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Emmanuel Jehanno2,3 André-Philippe Drapeau Picard4 Maxim Larrivée4 Hugues Talbot2,3,7

1Mila Artificial Intelligence Institute, Montreal, Canada 2Paris-Saclay University, France 3Ecole CentraleSupélec Paris, France
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Abstract

This article reveals two main techniques for improving fine-
grained recognition and classification, defined as executing
these tasks between items with similar general patterns, but
that differ through small details. First, we build a prelimi-
nary automated segmentation algorithm to ignore the image’s
background for attention-guided classification. To do this, we
wield segmentation-issued masks to make the classification
network’s training easier through an additional loss that pe-
nalizes attention given to features outside the mask using con-
volutional block. Furthermore, we proffer a hierarchical loss
based on cross entropy penalizing parent-level classification
to leverage the philology of each wildlife species. We applied
our approaches in the particular context of butterfly recogni-
tion, which is of practical interest to entomologists.

Context and Motivation
In this work, we deal with the issue of accurately identify-
ing large numbers of items in photographs, some of which
may differ only in minute details. This is a difficult problem
because both large and small differences must be taken into
account in order to recognize and classify.

Among the images collected, a high percentage of species
remains unidentified and represents a time-consuming label-
ing task for experts. Identifying an insect on the species level
is challenging and depends on the tiniest of details. Citizen
scientists can help collect a large amount of data such as in-
sect photographic documentation (Horn et al. 2017; Bous-
sioux et al. 2019), but accurate identification remains re-
stricting. Recent improvements in performance in a wide
range of classification tasks with deep learning methods of-
fer population monitoring opportunities and efficient and
large scale annotations. We worked with the eButterfly (Pru-
dic et al. 2017) citizen science program, which maintains a
fine-grained dataset of observations of all North American
butterflies species.

We develop computer vision algorithms and propose fine-
grained classification innovations using segmentation tools
to encourage the model to focus on areas of an image that
are salient for identification. We propose an additional loss
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using the segmentation masks, penalizing attention given to
features outside the mask. We also design a specific loss
function that leverages the dataset’s hierarchical nature, con-
sequently improving the Family, Genus and Species level
accuracy.

Related Work
Preliminaries
Fine-grained classification is a category of image classi-
fication: the task is to distinguish between subtly rather
than grossly different items; for example between different
species of birds or dogs rather than giraffes vs. trucks. This
setting is more complex, requires better annotations, more
data and is not yet satisfactorily solved (Xie et al. 2013;
Chai, Lempitsky, and Zisserman 2013). A fundamental diffi-
culty is to induce the learning architecture to focus on small
but essential details without relying on overly complicated
annotations. A recent interesting approach has been to use
a deconstruction-reconstruction method to this end (Chen
et al. 2019) and bipartite and bi-modal graphs (Zhou and
Lin 2016; Song et al. 2020).

Segmentation is a fundamental task in computer vision.
Its objective is to find semantically consistent regions that
represent objects. Given enough data and annotations, deep
recurrent CNN architectures such as ResNet (He et al. 2016)
and recurrent auto-encoders like U-Net (Ronneberger, Fis-
cher, and Brox 2015) constitute the current state-of-the-art in
segmentation methods. In particular, U-Net and its variants
may learn a segmentation task from a few hundred labeled
inputs.

The background of macro wildlife photos is typically full
of environmental details like grass or leaves that can mis-
lead the classification model and introduce bias. We noticed
experimentally via saliency maps that too much attention is
generally paid to the background rather than to the insect it-
self. Consequently, we used automatic segmentation to help
focus on the foreground.

Hierarchical Classification
Hierarchical labels of a fine-grained dataset can be leveraged
to improve performance (Zheng et al. 2020).

Tree-CNN is an architecture-based approach to this set-
ting in (Roy, Panda, and Roy 2019). Their study aims to



overcome the issue of catastrophic forgetting when fine-
tuning a model successively on each task (i.e., pre-training
on the task of classifying Families, then Genus and finally
Species). The architecture is built with a common trunk and
several finer branches corresponding to each task. Hence, the
model uses the hierarchy through the trunk while also pre-
serving the memory of each task. This Tree-CNN limits the
computation costs of retraining and can learn with a smaller
training effort than fine-tuning while retaining much of the
accuracy.

(Wu, Tygert, and LeCun 2019) present another approach
based on the loss instead of the architecture. They propose
a new loss that takes the hierarchy into account and is no
longer a flat loss compared to the cross-entropy (which com-
pares the same level classes). A convenient metric should
make all leaves equidistant from the root node.

(Kosmopoulos et al. 2020) develops a different method-
ology for tuning the loss. They compare different measures
presented in the literature and classify them into two sub-
groups: pair-based and set-based measures. They consider
building a hierarchical loss as an optimization problem and
propose a pair-based metric, optimized with a max-flow ap-
proach. The article also offers a set-based implementation
that approximates the sparsity-inducing `0 norm. Consider-
ing the path from the root to the predicted node as a set of
nodes and identically for the ground truth node, they can
propose a measure that uses the intersection, union and dif-
ference between the sets. This measure computes analogous
precision, recall and F1 scores. They implement a Lowest
Common Ancestor, which is a bridge between pair-based
and set-based measures. The corresponding new measure
performs very well and takes the advantages of both ap-
proaches.

Attention and Visualizing CNNs
Attention mechanisms were introduced originally for Neu-
ral Machine Translation in (Bahdanau, Cho, and Bengio
2015) using recurrent neural networks. These mechanisms
utilize a divide-and-conquer approach to various AI tasks
by focusing features on relevant items. These tools have
been extensively used in Natural Language Processing tasks
(e.g., (Parikh et al. 2016) and (Lin et al. 2017)). (Vaswani
et al. 2017) developed a model relying only on attention
and achieved state-of-the-art results in machine translation.
Later, the use of attention was extended to computer vision
tasks such as image classification and segmentation.

The Convolutional Block Attention Module or CBAM
(Woo et al. 2018a) proposes a simple attention mechanism
for feed-forward Convolutional Neural Network (CNN) ar-
chitectures. Its lightweight structure and generality make it
suitable for many vision tasks that require large numbers of
parameters.

Grad-CAM (Selvaraju et al. 2017) is a popular technique
to make CNN models more explainable, showing on which
areas of the picture they focused on making the prediction,
using reverse gradient propagation descent. The discrimina-
tive regions are localized through the areas of high gradient
flow within the network.

Imbalanced Data
Main source
For our preliminary experiments, we use a data set of
pictures submitted across Canada, Mexico and the United
States, representing over seven hundred different species as
of June 2020. Among these observations, two-thirds have
been annotated by experts. The eButterfly program, co-
founded by the Montreal Insectarium, allows participants to
record sightings by uploading images with date and time in-
formation (Prudic et al. 2017).

Highly imbalanced classes
Our data set is organized hierarchically. Each image has
three labels: a species belongs to one and only one genus,
belonging to one and only one family. This distribution of
labels enables us to have different complexity levels for
our classification task. Given more than two-thirds labeled
images, we anticipate being able to learn the family label
with the best precision, provide a slightly less accurate es-
timate of the genus and a slightly worse again estimate of
the species. In the provided dataset, classes are highly im-
balanced, meaning we are facing a problem of fine-grained
classification with significantly under-represented classes.

Methods
Guided Attention Mechanism
As the shape of butterflies presents a limited variability, it
seems feasible to incorporate prior knowledge of the shape
of the object of interest. Due to the similarity between but-
terflies’ overall shape, we posit that butterfly segmentation
is a simpler task than its fine-grained classification. We pro-
pose to use masks obtained through an automatic segmen-
tation pipeline to improve the classification performance.
However, even though the segmentation is generally correct,
a few failure cases can deteriorate the classification’s per-
formance if used during test-time. For this reason, we de-
veloped a method to leverage these masks during training
through an additional loss later called guided attention loss.

Prior automated segmentation We used a pre-trained
Mask R-CNN network to generate the segmentation masks
and fine-tuned it on a small subset of the dataset. This ap-
proach is possible because the butterfly segmentation task is
sufficiently similar to the task of segmenting other objects
present in a common dataset, and therefore, pre-training is
very effective. We annotated a small subset (10%) used for
pre-training, and we qualitatively assessed the segmentation
performance. The segmentation results obtained were satis-
factory to be used in the guided attention.

Foreword designed attention-based loss As our goal is
to enforce the model’s attention on the butterfly, we use a
network that was explicitly implementing an attention mech-
anism. For this reason, we used an attention model based on
the generic implementation of CBAM (Woo et al. 2018b).



This architecture is a good candidate for its correct classi-
fication results on several benchmarks and because it sepa-
rates the spatial attention mask from the channel attention.
Therefore, we could penalize the high values of the spatial
attention mask located outside of the butterfly. Our loss can
be written as follows:

L(M,S) =

∑
i,k,lM

k,l
i (1− Sk,l)∑

i,k,lM
k,l
i

with Mk,l
i the pixel intensity of index (k, l) along the

spatial dimension of the attention-issued mask (M) for the
channel i and Sk,l the pixel’s value of index (k, l) along the
spatial dimension of the segmentation-issued mask (S).

An attention-based loss is applied at each level to the
attention-issued masks (M) computed spatially, at low
scale, with the segmentation-issued masks (S) max-pooled
to the correct spatial dimension (e.g., for M ∈ [28 ×
28] and S ∈ [250× 250], a max-pooling is applied to (S)).

Experimental set-up For our preliminary experiments,
we use a ResNet (He et al. 2016) pre-trained on Imagenet
(Deng et al. 2009). To prevent over-fitting, the weight de-
cay parameter was finetuned and a dropout layer (Srivastava
et al. 2014) was added before the last fully-connected layer
with a keep-probability. Random rotation, flipping, rescal-
ing and cropping were added for data-augmentation during
training. The best weights on the validation set were saved
and the training was interrupted when no improvement was
noticed for more than 50 epochs. To obtain preliminary re-
sults without changing the class-balancing parameters, we
restrained ourselves to a reduced dataset that was perfectly
balanced containing less than 100 species.

We compare the proposed approach with the model with-
out attention mechanism (original ResNet) to the model with
attention mechanism trained without guided attention loss.
We witness the importance of the attention mechanism in the
classification task, highlighting the potential of the guided
attention approach. Our proposed approach yields almost as
good in top 1 and better in top 3 accuracies than ResNet with
CBAM.

Analysis Our top 1 accuracy scores in training are near
perfect (better than 99% for the three models) which means
our loss is ineffective due to over-fitting. We will use more
training data to address the class imbalance in future work
as well as using an adaptive sampling strategy. Our strategy
with adaptive sampling is to use our uncertainty prediction
measure in our approach, called Over-CAM (Kantor et al.
2020): our measure rejects the predictions if the overlap be-
tween binarized attention (or transformed saliency maps)
and object segmentation is not satisfactory. Indeed, this case
implies that the network likely based its prediction on at least
some regions outside the butterfly, i.e., both the background
and foreground. Then, we determine the overlap distribution
on the whole test set. Following that, several thresholds are
chosen regarding the distribution curve to determine from

which percentage we could ensure a corresponding certainty
of prediction.

Indeed, with a correct prediction and a good overlap on
a given picture, it is reasonable to under-weigh this sample
in our training set. Furthermore, a good prediction with a
low overlap would mean the decision is based on irrelevant
features and therefore under-weighting the image can even
benefit the training. Indeed, we can imagine that the wrongly
used features would be forgotten later in training. Finally, we
can augment the weight of the images incorrectly predicted,
similarly to a hard-negative mining strategy (HNM) (Felzen-
szwalb et al. 2009): it bases the sampling process on the
training results for each class. This is equivalent to providing
an uncertainty measure, which we can use to ameliorate the
class imbalance problem via an image adaptative sampling.

Regularization The most straightforward solution will be
to use more training data (another training set is already at
our disposal). Our future work will be to use more training
data: one can, for example, use all the training data (with
an adaptive sampling strategy in addressing the class im-
balance) or pre-train our model on other pre-existing but-
terflies datasets. If unsuccessful in addressing the overfit-
ting issue, our approach would be to implement stochas-
tic depth as a regularization method, in addition to stronger
data-augmentation, such as methods of consistency training
applied in a semi-supervised configuration as in MixMatch
(Berthelot et al. 2019).

Hierarchical Classification
Our data structure presents a hierarchical property since
each label is composed of different but related items. We
should make the best use of this knowledge to improve the
results. Indeed, classifying other families should be simpler
and more robust than classifying over species. Exploiting
this hierarchy can improve robustness. For example, if the
model is uncertain between two species A and B, which re-
spectively belong to families 1 and 2, while being certain it
belongs to family 1, it should predict species A.

Learning underlying structure while preserving flat clas-
sification Even if these hierarchies are common in the real
world, they are challenging to leverage to improve the clas-
sification. On the one hand, using the parents-to-children re-
lation seems critical to extract relevant features and reduce
parent-level classification mistakes where the task should be
easier. On the other hand, over-penalizing parent-level rela-
tionships can cause the classifier to under-perform on leaf
classes compared to flat classification. Therefore designing
a loss that enforces the learning of the underlying hierar-
chy while preserving the flat classification performance is a
challenge we plan to address.

We thus propose to evaluate the impact of the weight-
ing of the varying elements of a hierarchical loss on the
classification performance. In addition, we introduce a loss
WCE based on cross-entropy that improves the flat classi-
fication performance while penalizing parent-level classifi-



Table 1: Resnet model performance with and without Convolutional Block Attention Module and Guided-Attention. We provide
the average accuracy obtained over 3 different seeds and the standard deviation between parenthesis. Current best accuracies
are in bold.

Accuracy ResNet ResNet + CBAM ResNet + CBAM + Designed Loss
Top 1 79.54 (0.70) 80.95 (0.45) 81.01 (0.40)
Top 3 91.72 (0.49) 93.35 (0.20) 93.00 (0.29)

cation mistakes. For a given sample, we use the following
loss:

WCE = −λs log p(cs)− λg log p(cg)− λf log p(cf ),

with λs, λg, λf being the weighted coefficients for species,
genus and family, cs, cg, cf being the species, genus and
family class labels and p a probability distribution function.

The general hierarchical loss

Problem definitions In supervised hierarchical clas-
sification applied to images, we consider a data-set D
containing images whose labels belong to C, a set of classes
and we assume the existence and the knowledge of an
underlying tree-structures of height d > 1. The leaves of
the structure represent all the classes of C. More precisely,
each leaf is a set containing only one element of C and
each element in C is contained in a different leaf. A parent
node is defined as the union of its children. We note as Ck

the collection of sets composed of the nodes at depth k
(each node being the set composed of the classes descend-
ing from it). This way, we have C0, the root of the tree, a
collection of sets which union is equal toC. We assume that:

• ∀c ∈ C, ∃! c′ ∈ Cd, c ∈ c′

• ∀c′ ∈ Cd, |c′| = 1

• ∀1 ≤ i ≤ d, ∀c ∈ Ci, ∀ c′ ∈ Ci−1, c ∩ c′ 6= ∅ ⇒ c ⊆ c′

• ∀1 ≤ i ≤ d, ∀c ∈ Ci, ∃! c′ ∈ Ci−1, c ⊆ c′

Under these assumptions, it is possible to assess the
importance of a classification error. Given an image I ∈ D
and its corresponding labels cI ∈ C and considering the
prediction tI ∈ C, we define the importance of the error :
k(I, t) = d−max{0 ≤ n ≤ d | ∃c ∈ Cn, tI ∈ c∧ cI ∈ c}.
We note that if tI = cI , we have k(I, t) = 0.

With this setting, we are interested in learning that a clas-
sifier reduces the number and the importance of the errors.
We will note p the predicted probability; it is defined over
the leaves of the structure and can be extended to every node
considering each parent node’s construction principle. In-
deed, at each level, every node has zero intersection with
its siblings and therefore, the predicted probability of a par-
ent node is equal to the sum of the predicted probability of
its children.

Weighting-Impact method A natural and straightforward
approach to learn the hierarchical structure is through a
weighted classification loss. We consider the cross-entropy
loss for the nodes at each depth in the tree structure. For a
depth k ∈ {1, .., d}, we consider the cross entropy loss at
this depth defined as follow :

CE(k, I) = 1cI∈c∧ c∈Ck
(c) log(p(c))

with p the predicted probability of a node c.

Given a tuple of weights Λ = (λ1, . . . , λd) ∈ R∗d+ , we
compute the weighted cross-entropy:

WCEΛ(I) =

d∑
j=1

λjCE(j, I)

This weighted cross entropy loss is differentiable and al-
lows the optimization of the weights of a CNN through gra-
dient descent.

Cross-entropy loss limitation It is critical to tune the Λ
parameter properly, which requires a time-consuming opti-
mization or some expert knowledge. Moreover, the cross-
entropy loss has inherent limitations that need to be ad-
dressed for proper hierarchical learning. Indeed, as the
model weights converge during training, the predicted prob-
ability of the target class converges to 1. Moreover, given
the labels’ underlying structure, the parent node’s predicted
probability is always greater than its children’s. Since the
cross-entropy loss is expressed as − log p(ci), with ci the
label class, its gradient regarding p has a magnitude that de-
creases as p augments. As a result, the cross-entropy loss
naturally under-weighs the optimization of parent-level fea-
tures with respect to the children and requires a weighting.
For this reason, we propose a loss in which gradient magni-
tude is not decreasing while getting closer to 1. The diver-
gence in 0 implies a small impact of the weighting and the
convergence to 0 in 1 implies importance of the species

Loss properties We designed a loss function with the
shape shown in Figure 1. When both probabilities are close
to 1, it yields 0 and when probabilities are both close to 0,
it yields 1. The essence of that idea is that when the gradi-
ent magnitude of the loss is close to 0, we have a gradient
magnitude higher in the direction of genus rather than fam-
ilies. The reverse is observed when it is close to 1. Such
penalization is selected to hinder optimization on the genus
if family’s optimization is affected negatively.



Figure 1: Loss function to be designed: Pf is the family
probability and Pg is the genus probability.

Conclusion
In this article, we propose a method for fine-grained recog-
nition and classification of wildlife images. In particular, we
propose to guide the convolutional neural networks by lever-
aging attention masks along with segmentation as a means
to being less sensitive to the typical detail-rich environment.
This work shows improved results in top-3 accuracy in com-
parison to the state of the art. Furthermore, we explore the
use of a hierarchical loss to leverage species philology. Our
approach is general enough to be adapted in broader fine-
grained classification contexts. Our methodology can be of
great use for large-scale wildlife crowd-sourcing programs
that gather crucial census data to understand species demo-
graphics and dynamics.

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural Ma-
chine Translation by Jointly Learning to Align and Trans-
late. CoRR abs/1409.0473.
Berthelot, D.; Carlini, N.; Goodfellow, I.; Oliver, A.; Paper-
not, N.; and Raffel, C. 2019. MixMatch: A Holistic Ap-
proach to Semi-Supervised Learning. URL https://arxiv.org/
pdf/1905.02249.pdf.
Boussioux, L.; Giro-Larraz, T.; Guille-Escuret, C.; Cherti,
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