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Abstract
We propose a two-step classification framework to diagnose
Parkinson’s Disease (PD) using speech samples. At the first
stage, multiple one-way ANalysis Of VAriance (ANOVA) is
used on independent subsets of vocal features to extract the
best set of features from each speech processing algorithm.
These extracted feature subsets are then merged with other
baseline vocal features (shimmer, jitter, pitch, harmonicity,
vocal fold, and fundamental frequency parameters) to form
the training feature set. In the second step, this combined
training set is used to train an extreme gradient boosting (XG-
Boost) classification model, which is a decision tree based
algorithm. The overall model performance was scored and
evaluated using the Receiver Operating Characteristic Area
Under Curve (ROC AUC), F-Measure, Matthews Correlation
Coefficient (MCC), and accuracy. It was then compared with
benchmarked statistical classifiers and other studies that use
different combinations of features from this PD dataset. We
apply one-way ANOVA on different speech feature sets to
extract the best features without losing useful vocal informa-
tion. Our classification performance outperforms state-of-the-
art PD classification models that use generic feature selection
methods or use only one or more of the vocal feature subsets.

PD is one of the most common diseases of the motor sys-
tem degeneration that results from the loss of cells in vari-
ous parts of the brain. PD’s primary symptoms are tremor,
slow movement, speech disorder, impaired balance, and gait
problems. There are no diagnostic tests or biomarkers for PD
diagnosis because the symptoms resemble the ones observed
due to other diseases. Physicians use methods like MRI, ul-
trasound, blood tests to eliminate other conditions with sim-
ilar symptoms. Research has also been done to detect PD
using various motor and non-motor symptoms (Tolosa et al.
2009). However, there is no standard way for PD diagnosis.

PD Diagnosis has typically involved measuring the sever-
ity of the symptoms using non-invasive medical techniques.
Since approximately 90% of PD patients suffer from speech
disorders, analyzing speech samples to study vocal im-
pairment is considered as the most common technique for
PD diagnosis (Shahbakhi, Far, and Tahami 2014). The ex-
tent of vocal impairment is typically assessed using sus-
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tained vowel phonations (Little et al. 2008). Sustained
vowel phonations don’t capture all morphological or lexi-
cal speech features, but research shows that they are suf-
ficient for distinguishing between PD subjects and healthy
controls (Gürüler 2017). Most PD classification studies us-
ing speech features have been focused on jitter, shimmer,
and signal-to-noise ratio. Recent studies have also used other
vocal features like fundamental frequency parameters, Mel-
Frequency Cepstral Coefficients (MFCCs), harmonicity fea-
tures, Wavelet Transform (WT)-based features, and Tunable
Q-factor Wavelet Transform (TQWT)-based features to bet-
ter understand speech deterioration. TQWT was first used in
2019 for PD classification and was shown to perform bet-
ter than other vocal features for PD diagnosis (Sakar et al.
2019). The performance of PD classification models de-
pends directly on the selection of vocal features used for
training them.

Past studies have used different combinations of the afore-
mentioned features to train classifiers without any focus on
extracting useful features from different types of vocal fea-
tures. This study proposes a novel two-step classification
framework for PD diagnosis. The first step uses multiple
one-way ANOVAs to extract vocal features from MFCCs,
WTs, and TQWTs separately. Extracted feature sets are
merged with other baseline vocal features to form the fi-
nal training set. In the second step, a decision-tree based
classifier is trained on this training set to make predictions.
To the best of our knowledge, this is the first PD classifi-
cation study that employs a multiple ANOVA strategy to ex-
tract the best vocal features from TQWT, MFCCs, and WTs,
and combine all of them with standard baseline features like
jitter, skimmer, etc., to generate an extensive training set.
Our study shows that extracting features separate from each
other prevents not only loss of useful vocal/ signal informa-
tion but also addresses the high-dimensionality nature of the
dataset. Using a decision-tree based classifier on extracted
features also handles any class imbalance without the need
of oversampling or under-sampling the dataset. Classifica-
tion results obtained on the public dataset show that our
proposed two-step framework outperforms current state-of-
the-art models that use just one or more of the vocal feature
subsets without extracting the best features from individual
algorithms.



Literature Review
There are no laboratory tests or biomarkers for the diagnosis
of PD (Cova and Priori 2018). Consequently, there has been
significant research in measuring the severity of symptoms
to diagnose PD. Tseng et al. (2014) have shown multiple
eye-tracking methods for PD diagnosis. Jansson et al. (2015)
proposed two approaches by using stochastic anomaly de-
tection in eye-tracking data. There have also been multiple
studies that use gait and tremor measures to diagnose PD
(Lee and Lim 2012; Manap, Tahir, and Yassin 2011).

Analyzing voice samples and deterioration has shown
great potential in the advancement of PD diagnosis (Ramani
and Sivagami 2011). Vocal impairment has also been shown
to be among the earliest symptoms of PD, detectable up to
five years before clinical diagnosis (Oung et al. 2015). This
aligns with clinical evidence, which shows that most PD pa-
tients exhibit vocal disorders. These studies reinforce the no-
tion that speech samples reflect disease status after extract-
ing the necessary information from the vowel phonations.

There have been multiple studies on PD classification
techniques using vocal features. Gürüler (2017) proposed
a system using a complex-valued artificial neural net-
work with k-means clustering and achieved an accuracy of
99.52%. Das (2010) also used neural networks and demon-
strated an accuracy of 92.9%. Peker, Sen, and Delen (2015)
achieved a 98.1% accuracy using complex-valued neural
networks with minimum Redundancy Maximum Relevance
(mRMR) feature selection. Gil and Manuel (2009) achieved
an accuracy of 90% using a multilayer perceptron and Sup-
port Vector Machines (SVM). Karimi Rouzbahani and Daliri
(2011) used a K-Nearest Neighbor (KNN) classifier and
achieved an accuracy of 93.82%. Hazan et al. (2012) pro-
posed using a country-specific sample of the training data
and achieved a 94% accuracy. Many of these studies use
a public dataset consisting of 195 vocal measurements be-
longing to 23 PD and 8 healthy controls (Little et al. 2008).
Another publicly available dataset used in the aforemen-
tioned studies consists of multiple speech recordings of 20
PD and 20 healthy controls (Sakar et al. 2013). Since most
of the proposed PD classifiers perform analysis on one of
these datasets, the extracted vocal features from speech sam-
ples largely overlap. Although high classification rates have
been reported in these studies, both of these datasets are ex-
tremely small. Models trained on these datasets are prone to
overfitting to a very small sample of features. Sakar et al.
(2019) have shown that the cross-validation methods used
in these studies cause biases since the number of controls in
them were minimal.

Sakar et al. (2019) collected 3 voice recordings each from
252 subjects to build a much larger dataset for PD classifi-
cation. Apart from the baseline vocal features used in pre-
vious studies, they also extracted MFCCs, WTs, and for the
first time, TQWT-based features too. They reported a high-
est classification accuracy of 86% by using a SVM-Radial
Basis Function (SVM-RBF) classifier and just the MFCCs
feature set. By only using the TQWT-based features, they
reported the highest individual classifier accuracy of 85%
with an F-measure of 0.84 using a multilayer perceptron
classifier. They also demonstrated using a mRMR feature

selection algorithm on the entire feature set to select the top-
50 features. The mRMR top-50 feature selection improved
their classification accuracy to 86% with an F-measure of
0.84 using an SVM-RBF classifier. This was the first study
that used TQWT-based features for PD classification. It was
also the first study to report an improvement in diagnostic
accuracy by combining all features and selecting 50-best by
using a feature selection algorithm. They found that MFCCs
and TQWT contain complementary information, and com-
bining them improves the classification performance.

Since then, there have been a few studies that have pro-
posed different classification methods using TQWT-based
features and this larger dataset built by Sakar et al. (2019).
Gunduz (2019) proposed two frameworks using Convolu-
tional Neural Networks (CNN). The first framework com-
bines all features and inputs it to a 9-layer CNN. The second
framework passes the feature sets to the parallel input lay-
ers connected to the convolution layers in the CNN. They
achieved an accuracy of 84.9% by using a combination of
TQWT and baseline features. This was improved to 86.9%
by using triple feature sets that used TQWT, WT, and base-
line features. They reported that the TQWT features had the
best feature performance metrics among all classifiers.

Solana-Lavalle, Galán-Hernández, and Rosas-Romero
(2020) proposed using a Wrapper Feature Selection method
along with an SVM classifier and obtained a classification
accuracy of 94.7% on the larger dataset. The feature selec-
tion method used in this study did not account for the bi-
ological and vocal features in the dataset separately and in-
stead selected the best K features suited to the used classifier.
Only 8 to 20 features are selected from 754 vocal features.
This leads to loss of valuable acoustic and signal informa-
tion, especially from WT and TQWT-based features – since
they are extensive WT techniques that quantify frequency
deviations in speech signals and contain 10+ original fea-
tures each. Wrapper feature selection methods try to find the
best set of features suited to a specific learning algorithm
by evaluating all combinations of features against the eval-
uation/ performance metric, and thus, there is also a high
chance of over-fitting to the training data.

Polat (2019) proposed a hybrid approach using a com-
bination of Synthetic Minority Over-Sampling Technique
(SMOTE) and a Random Forest Classifier (RFC). They
achieved an accuracy of 87.037% without SMOTE and a
higher accuracy of 94.89% by over-sampling the minority
class (healthy control) and then training an RFC. By over-
sampling, this study changed the original dataset to bal-
ance the classes. Over-sampling also increases the likelihood
of overfitting because it replicates the oversampled class
datapoints. It also does not consider neighboring examples
can be from different classes. Studies on class-imbalanced
data have shown that SMOTE is not beneficial for high-
dimensional datasets (Maldonado, López, and Vairetti 2019;
Joseph 2020). This leads to overlap of classes and additional
noise in an already high-dimensional dataset (Joseph 2020).

Compared to the previous work, our work is one of the
first studies to demonstrate an improved speech feature se-
lection methodology and a decision-tree based robust clas-
sifier that handles class imbalance without having to modify



the original dataset by over-sampling or under-sampling.

Feature
Category Description of feature-set Num.

feats.

Baseline Jitter, shimmer, harmonicity,
time frequency, vocal fold, pitch 54

MFCC Speech deterioration indicator 84

WT Fundamental frequency
deviations in speech signals 182

TQWT
More extensive quantification
method for fundamental frequency
deviations as compared to WT

432

Table 1: Description of speech feature categories.

Dataset
The dataset we used for the analysis was gathered at the De-
partment of Neurology in Cerrahpasa Faculty of Medicine,
Istanbul University (Sakar et al. 2019). It contains the in-
formation of 188 patients with PD – 107 men and 81
women, and 64 healthy controls (23 men and 41 women)
with ages varying between 41 and 82. The researchers set
the microphone to 44.1 kHz, and the sustained phonation of
the vowel “ahh. . . ” was collected from each subject with
three repetitions. These phonations were fed into the Praat
acoustic analysis software to extract information about jitter,
glow, vocal fold, fundamental frequency, harmonicity, Re-
currence Period Density Entropy (RPDE), Detrended Fluc-
tuation Analysis (DFA), and Pitch Period Entropy (PPE)
from the signal. In the gathered dataset, these fundamental
vocal features, along with gender, are called baseline fea-
tures.

MFCCs of a sound signal separate the impact of the vocal
cords (source) and vocal tract (filter) in the signal (Poorjam
2018). This helps detect deterioration in the movement of ar-
ticulators like the tongue and lips, which are affected by PD.
Higher-order MFCCs represent greater levels of spectral de-
tail. Typically, 10 to 20 MFCCs are used for speech analysis.
In this dataset, there are 13 original MFCCs and 71 derived
features that are formed with mean and standard deviation
of the original signals, addition to log-energy of the signal,
and their 1st and 2nd derivatives (Sakar et al. 2019).

WT is used to analyze signals in terms of wavelets, time,
and frequency domain limited functions to detect regional
fluctuations. WT features of the basic frequency of speech
signal (F0) have been used for PD diagnosis (Gunduz 2019).
It captures the amount of deviation in speech samples and
thus detects any distortions in vowel phonations. 10-level
discrete WT is applied to signals for extracting WT-based
features obtained from F0 and its log transformation. This
results in 182 features, including the log energy entropy and
Teager-Kaiser energy of both the approximation and detailed
coefficients (Sakar et al. 2019).

TQWT is a discrete-time wave transform, like WT.
TQWT uses 3 tunable parameters (Q, J , and r) to tune
it based on the behavior of the speech signal (Sakar et al.
2019). TQWT has been recently used in PD studies since it

can detect distortion in vocal fold vibrations. TQWT param-
eters were set by considering the time domain characteris-
tics of the speech signals. The tunable Q-factor parameter is
related to the number of oscillations in the signals. A high
Q value is selected for signals with high oscillations in the
time domain. The parameter J comes from the end of the
decomposition stage of the transformation. There would be
J levels and J + 1 sub-bands coming from J high-pass fil-
ters and one final low-pass filter. The redundancy parame-
ter, r, controls the excessive ringing to localize the wavelet
without affecting its shape (Sakar et al. 2019). At first, the
value of the Q parameter is defined to control the oscillatory
behavior of wavelets. The r parameter value was set to be
equal or greater than 3 to prevent the undesired ringings in
wavelets. To find out the best accuracy values of the differ-
ent Q − r pairs, several levels (J) were searched for in the
specified intervals, and in total, 432 TQWT features are ex-
tracted (Sakar et al. 2019). Table 1 describes the 4 feature
subsets in this dataset and the number of features in each.

Figure 1: End-to-end classification framework.

Methodology
PD classification is treated as a binary classification task in
which the framework takes an input of extracted speech fea-
tures and predicts a class (PD/ No PD). Figure 1 illustrates
the end-to-end classification framework for PD diagnosis.
The dataset contains 752 features in 4 feature sets: baseline
features, MFCCs, WT, and TQWT. The drawback of using
MFCCs, WT, and TQWT together is the ‘curse of the dimen-
sionality’ problem. High-dimensional datasets lead to over-
fitting, hinders useful vocal information in the dataset, and
leads to computational instability. Extracting a meaningful
set of features from each feature set is important to reduce
the dimensionality of the feature set while still ensuring that
all useful vocal features are retained. This will also reduce
the computational complexity of the classifier. We propose



using the one-way ANOVA selection schemes to extract the
best performing training features from MFCCs, WT, and
TQWT feature-sets. The selected features from each method
are merged with the baseline features. This merged feature
set serves as the training data for the classifier. We then
train an optimized XGBoost classifier on the training data
and evaluate its performance against past studies and bench-
marked statistical classification models.

ANOVA Feature Selection
ANOVA is a statistical hypothesis test used to determine
whether the means from two or more samples of data come
from the same distribution or not. It is usually used in prob-
lems involving numerical inputs and a classification target
variable. There are two types of ANOVA: one-way ANOVA
and two-way ANOVA. One-way ANOVA only involves one
independent variable, while two-way ANOVA compares two
independent variables.

To find how well each speech feature discriminates be-
tween the two output classes, we use a one-way ANOVA
F-test. F-tests are a class of statistical tests that calculate
the ratio between variances values. ANOVA tests the fol-
lowing null hypothesis (H0): there is no difference between
features, and the features have the same mean value. The
alternate hypothesis (H1) is that there is a difference be-
tween the means and the groups (feature variances are not
equal). The ANOVA F-test produces an F-score based on
the variance ratio calculated among the means to the vari-
ance within the group. Group means drawn from features
with the same or highly similar mean values will have lower
variance between the group and have a lower F-score. A high
F-score implies that features have different mean values and
can discriminate between the dependent variable categories
better. The results of this test can be used for feature selec-
tion where those features that are independent of the target
variable can be removed from the training set. The F-score
for each speech feature is calculated as follows:

F =
Between Group Variability (BGV)
Within Group Variability (WGV)

The BGV and WGV for each subset is calculated as:

BGV =

K∑
i=1

ni(Y i. − Y )2

K − 1

WGV =

K∑
i=1

ni∑
j=1

(Yij − Y i.)
2

N −K

Where K is the number of groups, N is the overall sample
size, ni is the number of observations in the ith group. Yij

is the jth observation in the ith out of K groups. Y is the
overall mean of the variable set, and Y i.is the sample mean
of the ith group. K − 1 is also defined as the degrees of
freedom in some studies, referring to the maximum number
of logically independent features with the freedom to vary.

The scikit-learn machine learning library provides a
native implementation of a one-way ANOVA F-test
(f classif) and a SelectKBest class to pick fea-
tures with the highest F-scores. The F-test score function

returns an array of F-scores, one for each speech feature.
SelectKBest class then picks the first k features with the
highest scores (Pedregosa et al. 2011).

Using ANOVA feature selection on the entire dataset
leads to loss of vital vocal information. Each of the 54 base-
line features provides fundamental and distinct speech in-
formation. Removing any of these baseline features leads to
lost information, which is not available in any of the other
vocal feature sets. Just selecting the best k features from the
entire dataset using the highest F-scores leads to many cru-
cial original and derived features being left out. This is es-
pecially observed in the highly dimensional WT and TQWT
feature subsets. This can also lead to overfitting to certain
derived features or a classification model that relies primar-
ily on features that perform well for that specific model in-
stead of features that represent the disease. To conserve vital
information obtained from each feature subset while also ad-
dressing the broader dimensionality problem, we extract fea-
tures from each feature set separately. This ensures that the
original signals are retained and focuses on finding the best
performing derived features. All baseline features are used,
and the best ki features are extracted from MFCCs, WTs,
and TQWTs, respectively. ki is obtained for each subset
using grid-search cross-validation. The grid-search cross-
validation evaluated a different combination of ki features
from each subset to find the optimal classification perfor-
mance. Forty features from MFCCs, 75 from WT, and 100
from TQWT were selected with the highest F-scores in their
category, and these were used along with baseline features
as the training set.

Parameter Value
Learning Rate 0.05
Number of Estimators 1000
Max Depth 5
Min Child Weight 1
Gamma 0
Subsample 0.8
Col. Sample by Tree 0.8
Num. Thread 4
Scale POS Weight 1

Table 2: XGBoost hyperparameters.

XGBoost Classifier
XGBoost is a robust gradient boosting library based on
ensemble tree-boosting. Its fundamental function predicts
a new classification membership after each iteration. Pre-
dictions are made from weak classifiers and are iteratively
improved. Incorrect classifications from the previous iter-
ation receive higher weights, forcing the model to focus
on their performance improvement. The final classification
combines the improvement of all the previously modeled
trees. XGBoost is not susceptible to overfitting because of
its more robust regularization framework that constrains
overfitting. An XGBoost classifier was trained on the train-
ing dataset that was extracted after ANOVA. XGBoost’s



Feature Set SVM RFC GBC
AUC F1 Acc. AUC F1 Acc. AUC F1 Acc.

Baseline 0.5 0.865 0.762 0.704 0.902 0.841 0.695 0.884 0.815
MFCC 0.561 0.867 0.772 0.723 0.904 0.846 0.717 0.897 0.836
WT 0.537 0.849 0.746 0.654 0.859 0.778 0.604 0.84 0.746
TQWT 0.5 0.868 0.767 0.82 0.932 0.894 0.867 0.938 0.905
Baseline + MFCC 0.5 0.84 0.725 0.724 0.887 0.825 0.767 0.891 0.836
Baseline + WT 0.529 0.822 0.709 0.654 0.863 0.783 0.673 0.869 0.764
Baseline + TQWT 0.5 0.834 0.714 0.707 0.885 0.82 0.728 0.886 0.825
MFCC + WT 0.561 0.867 0.772 0.723 0.904 0.846 0.717 0.897 0.836
MFCC + TQWT 0.5 0.847 0.735 0.799 0.925 0.883 0.805 0.925 0.883
WT + TQWT 0.509 0.839 0.725 0.736 0.894 0.836 0.742 0.893 0.836
All features 0.508 0.828 0.709 0.737 0.898 0.841 0.742 0.897 0.841

Table 3: Classification performance of benchmarked statistical classifiers (SVM, RFC, GBC) on different combinations of
features without ANOVA.

Model/ Study Performance Metrics
AUC F1 Acc. MCC

multi-ANOVA
+ XGBoost

(proposed framework)
0.91 0.96 0.947 0.86

Combined ANOVA
+ XGBoost 0.89 0.94 0.928 0.81

Gunduz (2019):
All features + CNN n/a 0.89 0.833 0.52

Gunduz (2019):
All features + SVM n/a 0.91 0.857 0.59

Sakar et al. (2019):
Top-50 features using
mRMR + SVM (RBF)

n/a 0.84 0.86 0.59

Polat (2019): RFC n/a n/a 0.87 n/a

Table 4: Performance compared with other studies.

built-in cross-validation was used at each iteration to get
the optimal boosting iterations in a single run. Grid-search
cross-validation was used to optimize the model parame-
ters. The final hyper-parameters obtained are shown in Ta-
ble 2. The optimized model achieved the highest classifica-
tion accuracy of 94.78%. In the following section, we evalu-
ate our framework’s performance with benchmarked statis-
tical models and other studies on this dataset.

Evaluation
Evaluation metrics are needed to assess the predictive per-
formance of the proposed framework. Although accuracy is
a common metric, it may yield misleading results in case
of unbalanced class distribution. Evaluation metrics such as
F-measure, MCC, and ROC AUC can measure how well a
classifier performs, even in class imbalance cases. We use
ROC AUC, F-Measure, MCC, and accuracy to evaluate the
performance of the proposed framework against statistical
classifiers and other studies using this dataset. While using
individual feature sets, TQWT-based features perform bet-
ter than other feature subsets. Significant improvement in

classification performance is observed when one feature set
(baseline, MFCC, or WT) is complemented with TQWT fea-
tures. Using ANOVA to extract the best features and then
using them to train an XGBoost model performs better than
other state-of-the-art techniques proposed on this dataset.
Polat’s (2019) proposal to use SMOTE to over-sample the
minority class and train an RFC leads to a slightly better
classification accuracy (0.001). However, AUC, F-measure,
and MCC metrics of Polat’s model are unknown. The per-
formance of benchmarked classifiers, including SVM, RFC,
and Gradient Boosting Classifier (GBC), using different fea-
ture combinations is shown in Table 3. The performance
metrics of our proposed framework, compared to other stud-
ies, are presented in Table 4. We also demonstrate that using
a multi-ANOVA strategy performs better than one ANOVA
on the entire feature set.

Conclusion
This paper presents a two-step classification framework to
diagnose PD using a set of 753 vocal features. We propose
a novel vocal-feature selection technique for PD classifica-
tion using multiple one-way ANOVA on the MFCCs, WT
and TQWT. The selected features are merged with base-
line vocal and biological features to form the training set.
We propose an XGBoost classifier trained on the extracted
data for PD classification. The proposed framework achieves
a classification accuracy of 94.71% with an F-1 of 0.965
and an MCC of 0.86. We show that the proposed frame-
work performs better than the state of the art without altering
the dataset by over or under-sampling. We demonstrate that
separately extracting features from different algorithms re-
duces the dimensionality without the loss of any vital speech
information and performs better than a generic feature se-
lection technique. We also show that the proposed frame-
work performs better than benchmarked statistical classi-
fiers. Most literature on PD diagnosis relies on a very small
sample size collected from 20-30 persons. High levels of
accuracy in predictions of models based on a significantly
larger data set (i.e., 252 persons) have been demonstrated
in this paper. Thereby, the generalization capabilities of the



model are validated. Using the proposed framework, clini-
cal diagnosis of early-onset of PD will be consistent across
physicians, thereby eliminating the chances of misdiagno-
sis. Specifically, the high levels of accuracy, F1, MCC, and
ROC AUC indicate that there is a very negligible chance of
missing a diagnosis. We have open-sourced the code used in
this study in a public GitHub repository (https://github.com/
Gaurangprasad/parkinson disease ANOVA classifier).
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