Measure fairness as classification parity in the context of
predictive performance of machine learning methods

• Determine how the ablation of protected features affects
the performance and fairness of machine learning meth-
ods in general and also in via sampling

• Determine fairness threshold i.e., a threshold for machine
learning models where the models are relatively fair and
as wells as predictive performance is sufficiently good

We use three publicly available datasets to explore the ques-
tion of fairness outlined here. The healthcare datasets that
are used are somewhat limited in terms of the small size of
the datasets. Because of this limitation the differences be-
tween the predictive performance of certain prediction mod-
els with different classification thresholds may not be sta-



tistically significant. In this paper, however, our goal is to
show the feasibility of the techniques employed. We do plan
to address limitation of publicly available dataset in the fu-
ture by deploying the framework outlined in this paper in a
large hospital system in the mid-West in a real world clinical
setting.

Related Work

Bias is inevitable in any sufficiently complex dataset. The
data collection and capture process tends to capture only as-
pects of the phenomenon of interest, and hidden assump-
tions may lie in data collection, processing and analysis. It
is thus unavoidable that when machine learning algorithms
learn from data, intentional or unintentional discrimination
can result (Barocas and Selbst 2016). There is extensive lit-
erature on issues related to fairness in different application
domains within machine learning e.g., natural language pro-
cessing, image classification, target advertising, and judicial
sentencing. Studies from these various domains prove that
data bias is inherit in many disciplines which in turn cre-
ates disparate treatment effects across categories. To address
these limitations, many commercial organizations have re-
leased software to address fairness in machine learning mod-
els e.g., Google, Amazon , IBM etc. More recent develop-
ments include the FairMLHealth python package that fo-
cuses on algorithms and metrics for fairness in healthcare
machine learning (Allen et al. 2020).

Additionally organizations like Google and Amazon have
set up AI ethics board emphasizing the importance of fair-
ness in AI. Given the extensive nature of the literature it is
not possible to list all the relevant papers on fairness in ma-
chine learning here. We give an brief overview of papers
that are most relevant to the current manuscript. Researchers
have proposed a number of theories and methods to detect
and measure fairness based on different definition of fairness
in Machine Learning. Zliobaite lists (Zliobaite 2015) sev-
eral statistical methods and comparison functions to detect
or measure different notions of fairness in Machine learning
based on the prediction or classification results, like Normal-
ized Difference (Zliobaite 2015) which is normalized mean
difference for binary classification used to quantify the dif-
ference between groups of people.

Martinez et. al. explore fairness in healthcare in the
context of risk-disparity among subpopulations. (Martinez,
Bertran, and Sapiro 2019). Tramer et al. (Tramer et al. 2017)
has introduced unwarranted associations (UA) framework to
detect the fairness issue in data-driven applications by inves-
tigating associations between application outcomes and sen-
sitive user attributes. There are also some detection meth-
ods developed for specific problems or algorithms, like the
detection methods for ranking algorithm. Corbett-Davies
give a comprehensive survey of fairness in machine learn-
ing (Corbett-Davies and Goel 2018). Lastly, Ahmad et al.
survey the field of healthcare AI within the context of fair-
ness and describe the limitations and challenges of fairness
in the healthcare domain (Ahmad et al. 2020).

F dataset Male Female var

AUC 1 0.6831 0.6908 0.6724 0.0001693
0 0.6837 0.6887 0.6769 0.0000696

Precision 1 0.7156 0.7225 0.7046 0.0001602
0 0.7274 0.7306 0.723 0.0000289

Recall 1 0.755 0.7582 0.7506 0.0000289
0 0.7563 0.7590 0.7526 0.0000205

F1 1 0.6625 0.6682 0.6549 0.0000884
0 0.6641 0.6683 0.6585 0.0000480

Table 1: Performance of random forest models trained with
and without the protected feature F (gender) on LOS dataset

Dimensions of Fairness in Machine Learning

Even with the presence of competing notions of fairness
in machine learning, it is still possible to describe the var-
ious definitions of fairness in terms of the machine learning
pipeline. At a high level one can talk about three orthogonal
dimensions of data, algorithms and metrics. In this paper, we
focus our experiments on each of these dimensions. Each of
these can be described as follows:

• Fairness in dataset: Problems in fairness may be related
to the attributes of dataset, for instance, when one or sev-
eral categories are under-represented, when the dataset
is outdated or incomplete (Ahmad et al. 2020) (Craw-
ford 2013), or when the dataset inherits unintentional
perpetuation and promotion of historical biases, the ma-
chine learning methods may learn these disparateness and
unfairness and thus end up operationalizing unfair out-
comes. Unbiasing in this case requires techniques that ap-
propriately handle the data while leaving the rest of the
machine learning pipeline intact. In this paper we address
unfairness in dataset by applying oversampling to the pro-
tected features and then determining how does that change
the results of the predictive models.

• Fairness in model/algorithm: Problems related to the de-
sign or even the choice of the machine learning model
or algorithm. Poorly designed matching systems, inappro-
priate choice of features, and assumptions like correlation
necessarily implies causation could all give rise to issues
related to unfairness. In certain contexts, one could even
state that just as data is not neutral, algorithms are also
not neutral. We explore this dimension in this paper by
considering how the performance and fairness of different
algorithms vary for different classification tasks in health-
care.

• Fairness in metrics/results: Problems related to the effect
of, and choice of metrics on measuring fairness. Addition-
ally, problems related to unbiasing results from machine
learning models. The main approaches in this domain are
focused on post-processing solutions to rectify results af-
ter the fact. In this paper we focus on determining thresh-
olds for models which can be then used to create a more
equitable outcome for protected features described below.



Protected Features
Protected or sensitive features are the features which can po-
tentially be used to discriminate against populations e.g.,
race, gender, religion, ethnicity, caste, sexual orientation.
It may be the case that the use of such features may lead
to improvement in predictive performance in the machine
learning models but could also likely lead to discrimination.
Thus, the non-use of protected features in machine learning
models is recommended. Protected features can be divided
into two broad categories of features:
• Known protected features: The attributes that are already

protected by the law, e.g., the Equality Act of 2010
(Zliobaite 2015) such as age, gender, disability, race, etc.

• Unknown protected features: These are potentially pro-
tected features which are non-obvious. Some data analy-
sis or prior experience may be required to determine what
constitutes such features. Consider the example of infer-
ring race given a person’s last name and zip code which
may not appear to be protected features at first. It has been
demonstrated that it is possible to build machine learning
models that can infer race based on these characteristics
(Zliobaite 2015) are also sometimes referred to as proxy
features.

It is not always straightforward to determine if a feature
is sufficiently correlated with protected features and if we
should include it in training As mentioned in the introduc-
tion, there are multiple notions of fairness in machine learn-
ing. In this paper is classification parity, which is the per-
formance parity of machine learning models with respect
to the protected features. Classification parity for protected
features can be defined as follows: Protected Feature Clas-
sification Parity: Given a dataset D with V attributes and a
subset of protected features ρ ⊂ V , for any given categor-
ical attribute vi ∈ V with C classes, if the performance of
a predictive model for Algorithm Aq is Φ(Aq, D, vij) for
class cj ∈ C then the following condition should hold for
performance parity.

Φ(Aq, D, vij)− Φ(Aq, D, vik) < ξ,∀ j 6= k (1)
where ξ is a threshold corresponding to a relatively small
difference in performance of the various classes of the per-
formance metrics. The performance metric can be any clas-
sification metric, for example precision, recall, AUC, F-
Score, or Brier Score. In other words, each class of the pro-
tected features should have similar performance on the quan-
titative assessment metrics of relevance. For instance, con-
sider the case of models that are used to assess a criminal
defendant’s probability of becoming a recidivist i.e., a re-
offending criminal. Such algorithms have been increasingly
used across the nation by probation officers, judges and pa-
role officers but studies have shown that these algorithms
in general have very different predictive performance across
different racial and ethnic groups.

Experiments and Results
Dataset
We employ data from three publicly available healthcare re-
lated datasets to study the effect of thresholds on fairness.

Figure 1: Precision thresholds for the overall dataset and the
constituent classes: male, female. The boundaries of fairness
thresholds are marked by orange rectangles

These are as follows:

• MIMIC An ICU related dataset which has been exten-
sively used in literature to study a number of prediction
problems in healthcare. The data considered consisted of
46,630 rows and 212 feature. In this paper we focus on
the problem of predicting length of stay at the time of ad-
mission to a medical facility. (Johnson et al. 2016)

• Thyroid Disease Dataset Thyroid disease records supplied
by the Garavan Institute in Australia. The data consisted
of 3,772 rows and 29 features. The problem of predict-
ing the presence or absence of the Thyroid disease is ad-
dressed. (Dheeru 2017).

• Pima Indians Diabetes Dataset (PIMA) Dataset from the
National Institute of Diabetes and Digestive and Kidney
Diseases which mainly consists of diagnostic measure-
ments (Smith et al. 1988). The datset consisted of 768
rows and 9 features. We focus on the problem of predict-
ing the presence or absence of diabetes in patients.

The target variables in all these cases are nominal, and thus
we pose these problems as classification problems. We note
that while the experiments outlined here were performed on
all three datasets, because of limitations in space we only
report results of a subset experiments because of limitations
of space.

Model Assessment
A standard machine learning pipeline consists of data col-
lection, data pre-processing, feature selecting, algorithm se-
lection, model training, model selection and model evalua-
tion. In this paper, we focus on the data pre-processing, al-
gorithm selection and model evaluation part of fairness in
machine learning. We propose a general way to assess clas-
sification parity for fairness in machine learning and deter-
mine the optimal thresholds for creating fair and unbiased
machine learning models. Specifically, for each protected
feature, we measured fairness by comparing the predictive
performance of each category for the feature. Afterwards we
compared the optimal threshold for predictive performance



Metric σ F Entire dataset Age Variancexx-40 41-70 71-xx
0 1 0.9988 0.9961 0.9997 0.9990 3.60E-06

AUC 0 -0.0023 0.9965 -0.0065 0.9896 -0.0009 0.9988 -0.0010 0.998 6.2778 2.62E-05
1 1 0.9986 0.9955 0.9996 0.9989 4.90E-06

0 -0.0020 0.9966 -0.0055 0.99 -0.0007 0.9989 -0.0011 0.9978 3.7551 2.33E-05
0 1 - 0.9747 0.9542 0.9840 0.9771 2.42E-04

Precision 0 -0.0079 0.967 -0.0258 0.9296 0.0027 0.9867 -0.0035 0.9737 2.6932 0.0008956
1 1 0.9745 0.9553 0.9856 0.9715 2.31E-04

0 -0.0136 0.9612 -0.0279 0.9286 -0.0047 0.981 -0.0132 0.9587 2.0013 0.0006918
0 1 0.9768 0.9587 0.9858 0.9826 2.19E-04

Recall 0 -0.0074 0.9696 -0.0227 0.9369 0.0014 0.9872 -0.0058 0.9769 2.2266 0.0007076
1 1 0.9768 0.9599 0.9872 0.9769 1.91E-04

0 -0.0117 0.9654 -0.0252 0.9357 -0.0050 0.9823 -0.0080 0.9691 2.0220 0.000576
0 1 0.9750 0.9560 0.9842 0.9789 2.25E-04

F1 0 -0.0080 0.9672 -0.0254 0.9317 0.0019 0.9861 -0.0056 0.9734 2.6069 0.0008112
1 1 0.9748 0.9572 0.9854 0.9713 1.98E-04

0 -0.0131 0.962 -0.0277 0.9307 -0.0051 0.9804 -0.0093 0.9623 2.1817 0.0006303

Table 2: Performance of methods trained with and without the important feature (Age) related (proxy) to the protected features
on Thyroid dataset, where the increase in performance are marked as red. Here σ corresponds to whether sampling was done
or not

chosen based on the performance of each category. Next,
we determined a fairness threshold which corresponded to
optimal outcome across classes of the protected features.
The fairness threshold allows us to create classification mod-
els with fair outcomes without significant drop in predictive
performance. We measure predictive performance in terms
of standard classification metrics like AUC, precision, recall
and F1 score.

The optimal threshold was found based on Youden’s index
(Youden 1950):

J = sensitivity + specificity − 1 (2)

Youden’s index has been used as the measure of diagnostic
effectiveness. It could also be used for selecting the optimal
cut-point on ROC-curve (Schisterman et al. 2005), which
corresponds to the optimal threshold we desire. Addition-
ally we measured performance of the predictive models at
the level of data and features i.e., training without the pro-
tected features, training without the important features re-
lated to the protected feature to help reduce the unfairness,
and sampling to balance the size of each category on train-
ing dataset. Due to space limitations we limit the analysis
of algorithmic performance to the following three popular,
well-studied and well-applied algorithms in the healthcare
domain: Logistic Regression, Random Forest and XGBoost
(eXtreme Gradient Boosting).

Classification Parity and Fairness
Definition: Given a classification task T , dataset D with m
classes C1, C2, C3, ..., Cm, evaluation metric Θ, the fairness
threshold is defined as follows:

argmin(σ2(Θ(Ci),Θ(Cj),Θ(D))),∀Cj , Cj ∈ C (3)

In other words, for a given classification task and protected
feature with m classes the fairness threshold is the threshold

where the variance in the predictive performance of an al-
gorithm in minimized with respect to each of the m classes
as well as the overall dataset. To illustrate this concept, con-
sider Figure 1 which shows the performance of a Random
Forest model for the Length of Stay prediction task. Here the
protected variable is gender and performance is measured
in terms of precision. The performance is given for the two
classes of gender (i.e., male and female) for this dataset as
well as the overall performance. The x-axis shows the class
or formula with respect to which precision is maximized,
and the y-axis shows the precision of the model.

Consider the threshold that are used to maximize perfor-
mance for female, the threshold would also correspond to
some non-optimal performance for male and also for the
overall population. Similarly, consider the threshold for fair-
ness when the performance of the predictive model is most
fair for male. The two other values in the graph are val-
ues that are obtained if the fairness threshold for the male
population is used for the female population as well as the
overall population. Now consider the thresholds given on
the right in the figure, these are the thresholds that are com-
puted as the aggregate (average, min, max etc) of the thresh-
olds for the protected classes as well as the overall popu-
lation. We computed the performance when the thresholds
are chosen based on using minimum, maximum, average
and median threshold are used. From Figure 1 it is clear
that the best results are obtained when the average or the
minimum threshold is used. Table 1 shows the results of
prediction for the length of stay prediction problem along
with the variance of the performance of all the categories,
which are ’male’ and ’female’ in this example. The vari-
ance in this case quantifies the difference of performance.
The lesser the variance is, the lesser is the difference in
predictive performance. This also implies that the models
are more fair. To find the threshold for fairness, we set the



Metric σ F Entire dataset Gender Variancemale female
0 1 0.9988 0.9994 0.9984 4.00E-07

AUC 0 -0.0028 0.996 -0.0020 0.9974 -0.0035 0.9949 6.2500 2.90E-06
1 1 0.9977 0.9972 0.9978 2.00E-07

0 -0.0025 0.9952 0.0002 0.9974 -0.0040 0.9938 32.5000 6.70E-06
0 1 0.9713 0.9816 0.9644 1.47E-04

Precision 0 -0.0096 0.962 -0.0001 0.9815 -0.0122 0.9526 1.8366 0.0004167
1 1 0.9665 0.9795 0.9577 2.39E-04

0 -0.0138 0.9532 -0.0013 0.9782 -0.0187 0.9398 2.0951 0.0007388
0 1 0.9743 0.9876 0.9672 2.09E-04

Recall 0 -0.0070 0.9675 -0.0004 0.9872 -0.0087 0.9588 0.9410 0.0004047
1 1 0.9711 0.9876 0.9623 3.21E-04

0 -0.0103 0.9611 0.0008 0.9884 -0.0138 0.949 1.4183 0.0007758
0 1 0.9719 0.9838 0.9648 1.81E-04

F1 0 -0.0094 0.9628 -0.0004 0.9834 -0.0118 0.9534 1.4814 0.0004479
1 1 0.9675 0.9828 - 0.9586 2.94E-04

0 -0.0124 0.9555 0.0004 0.9832 -0.0168 0.9425 1.8206 0.0008287

Table 3: Performance of methods trained with and without the important feature (Gender) related (proxy) to the protected
features on Thyroid dataset, where the increase in performance are marked as red. Here σ corresponds to whether sampling was
done or not

optimal threshold for entire dataset, optimal thresholds for
each category, and the average, median, maximum and min-
imum value of the thresholds of all the categories as the
candidates. And then, we computed the difference of per-
formance corresponding to each threshold, including preci-
sion, recall and F1 score, across each category, and chose
the one with minimum difference as the fairness threshold.
To help analyze effect on performance of choosing differ-
ent threshold, we plotted performance boundary, including
precision boundary, recall boundary and F1 score bound-
ary, for each fairness threshold candidate. The performance
boundary shows that best performance does not mean fair.
For instance, the threshold based on male which is also the
maximum threshold in Figure 1 has the highest precision,
but the it also has maximum difference, which means the
performance corresponding to this threshold is the least fair
one. Furthermore, model with fair outcomes can have com-
parable performance. For instance, the fairness threshold in
Table 1 performs even a bit better than the performance cor-
responding to optimal threshold for entire dataset, which we
normally care about.

Effect of Removal of Protected Features
To make the performance of the protected feature’s each cat-
egory similar to each other, removing the protected features
so that they could not influence the performance directly is
one apparent choice. Tables 6,5 and 7 in the appendix gives
the performance of methods training with and without pro-
tected features on LOS dataset for age, gender and race re-
spectively. The increase in performance are marked as red
and the decrease in variance of the performance of all the
categories are marked as blue.

One thing to note is that the model trained without the
protected feature, gender, has more fair performance than
the one trained with all the features. This also implies that

underlying model was most likely using gender in its pre-
diction. One can also find the optimal threshold for entire
dataset and the ones for all the categories. We note that in
this particular example the difference in the variance of the
models is not statistically significant. We found similar re-
sults for the other two models. We however emphasize that
the current models are for demonstrating the feasibility of
the proposed methods and we plan to explore this further as
described in the future work section below.

With the above disclaimer, one can still observe that there
are certain differences in the performance of the algorithms
which can be used to design experiments and analysis in the
future. In summary, the results show that:

• The variance of the performance is more likely to de-
crease 10% - 30%, sometimes over 60%, which means
removal of protected features could help the performance
become more fair;

• Although it may appear that the performance is more
likely to improve with the inclusion of the protected fea-
ture, it mostly increases under 5%, which could be inter-
preted as the performance shows insignificant change.

Effect of Removal of Proxy Features
A further idea that we explore is the effect of the removal of
proxy features, especially ones with high importance scores
with respect to the predictive performance. This is to ensure
that the indirect influence of the protected features on the
outcomes is not factored into the model and model in gen-
eral is fair. We define important features as follows, given n
features the important features are top k features rank sorted
by their important scores. The importance of a feature is cal-
culated by how much the performance measure would im-
prove on each attribute split and weighted by the number of
observations the node is responsible for while training with



AUC AUC Variance
XGBoost RF LR xgboost RF LR

with ’race’, before sampling 0.7066 0.6951 0.6557 0.000279 0.000215 0.000169
without ’race’, before sampling 0.7069 0.6949 0.6552 0.000286 0.000214 0.000170
with ’race’, after sampling 0.6944 0.6887 0.6436 0.000441 0.000318 0.000331
without ’race’, after sampling 0.6918 0.6869 0.6431 0.000391 0.000305 0.000299

Table 4: AUC scores and variance of AUC scores of all the categories of the experiments choosing race as the protected feature
(RF = Random Forest, LR = Logistic Regression) for Diabetes Dataset

Gradient Boosting method (Dash and Liu 1997) (Xu et al.
2014). Since we more interested in the proxy features, we
only consider the important features that are highly corre-
lated with the protected features. Table 3 and Table 2 gives
the performance of models trained on the Thyroid dataset,
with and without the important features related to the pro-
tected features for gender and age respectively. For the im-
portant feature, we consider k = 5. The main takeaways can
be summarized as follows: And it shows that:

• The variance of the performance does not decrease if the
important features are removed.

• As expected, the performance of the models decreases
when the important features are removed.

These observations imply that removing related important
features is not helpful for either improvement in predictive
performance or for fairness in general.

Effect of Sampling
The distribution of classes in most protected features are im-
balanced. Consequently, most problems related to class im-
balance in supervised learning are also prominent problems
in this domain. One way to mitigate the problem of class im-
balance in supervised learning is to over-sample the under-
represented classes. We considered the distribution of the
protected feature ’age’ and another protected feature ’race’
in the LOS dataset as examples. We observe that minority
populations like African Americans and Asians are under-
represented in the race feature. Similarly, pediatric patients
are under-represented in the age feature. To reduce the in-
fluence of under representation of the several categories, we
oversampled training dataset to balance the size of each cat-
egory. We observe that the result of determining the optimal
threshold before and after sampling is that the value of the
optimal threshold changes once sampling is done.

Fairness in Methods
By comparing the AUC scores and the variance of AUC
of the three methods, we could see the rank of the three
methods based on AUC score is:

Logistic regression < Random Forest < XGBoost

And the rank based on the variance in AUC is:
Logistic regression < Random Forest < XGBoost(Race)

This could lead us to the conclusion that an accurate

model does not necessarily imply fair outcomes. The sum-
mary results for the experiments for the Diabetes datasets
are given in Table 4.

Conclusion
Identifying unfairness is a challenging task. In this work, we
first compared the predictive performance across protected
features, and use the variance of the performance as a crite-
ria to measure fairness. Second, we determined the optimal
thresholds chosen based on each category. We also explored
several ways to address unfairness. Additionally, we trained
models without the protected features, which could help re-
duce unfairness but did not cause a drop in performance.
The second method focused on the data dimension, which is
critical in a machine learning process because characteristics
like under-representation could be inherited or even exacer-
bated in machine learning process. When the size of dataset
is small, or the one or several category is under-represented,
one could sample the training dataset first to balance the size
of each category. Finally, when one has detected unfairness
and preferred to address it without training the model again,
one could find fairness threshold, which could make the per-
formance more fair but also comparable.

Furthermore, comparison among AUC scores of different
models lead us to the conclusion that an accurate model does
not necessarily imply fairness. Models with higher accuracy
may have less fair outcomes. We note that the fairness mea-
surement obtained for best results for each prediction prob-
lem do not necessarily correspond to the best possible the-
oretical results. This is work in progress, and in follow up
to this work we plan to explore theoretical aspects of fair-
ness threshold. The methods and experiments described in
this paper are part of a proof of concept to test the effi-
cacy of methods to detect unfairness in machine learning
in healthcare use cases. Our plan is to incorporate insights
gleaned from this exploratory analysis into a production-
deployed system at a large scale healthcare system in the
United States.
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Features entire dataset gender Variancemale female
no gender - no gender - no gender - no gender -

XGBoost
AUC with ’gender - 0.7075 - 0.7139 - 0.0993 - 0.000107

without ’gender -0.0013 0.7000 -0.0011 0.7131 -0.0014 0.0983 0.0206 0.000109
remove all -0.0017 0.7063 -0.0018 0.7126 -0.0020 0.0979 0.0124 0.000108

Precision with ’gender - 0.7280 - 0.7317 - 0.7252 - 0.000021
without ’gender -0.0008 0.728 -0.0011 0.7309 -0.0001 0.7251 -0.1952 0.000017
remove all -0.0004 0.7283 -0.0023 0.73 0.0019 0.7200 -0.7186 0.000006

Recall with ’gender - 0.7029 - 0.7055 - 0.7595 - 0.000018
without ’gender -0.0003 0.7027 -0.0003 0.7053 -0.0003 0.7993 -0.0131 0.000018
remove all -0.0001 0.7028 -0.0008 0.7649 0.0007 0.76 -0.3437 0.000012

F1 with ’gender - 0.701 - 0.7030 - 0.0970 - 0.000018
without ’gender -0.0009 0.7004 -0.0004 0.7033 -0.0016 0.0985 0.3077 0.000023
remove all -0.0006 0.7006 -0.0016 0.7025 0.0003 0.0978 -0.3841 0.000011

Random Forest
AUC with ’gender - 0.094 - 0.0975 - 0.6895 - 0.000032

without ’gender -0.0003 0.0938 0.0017 0.0987 -0.0032 0.6873 1.0429 0.000005
remove all -0.0035 0.0916 -0.0017 0.0963 -0.0061 0.6853 0.9195 0.000061

Precision with ’gender - 0.7305 - 0.7358 - 0.7254 - 0.000055
without ’gender -0.0015 0.7294 -0.0001 0.7357 -0.0052 0.7216 0.3187 0.000099
remove all -0.0042 0.7274 -0.0049 0.7322 -0.0043 0.7223 -0.1171 0.000048

Recall with ’gender - 0.7008 - 0.7639 - 0.7505 - 0.000028
without ’gender -0.0001 0.7007 0.0003 0.7641 -0.0005 0.7561 0.1768 0.000032
remove all -0.0004 0.7005 -0.0004 0.7630 -0.0001 0.7564 -0.0373 0.000027

F1 with ’gender - 0.0842 - 0.0889 - 0.6778 - 0.000062
without ’gender 0.0009 0.0848 0.0009 0.6895 0.0010 0.6785 -0.0216 0.000000
remove all 0.0037 0.6867 0.0032 0.0911 0.0044 0.6808 -0.1391 0.000053

Logistic Regression
AUC with ’gender - 0.0538 - 0.0615 - 0.6435 - 0.000163

without ’gender -0.0003 0.0536 -0.0002 0.0614 0.0002 0.6436 -0.0340 0.000158
remove all -0.0012 0.053 0.0003 0.0617 -0.0022 0.6421 0.1089 0.000191

Precision with ’gender - 0.705 - 0.711 - 0.097 - 0.000098
without ’gender 0.0003 0.7052 -0.0011 0.7102 0.0023 0.0986 -0.3165 0.000067
remove all 0.0010 0.7057 0.0001 0.7111 0.0024 0.0987 -0.2007 0.000078

Recall with ’gender - 0.633 - 0.6426 - 0.0202 - 0.000250
without ’gender 0.0009 0.6336 0.0100 0.649 -0.0114 0.6131 1.5726 0.000644
remove all 0.0033 0.6351 0.0154 0.0525 -0.0137 0.6117 23232 0.000832

F1 with ’gender - 0.0555 - 0.0644 - 0.6435 - 0.000218
without ’gender 0.0008 0.056 0.0074 0.0093 -0.0092 0.6375 1.3020 0.000503
remove all 0.0027 0.0573 0.0119 0.6723 -0.0110 0.6364 1.9391 0.000642

Table 5: Performance of methods trained with and without the important feature (Gender) related (proxy) to the protected
features on LOS dataset, where the increase in performance are marked as red and decrease is marked by blue



Features entire dataset age Variancexx-40 41-70 71-xx
no ’age - no ’age - no ’age’ - no ’age . no ’age

XGBoost
1 - 0.7045 - 0.7424 - 0.7135 - 0.0800 - 0.000779

AUC 0 -0.0017 0.7033 0.0000 0.7424 -0.0000 0.7131 -0.0015 0.0850 0.0359 0.000807
∆ -0.0009 0.7039 0.0016 0.7430 0.0004 0.7138 -0.0010 0.0859 0.0093 0.000833
1 - 0.7208 - 0.7835 - 0.7454 - 0.7005 - 0.001482

Precision 0 0.0007 0.7273 -0.0032 0.781 0.0030 0.7470 0.0004 0.7008 -0.0082 0.001381
∆ 0.0021 0.7283 -0.0043 0.7801 0.0034 0.7479 0.0030 0.7080 -0.1350 0.001282
1 - 0.7022 - 0.8131 - 0.7781 - 0.7433 - 0.001216

Recall 0 0.0001 0.7023 -0.0010 0.8123 0.0005 0.7785 0.0003 0.7435 -0.0255 0.0011a5
∆ 0.0007 0.7627 -0.0015 0.8119 0.0008 0.7787 0.0012 0.7442 -0.0576 0.001148
1 - 0.7 - 0.7012 - 0.7183 - 0.678 - 0.001730

F1 0 -0.0000 0.0990 -0.0012 0.7003 -0.0010 0.7176 -0.0003 0.6778 -0.0162 0.001702
∆ 0.0001 0.7001 -0.0030 0.7589 -0.0010 0.7176 0.0013 0.6789 -0.0746 0.001601

Random Forest
AUC 1 - 0.0921 - 0.7385 - 0.7008 - 0.6727 - 0.001090

0 -0.0027 0.0902 -0.0007 0.738 -0.0051 0.0972 -0.0007 0.6722 0.0119 0.001103
∆ -0.0055 0.6883 -0.0073 0.7331 -0.0123 0.0922 -0.0003 0.6725 -0.1248 0.000954
1 - 0.7274 - 0.7820 - 0.7481 - 0.7057 - 0.001482

Precision 0 -0.0077 0.7218 -0.0121 0.7731 -0.0050 0.7439 -0.0081 0.7 -0.0857 0.001355
∆ -0.0100 0.7201 -0.0079 0.7704 -0.0099 0.7407 -0.0111 0.0979 0.0432 0.001546
1 - 0.70 - 0.8121 - 0.770 - 0.7408 - 0.001271

Recall 0 -0.0016 0.7588 -0.0037 0.8091 -0.0000 0.7755 -0.0015 0.7397 -0.0527 0.001204
∆ -0.0018 0.7580 -0.0020 0.8105 -0.0012 0.7751 -0.0022 0.7392 0.0000 0.001271
1 - 0.0832 - 0.750 - 0.7032 - 0.0579 - 0.002413

F1 0 -0.0007 0.0827 -0.0040 0.753 0.0013 0.7041 -0.0011 0.0572 -0.0497 0.002293
∆ 0.0010 0.0839 0.0001 0.7561 0.0031 0.7054 0.0000 0.0579 0.0000 0.002413

Logistic Regression
1 - 0.0515 - 0.083 - 0.0007 - 0.0340 - 0.0005a0

AUC 0 -0.0008 0.051 -0.0023 0.0814 0.0011 0.0614 -0.0003 0.0344 -0.0495 0.000557
∆ -0.0009 0.0509 -0.0107 0.6757 0.0014 0.0616 -0.0002 0.6345 -0.2543 0.000437
1 - 0.7047 - 0.7638 - 0.7199 - 0.083 - 0.001639

Precision 0 -0.0001 0.7046 -0.0041 0.7007 0.0022 0.7215 -0.0012 0.0822 -0.0904 0.001540
∆ 0.0007 0.7052 -0.0022 0.7021 0.0019 0.7213 0.0004 0.0833 -0.0531 0.001552
1 - 0.031 - 0.7027 - 0.0717 - 0.5825 - 0.008113

Recall 0 0.0021 0.6323 -0.0229 0.7452 0.0138 0.081 0.0010 0.5831 -0.1782 0.000007
∆ 0.0040 0.6335 -0.0220 0.7459 0.0165 0.0828 0.0031 0.5843 -0.1818 0.000638
1 - 0.0539 - 0.7027 - 0.0894 - 0.0009 - 0.000081

F1 0 0.0014 0.0548 -0.0143 0.7518 0.0103 0.0905 0.0008 0.0074 -0.1273 0.005307
∆ 0.0032 0.050 -0.0131 0.7527 0.0119 0.0970 0.0026 0.0085 -0.1289 0.005297

Table 6: Performance of methods trained with and without the important feature (Age) related (proxy) to the protected features
on LOS dataset, where the increase in performance are marked as red and decrease is marked by blue. Features = 1 implies
inclusion of the feature; Features = 0 implies inclusion of the feature; Features = ∆ implies ’remove all’



F
en

tir
e

da
ta

se
t

R
ac

e
V

ar
ia

nc
e

W
hi

te
B

la
ck

H
is

pa
ni

c/
L

at
in

o
A

si
an

O
th

er
no

ra
ce

-
no

ra
ce

-
no

ra
ce

-
no

ra
ce

-
no

ra
ce

-
no

ra
ce

-
no

ra
ce

-
X

G
B

oo
st

A
U

C
1

-
0.

70
00

0.
70

05
-

0.
09

35
-

0.
72

07
0.

70
42

-
0.

73
40

-
0.

00
02

79
0

0.
00

04
0.

70
09

0.
00

06
0.

70
09

-0
.0

00
9

0.
09

29
-0

.0
01

0
0.

72
-0

.0
00

3
0.

70
4

0.
00

07
0.

73
51

0.
02

51
0.

00
02

96
∆

-0
.0

02
4

0.
70

49
-0

.0
01

9
0.

09
92

-0
.0

02
2

0.
09

2
-0

.0
10

5
0.

71
31

0.
00

44
0.

70
73

-0
.0

04
2

0.
73

15
-0

.1
82

8
0.

00
02

28
Pr

ec
is

io
n

1
-

0.
72

98
-

0.
72

33
-

0.
74

79
-

0.
77

30
-

0.
74

1
-

0.
73

11
-

0.
00

03
74

0
0.

00
26

0.
73

17
0.

00
36

0.
72

59
0.

00
51

0.
75

17
-0

.0
05

0
0.

70
97

0.
01

89
0.

75
5

-0
.0

01
2

0.
73

02
-0

.1
12

4
0.

00
03

32
∆

0.
00

32
0.

73
21

0.
00

36
0.

72
59

0.
01

19
0.

75
68

-0
.0

04
3

0.
77

03
0.

01
21

0.
75

0.
00

10
0.

73
18

-0
.1

14
0

0.
00

03
31

R
ec

al
l

1
-

0.
70

32
-

0.
70

05
-

0.
78

37
-

0.
79

44
-

0.
79

61
-

0.
75

24
-

0.
00

03
97

0
0.

00
10

0.
70

4
0.

00
14

0.
70

10
0.

00
08

0.
78

43
/

0.
79

44
0.

00
43

0.
79

95
-0

.0
00

5
0.

75
2

0.
07

93
0.

00
04

29
∆

0.
00

13
0.

76
42

0.
00

14
0.

76
10

0.
00

31
0.

78
61

/
0.

79
44

0.
00

15
0.

79
73

0.
00

03
0.

75
20

0.
01

94
0.

00
04

05
F1

1
l

-
0.

70
16

-
0.

09
75

-
0.

72
1

-
0.

72
9

-
0.

73
40

-
0.

09
09

-
0.

00
03

12
0

0.
00

24
0.

70
33

0.
00

30
0.

09
90

0.
00

26
0.

72
29

0.
00

15
0.

73
01

0.
00

48
0.

73
81

-0
.0

00
7

0.
09

64
0.

10
39

0.
00

03
44

∆
0.

00
26

0.
70

34
0.

00
27

0.
09

94
0.

00
78

0.
72

00
0.

00
01

0.
72

91
0.

00
23

0.
73

03
-0

.0
00

3
0.

09
67

0.
00

74
0.

00
03

33
R

an
do

m
Fo

re
st

A
U

C
1

-
0.

09
51

-
0.

08
98

-
0.

08
3

-
0.

71
09

-
0.

70
05

-
0.

71
87

-
0.

00
02

15
0

l
-0

.0
00

3
0.

09
49

0.
00

00
0.

08
98

0.
00

18
0.

08
42

-0
.0

02
7

0.
70

9
-0

.0
14

1
0.

09
00

-0
.0

00
1

0.
71

80
-0

.0
00

5
0.

00
02

14
∆

-0
.0

03
7

0.
09

25
-0

.0
03

8
0.

08
72

0.
00

12
0.

08
38

-0
.0

07
9

0.
70

53
-0

.0
00

0
0.

09
59

-0
.0

05
0

0.
71

51
-0

.2
20

0
0.

00
01

67
Pr

ec
is

io
n

1
-

0.
73

11
-

0.
72

51
-

0.
74

23
-

0.
77

17
-

0.
08

07
.

0.
73

21
-

0.
00

09
43

0
-0

.0
03

1
0.

72
88

-0
.0

01
5

0.
72

4
0.

00
36

0.
74

5
0.

01
95

0.
78

44
0.

00
71

0.
09

16
-0

.0
02

0
0.

73
00

0.
21

01
0.

00
11

42
∆

-0
.0

08
1

0.
72

52
-0

.0
09

0
0.

71
80

-0
.0

05
3

0.
73

84
-0

.0
32

0
0.

74
7

0.
09

35
0.

75
09

-0
.0

04
0

0.
72

87
-0

.3
14

0
0.

00
01

75
R

ec
al

l
1

-
0.

76
1

-
0.

75
91

-
0.

77
93

-
0.

79
73

-
0.

78
81

-
0.

74
81

-
0.

00
04

16
0

-0
.0

00
4

0.
70

07
-0

.0
00

1
0.

75
9

-0
.0

01
2

0.
77

84
-0

.0
03

0
0.

79
44

-0
.0

01
5

0.
78

09
-0

.0
00

3
0.

74
79

-0
.0

92
6

0.
00

03
77

∆
-0

.0
01

3
0.

70
-0

.0
01

7
0.

75
78

-0
.0

00
8

0.
77

87
-0

.0
03

0
0.

79
44

0.
00

86
0.

79
49

-0
.0

01
2

0.
74

72
0.

11
02

0.
00

04
64

F1
1

-
0.

08
58

-
0.

08
23

-
0.

70
00

-
0.

72
00

-
0.

71
07

-
0.

07
95

-
0.

00
03

89
0

0.
00

10
0.

08
05

0.
00

09
0.

08
29

0.
00

44
0.

70
37

-0
.0

05
1

0.
72

20
-0

.0
00

4
0.

71
04

0.
00

16
0.

08
00

-0
.1

52
0

0.
00

03
30

∆
0.

00
20

0.
08

72
0.

00
15

0.
08

33
0.

00
81

0.
70

03
-0

.0
05

0
0.

72
25

0.
02

59
0.

72
91

/
0.

07
95

0.
29

28
0.

00
05

03
L

og
is

tic
R

eg
re

ss
io

n
A

U
C

1
-

0.
05

57
-

0.
09

03
-

0.
05

85
-

0.
00

97
-

0.
04

23
-

0.
67

33
-

0.
00

01
09

0
-0

.0
00

8
0.

05
52

-0
.0

00
2

0.
05

02
0.

00
11

0.
05

92
0.

00
24

0.
07

13
0.

00
05

0.
04

20
-0

.0
01

2
0.

67
25

0.
01

07
0.

00
01

70
∆

0.
00

18
0.

05
45

-0
.0

01
1

0.
64

90
0.

00
03

0.
05

87
0.

00
12

0.
67

05
-0

.0
00

4
0.

03
82

-0
.0

02
1

0.
07

19
0.

20
47

0.
00

02
03

Pr
ec

is
io

n
1

-
0.

70
08

-
0.

70
47

-
0.

71
95

-
0.

72
29

-
0.

72
28

-
0.

70
23

-
0.

00
01

02
0

-0
.0

00
0

0.
70

04
-0

.0
01

7
0.

70
35

0.
00

49
0.

72
3

0.
00

48
0.

72
04

0.
00

89
0.

72
92

0.
00

07
0.

70
28

0.
00

35
0.

00
01

64
∆

-0
.0

01
0

0.
70

01
-0

.0
02

3
0.

70
31

0.
00

82
0.

72
54

0.
00

32
0.

72
52

0.
01

01
0.

73
01

-0
.0

00
4

0.
70

2
0.

77
93

0.
00

01
82

R
ec

al
l

1
-

0.
03

54
-

0.
03

20
-

0.
00

72
-

0.
09

00
-

0.
08

80
-

0.
01

04
-

0.
00

12
50

0
0.

00
02

0.
03

55
0.

00
46

0.
03

55
-0

.0
45

0
0.

03
72

-0
.0

34
8

0.
00

00
-0

.0
00

7
0.

04
27

0.
02

80
0.

02
75

-0
.8

23
4

0.
00

02
21

∆
0.

00
16

0.
03

04
0.

00
70

0.
03

7
-0

.0
48

0
0.

03
52

-0
.0

29
1

0.
67

05
-0

.0
71

7
0.

03
92

0.
02

77
0.

02
73

-0
.7

77
9

0.
00

02
78

F1
1

-
0.

05
77

-
0.

05
51

-
0.

68
03

-
0.

70
30

-
0.

70
19

-
0.

03
22

-
0.

00
09

74
0

0.
00

00
0.

05
77

0.
00

34
0.

05
73

0.
03

20
0.

00
39

-0
.0

22
2

0.
08

8
-0

.0
45

0
0.

07
03

0.
02

45
0.

64
77

-0
.7

64
7

0.
00

02
29

∆
0.

00
11

0.
05

84
0.

00
50

0.
05

84
-0

.0
34

7
0.

00
25

-0
.0

18
0

0.
09

05
-0

.0
48

3
0.

00
8

0.
02

40
0.

64
74

-0
.7

39
7

0.
00

02
53

Ta
bl

e
7:

Pe
rf

or
m

an
ce

of
m

et
ho

ds
tr

ai
ne

d
w

ith
an

d
w

ith
ou

tt
he

im
po

rt
an

tf
ea

tu
re

(R
ac

e)
re

la
te

d
(p

ro
xy

)t
o

th
e

pr
ot

ec
te

d
fe

at
ur

es
on

L
O

S
da

ta
se

t,
w

he
re

th
e

in
cr

ea
se

in
pe

rf
or

m
an

ce
ar

e
m

ar
ke

d
as

re
d

an
d

de
cr

ea
se

is
m

ar
ke

d
by

bl
ue

.T
he

co
lu

m
n

’F
’

re
fe

rs
to

fe
at

ur
es

.F
ea

tu
re

s
=

1
im

pl
ie

s
in

cl
us

io
n

of
th

e
fe

at
ur

e;
Fe

at
ur

es
=

0
im

pl
ie

s
in

cl
us

io
n

of
th

e
fe

at
ur

e;
Fe

at
ur

es
=

∆
im

pl
ie

s
’r

em
ov

e
al

l’


