
 Using AI to Identify Optimal Drilling Locations for Sustainable Irriga-
tion for Subsistence Agriculture 

Wanru Li, 1 Kathryn B. Laskey, 1 Mekuanent Muluneh, 2 Rupert Douglas-Bate, 3  

Hemant Purohit, 1 Paul Houser 1  
George Mason University, United States;1 Arba Minch University, Ethiopia;2 Global MapAid, United Kingdom;3  

[wli15, klaskey, hpurohit, phouser] @gmu.edu,1 mulunehmekuanent@gmail.com,2 rupertdouglas@gmail.com,3  

 

 

Abstract 

In East Africa, many drought events have occurred over the 

past few decades. Droughts have resulted in severe food cri-

ses, especially for countries relying heavily on agriculture. 

From the perspective of sustainability, utilizing groundwater 

for crop irrigation could be an avenue toward resilience to 

drought. In this study, we aim to use AI to identify optimal 

drilling locations for sustainable irrigation for subsistence ag-

riculture. Our initial focus is the Hare watershed in southern 

Ethiopia. To identify suitable drilling locations, a hydrogeo-

logical model (TOPMODEL) for estimation of discharge and 

depth to water table will be implemented first; machine learn-

ing models will be constructed to estimate the probability of 

finding groundwater at a particular location; and finally these 

will be provided as inputs to an optimization model. Since 

this study is in progress, preliminary intermediate results are 

presented in this paper. A topographic wetness index (TWI) 

map was developed. TWI captures topographic features re-

lated to groundwater potential and will be an important input 

to our drilling location model.  
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Introduction   

In Ethiopia, small farmers comprise 95% of all farmers, and 
about 80% of the population (Douglas-Bate et al. 2019. 
Thus, the population is heavily reliant on agriculture. A de-
creasing of water supply has affected the yield of crops and 
increased vulnerability to hunger. In 2017, about 20.6% of 
Ethiopians suffer from hunger (Ethiopia Hunger Statistics, 
n.d). At present in 2020, Ethiopia has faced a large outbreak 
of desert grasshoppers which results in loss of food and in-
come (ActionAid UK. 2017). To mitigate the impact of food 
shortages, drilling wells for irrigation could support sustain-
ability for subsistence agriculture.  
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    Understanding the factors that affect groundwater availa-
bility is important for estimating the probability of finding 
water at a location. Previous research has shown that lithol-
ogy, geological structures, drainage density, soils, lineament 
density, geomorphology, slope and land cover land use are 
the main factors that have an impact on the occurrence and 
movement of groundwater in an area (Jaiswal et al. 2003, 
Greenbaum 1985, Jha et al. 2010, Andualem and Demeke 
2019). A recent groundwater drought study has shown that 
the evapotranspiration rate, precipitation, and soil moisture 
are significant factors affecting groundwater drought propa-
gation (Han et al. 2019).  
    To estimate groundwater potential, we used TOPMODEL 
(a TOPography based hydrological MODEL) proposed by 
Beven and Kirkby (1979). TOPMODEL simulates hydro-
logical processes and has been used in a variety of applica-
tions. The topographic wetness index (TWI), one of the 
TOPMODEL outputs, uses elevation data to estimate places 
where water tends to accumulate. Moreover, previous stud-
ies have shown that TOPMODEL has successfully predicted 
streamflow (Ambroise et al. 1996, Ibbitt and Woods 2004, 
Nourani et al. 2011, Andualem and Demeke 2019).  
    Optimization approaches have been widely applied in op-
timal well placement problems. Ma et al. (2018) developed 
a mixed-integer linear programming model to identify the 
optimal layout of wells with minimizing the total irrigation 
costs in an oasis area in Northwest China. A nonlinear pro-
gramming model has been constructed by Liu et al. (2019) 
to find the optimal well layouts with minimized pumping 
costs in another oasis area in Northwest China. Yin et al. 
(2020) focused on developing a nonlinear multi-objective 
model to explore optimal freshwater pumping strategies and 
optimal pumping locations. The multi-objective setup en-
sures groundwater sustainability. However, these well 
placement studies do not include uncertainty in the optimi-
zation models. Researchers in a previous study modeled the 
optimization problem using an infinite aquifer assumption, 
that is, it is assumed there are no constraints on the amount 
of water that can be pumped out from the wells (Ma et al. 
2018). In fact, this is a very strong assumption which may 

 



not be appropriate for areas that are facing severe water scar-
city. The optimization model of this study will enable deci-
sion making under uncertainty, incorporate a sustainable ir-
rigation objective, and will relax the infinite aquifer assump-
tion.    The overall objective of this study is to identify opti-
mal drilling locations for sustainable irrigation. To achieve 
this objective, we first model the hydrogeological processes 
by implementing TOPMODEL to estimate the discharge 
and depth to water table. The outputs of TOPMODEL will 
be incorporated into machine learning algorithms to esti-
mate the probability of finding water at a particular location, 
which will then be used as input in an optimization model 
for identifying optimal drilling locations. We will demon-
strate our model with a prototype in the Hare watershed in 
Ethiopia. 
    Applying machine learning requires data on wells.  Data 
availability will be a challenging problem. A recent study 
has addressed challenges in collecting groundwater data 
(Lall et al. 2020). The researchers compared the number of 
well data points that were used in two studies. One study 
examined global water table depths based on 1.4 million 
well data points in North America and hundreds of wells in 
Africa. The other study focused on groundwater age esti-
mates using 6455 wells around the globe. The comparison 
highlights the extreme paucity of wells information in 
global, especially in Africa. This finding is consistent with 
the extreme limitations in available data on wells in the 
study area in the present paper.  
    The rest of the paper is organized as follows. Section 2 
presents the research questions for this study; Section 3 de-
scribes the study area and data; Section 4 discusses the 
methodologies used in this study; Section 5 shows prelimi-
nary results and discussion; Section 6 concludes the paper.  

Research Questions 

This study reports on research questions related to ground-
water recharge, groundwater potential, probability of find-
ing shallow groundwater, and optimal drilling locations. 
Although this paper focuses on the Hare region, the ques-
tions can be generalized to other agricultural regions with 
similar characteristics such as dry seasons and irrigation dif-
ficulties.  

Questions Related to Groundwater Recharge  

• What is the groundwater recharge within the study area? 

Questions Related to Groundwater Potential 

• What is the depth to the water table for different sites in 
the study area? 

• What factors are considered to generate a groundwater 
potential map? 

Questions Related to Probability of Finding Shal-

low Groundwater 

• What are the factors that affect shallow groundwater 
availability? 

• What is the estimated probability of drilling out water at 
a specific location? 

Questions Related to Optimal Drilling Locations 

• Without depleting the water table, how many wells can be 
drilled to help satisfy the irrigation need?  

• Where are optimal drilling locations that could yield wa-
ter with an acceptable distance to the crop fields? 

• What are the optimal distances between wells? 

Description of Study Area and Data 

Study Area 

The Hare region is located near the Abaya Lake in southern 
Ethiopia with latitude 6˚1ʹ to 6˚17ʹ N and longitude 37˚27ʹ 
to 37˚36ʹ E. The total area is 195.43 𝑘𝑚2. Elevation of the 
region ranges from 1161 m to 3465 m.  

Data Collection and Preparation 

In this study, observed daily discharge data for the period 
1987 to 2006 was collected from the Ministry of Water, Ir-
rigation and Energy of Ethiopia. Units were converted from 
cubic meters to cubic millimeters. To be consistent with the 
meteorological data, the plan was to collect data from 1987 
to 2016. However, discharge data could be obtained only 
from 1987 to 2006.  
    Digital Elevation Model (DEM) data were obtained from 
Alaska satellite services with a resolution of 25 m by 25 m. 
For convenience of data analysis, an elevation matrix was 
created representing a digital elevation model with equally 
sized pixels and equal NS and EW resolution.  
    Meteorological data including precipitation and tempera-
ture was collected to estimate streamflow and groundwater 
recharge. Daily precipitation data was retrieved from three 
different meteorological stations including Arba Minch, 
Chencha, and Dorze stations for the period 1987 to 2016. 
Since precipitation data in 1987 is missing for the Dorze sta-
tion and temperature data from 2006 to 2016 are missing in 
both Dorze and Chencha stations, filling in the missing val-
ues is necessary. All the missing data was downloaded from 
NASA Power Single Point Data Access 
(power.larc.nasa.gov, n.d.) Since we have multiple precipi-
tation and temperature measurements, measurements from 
the three stations were integrated. The Thiessen Polygon ap-
proach (Rhynsburger 1973) was used to determine the aver-
age precipitation and average temperature in Hare. The basic 
concept of this approach is be summarized as follows. First, 
we divide the watershed into three polygons (Figure 1) 
namely Arba Minch (34.47 𝑘𝑚2 ), Chencha (64.79 𝑘𝑚2 ) 
and Dorze (96.17 𝑘𝑚2). Each contains a measurement point 



(Figure 1). The coordinates for the measurement points are 
shown in Table 1. Second, we take a weighted average of 
the measurements based on the size of each polygon. The 
formula is: 

�̅� =
∑ 𝑃𝑖𝐴𝑖

𝑛
𝑖

∑ 𝐴𝑖
𝑛
𝑖

 

where �̅� is the weighted average; 𝑃𝑖  is the measurement at 
polygon 𝑖; 𝐴𝑖 is the area of polygon 𝑖; 𝑛 is the total number 
of measurement points. After performing the above steps, 
we have the finalized weighted average precipitation and 
temperature data. To be consistent with the other data, the 
period 1987 to 2006 was used.  
    
Table 1: Coordinates for each meteorological station near 

Hare 

Station Name X_UTM (m) Y_UTM (m) 
Longitude 

(degree) 

Latitude 

(degree) 

Arba Minch 339823.781 666130.500 37.553 6.025 

Chencha 342243.250 691186.313 37.574 6.251 

Dorze 341939.290 683857.503 37.571 6.185 

 
    Potential evapotranspiration (ETp) is an important input 
for estimating groundwater recharge. Global ETp data was 
downloaded from the NASA FLDAS site. The ETP data 
units and range are the same as the observed discharge and 
precipitation: millimeters per day from Jan 01, 1987 to Dec 
31, 2006.  
    Soil parameters including texture, moisture, porosity, and 
hydraulic conductivity are related to the groundwater re-
charge potential. Previous soil data are not satisfactory, and 
an intensive field campaign over 195 square kilometers will 
be required to collect the soil parameters. This is a time-con-
suming and costly project.  
    Existing local well information is urgently needed for this 
study. Such information includes whether the well is work-
ing (dry or not), what type the well is (hand dug, borehole 
or deep wells), how much water the well yields, and what is 
the depth of the well (depth-to-water table). With support 
from the Czech Geological Survey, we have obtained loca-
tions of only four existing wells in the Hare watershed in 
Ethiopia. Information other than the location these wells is 
unknown. Since local well data are not available online or 
from any local organizations, field work is required to col-
lect the data we need. This is another labor-intensive and 
costly task.  
    As the project progresses, other geology parameters, such 
as lithology, geological structures, drainage density, linea-
ment density, and land use land cover, will be collected and 
processed.  

Methodology 

Hydrogeology Model 

In this study, TOPMODEL was used to estimate discharge 
and depth to water table. The inputs to TOPMODEL include 
the topographic wetness index computed from the digital 

elevation data, a delay function derived by DEM and outlet 
data, a set of parameters that need to be calibrated (Table 2), 
and hydrometeorological and geological variables including 
precipitation data, potential evapotranspiration, and ob-
served discharge.  
 

 
 
 
Table 2: Parameter set for TOPMODEL (Buytaert, 2011) 

Parameter Description [Possible unit] 

Qs0 Initial subsurface flow per unit area [m] 

𝑇0 Transmissivity of the soil profile at full satura-

tion [m2/h] 

lnTe Log of the areal average of 𝑇0 [m2/h] 

m Model parameter controlling the rate of decline 

of transmissivity in the soil profile 

Sr 0 Initial root zone storage deficit [m] 

Sr max Maximum root zone storage deficit [m] 

td Unsaturated zone time delay per unit storage 

deficit [h/m] 

𝑉𝑐ℎ Channel flow outside the catchment [m/h] 

𝑉𝑟   Channel flow inside catchment [m/h] 

𝐾0 Surface hydraulic conductivity [m/h] 

CD Capillary drive [m] 

dt The timestep [h] 

 
 
    The optimal parameters are chosen by matching as 
closely as possible the simulated discharge from 
TOPMODEL to observed discharge in the training period. 
To do this, input parameters including 𝑚, 𝑇0, 𝑆𝑟 𝑚𝑎𝑥are ad-
justed to obtain the best match between model results and 
training data. After calibration, model validation is per-
formed on the validation data set to evaluate the goodness 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. The divided watershed by Thiessen Polygon ap-

proach 

 
 
 



of the calibrated parameters. The calibration metric is the 
Nash-Sutcliffe efficiency criterion. Values close to 1 indi-
cate a good fit; a value of 1 indicates a perfect match (Nash 
and Sutcliffe 1970). The formula for Nash-Sutcliffe effi-
ciency is: 
 

𝑅2 = 1 −
∑ (𝑄𝑜𝑏𝑠

𝑁
𝑖=1 − 𝑄𝑠𝑖𝑚)2

∑ (𝑄𝑜𝑏𝑠
𝑁
𝑖=1 − �̅�𝑜𝑏𝑠)2

 

 
where 𝑄𝑜𝑏𝑠 is the observed discharge; 𝑄𝑠𝑖𝑚 is the simulated 
discharge; �̅�𝑜𝑏𝑠 is the mean of the observed discharge; and 
𝑁 is the total number of time steps.  
    The depth to water table is simulated based on the satura-
tion deficit, which is simulated using TOPMODEL. To eval-
uate the goodness of the simulation result of the depth to 
water table, information on the depth of the existing wells 
should be collected, which requires field work.  

Machine Learning Algorithms 

As mentioned in previous section, to find optimal drilling 
locations, we need to make predictions on the probability of 
drilling water out of a well in Hare region. This would be an 
input parameter for the optimization model. We divide the 
Hare region into small pixels with equal area. A machine 
learning model, such as logistic regression, could be con-
structed to predict the probability of water availability for 
each pixel in Hare. The binary dependent variable is whether 
the well at the location yield water. The independent varia-
bles may include precipitation, elevation, ETP, land cover 

land use, soil texture, and percentage of topsoil moisture, the 
data will be collected along with the dependent variable by 
launching a field work. 

Optimization Approaches 

To find the optimal drilling locations, a two-stage stochastic 
mixed integer programming (SMIP) problem could be for-
mulated. The two-stage SMIP approach allows users to 
make decisions under uncertainty with two decision varia-
bles, one in the first stage and the other in the second stage 
(Küçükyavuz 2017). In this study, we plan to formulate our 
problem with binary first stage and continuous second stage 
variables. The objective functions for the two stages should 
be defined with respect to the two decision variables. Un-
certainty only exists in the second stage.  
    The general idea of the two-stage SMIP optimization will 
be described from the initial formulation including the ob-
jective functions, decision variables for each stage, uncer-
tainty and possible constraints, reformulation of the prob-
lem, and how to solve the problem.  

    For the initial formulation, the first stage objective func-

tion could be minimizing the total construction cost with de-

cision variable 𝑥𝑖  denoting whether there is a well (𝑥𝑖 =
0 𝑜𝑟 1) at location 𝑖. The second stage objective function 

could be minimizing the pumping cost with decision varia-

ble 𝑥𝑖 denoting the pumping hours. Uncertainty could be the 

yield of water which has a distribution that should be deter-

mined prior the optimization model. A set of constraints 

(e.g. restriction on the pumping hours and total amount of 

water withdrawn) will be added to fulfill the groundwater 

sustainability considerations. Reformulation will be gener-

ated based on the initial formulation to make the problem 

tractable. Gurobi, an optimization solver, will be used to 

solve this optimization problem. 

   Preliminary Results and Discussion 

Groundwater Potential 

The topographic wetness index map of Hare Ethiopia de-
rived from digital elevation data shows the potential for 
where water may tend to accumulate (Figure 2). Areas with 
higher values of topographic index indicate large contrib-
uting areas and low slopes. Higher topographic indices 
(darker green to purple) are mainly found in the southern 
part of the watershed, and a little in the central and northern 
parts. These regions have greater potential to become satu-
rated with rainfall. Higher TWI values are found in the areas 
with surface water, such as streams and wetlands. Lower 
TWI values indicate the area has small contributing areas 
and high slope. In our study, lower TWI values (yellow) are 
found in the central and northern parts of the watershed. 
Since lower TWI indicates lower moisture storage in the 
soils, there may be little accumulation in many parts of the 
Hare watershed. As such, it could be challenging to find 
shallow good drilling locations for drawing groundwater. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Topographic Wetness Index Map for Hare, Ethiopia 

 
 
 
 
 
 
 
 
 



Optimal Drilling Locations 

Before finalizing the formulation of the optimization prob-
lem, we need to estimate the parameters for an initial formu-
lation from the collected data in our study area. As men-
tioned, data collection is the most challenging task in this 
study. If the collection for some data items requires too 
much effort and cost to be practical, the formulation would 
be modified to adjust. The research questions related to op-
timal drilling locations would be answered after completing 
the data collection, parameter estimation and optimization.  

Conclusion 

This study focuses on using AI to identify optimal drilling 
locations for sustainable irrigation for subsistence farmers 
in Hare Ethiopia. We have found that collecting hydrogeo-
logical data has become the main challenge to develop an 
AI model. After data items are collected, we will first con-
struct the TOPMODEL to estimate discharge and depth to 
water table, which will be used as inputs in machine learning 
models for an estimation of the probability of finding water 
at a particular location. With the probabilities as input, an 
optimization model for identifying optimal drilling locations 
for sustainable irrigation for subsistence agriculture will be 
constructed. Our preliminary intermediate result is the topo-
graphic wetness index map of Hare Ethiopia. The TWI map 
indicates that southern part of the watershed has greater po-
tential to accumulate water; central and northern parts of the 
watershed show lower moisture storage in soils, which make 
it challenging to identify shallow groundwater. As the study 
moves forward, more results will be provided.  
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