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Abstract
Although several methods for detecting and segmenting polyps during colonoscopy procedures have
been established, their generalization abilities have yet to be assessed due to a lack of a unified bench-
mark on high-quality datasets. The 3rd International Endoscopy Computer Vision Challenge and Work-
shop (EndoCV2021) offers a detailed, well-curated, and well-defined colonic polyp dataset that includes
multi-center data with different polyp sizes and imaging modalities. It aims to determine the general-
izability of each participant’s polyp detection and segmentation process. We present our method for
detecting polyps in this paper. On this job, we compare three state-of-the-art object detection baselines:
EfficientDet, ScaledYOLOv4 and YOLOv5, and pick the best one (YOLOv5). To boost the performance
even more, we apply several data augmentation methods, hyperparameter evolution, multi-scale train-
ing, model ensemble, and test-time augmentation to the baseline. During the test step, we also use the
existing knowledge from colonoscopy to refine our post-processing parameters. Finally, on the round-I
test, our system achieves a detection score of 0.7948, and on the round-II test, it achieves a detection
score of 0.8824.
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1. Introduction

Deep learning-based computer vision (CV) is one of the most prominent research fields nowadays.
As a consequence, in minimally invasive surgery, which is primarily focused on endoscopes,
an increasing range of CV applications can be observed. The endoscopic vision system was
created to aid in endoscopic surgery, especially in gastroenterology [1, 2, 3]. How to identify and
segment polyps easily and reliably during colonoscopy has also become a key research concern
in the new computer-aided diagnostic (CAD) framework. Although many methods have been
developed to perform polyp detection and segmentation during colonoscopy, the generalization
ability cannot be evaluated due to the lack of a unified benchmark on high-quality data sets.
The 3rd International Endoscopy Computer Vision Challenge and Workshop (EndoCV2021) [4]
provides a comprehensive, well-curated, and defined colonic polyp dataset that collects data
from multiple centers with different polyp sizes and imaging modalities. The previous challenge
EndoCV2020 [5] and EAD2019 [6] also focused on the detection and segmentation in endoscopic
images.
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Figure 1: Analysis result of bounding boxes and the design of anchors. a. The red points stand
for the cluster centers of the size of bounding boxes with K-means algorithm. b. The multi-scale anchors
for YOLOv5 were designed based on the cluster centers of the size of bounding boxes.

In this article, we will use various architectures including EfficientDet [7], ScaledYOLOv4 [8]
and YOLOv5 [9], and compare their performance to apply and train the state-of-the-art deep
learning models for the detection task.

2. DATASETS AND DATA ANALYSIS

EndoCV2021 offers a dataset for polyp detection and segmentation, which contains 1449 single
frame endoscopic images from five centers and 3601 sequence endoscopic images [4]. In total,
the dataset contains 2713 positive frames with bounding boxes from professional physicians for
polyps and 2337 negative frames. In the sequence data, 10 negative-only sequences of a total of
1808 frames are provided. However, pure negative frames are not necessary for the detection
task, because the feature of negative samples can be obtained from the background area outside
the annotations area of positive samples. In order to avoid the problem of sample imbalance, the
negative frames from the sequence data are not used in our train dataset. Although using data
balancing method such as weighted loss can also solve this problem, it will increase the time
consuming of training procedure. And it won’t significantly improve the performance of the
model because the areas of background in positive frame are already large enough. However,
the negative frames from the single frame data are preserved for improving the generalization
ability of the model.

The images from the five centers are quite different in size and color. To ensure the balance
of the training set, 10% samples of each center data and positive sequence data are chosen as
the validation set. And the remaining samples are chosen as the training set. Finally, we have a
training set of 2910 frames and a validation set of 332 frames.



Figure 2: The architecture of YOLOv5

Besides, for designing the hyperparameters of the detection network, we analyze the dataset.
The image sizes of the samples cover from 384× 288 to 1920× 1080. The average size of the
images is 1486× 1019. At the same time, K-means algorithm is used to analyze the size of the
bounding boxes for the design of the anchor. The analysis results of the bounding boxes and
the designed anchors are shown in Fig 1.

3. METHODS

In this section, we will introduce the best model we developed for the test dataset. We imple-
mented our polyp detection method for EndoCV2021 using YOLOv5 as our baseline. YOLOv5 is
a new state-of-the-art single-stage object detection algorithm. It achieved the nearly top mAP
in the COCO dataset [10] as well as inference time unreachable for other baselines. The models
were trained on two Tesla V100 NVIDIA GPUs. Some common python libraries including
opencv, pillow, pytorch, torchvision, tqdm, numpy were used to build the pipeline of YOLOv5.

3.1. Pre-processing

Although our task has only one class of object, selection bias and sample imbalance still exist
because the training dataset consists of multicenter data and the images vary from centers in
their style and amount. On the other hand, the original training set only has 2910 images, it is
easy to cause the model overfitting. To enhance the generalization of the model, all images of
training dataset were randomly augmented every epoch before loading into the model using hue
adjustment, saturation adjustment, value adjustment, rotating, translation, scaling, shearing,
perspective, up-down flipping, left-right flipping, mosaic and mixup. Among the above data
augmentation methods, mosaic and mixup are two most efficient ways. Fig 3 visualizes an
example of these two methods. The first method stitches four pictures and the corresponding
bounding boxes together in the form of 2×2 to improve the performance of small object detection.
The second method multiplies the two pictures by different coefficients and stacks them together
could significantly reduce the overfitting.



Figure 3: Two efficient data augmentation methods

3.2. Training procedure

We chose the yolov5x6 model as our baseline. The ‘x’ means it is the model with deepest and
widest backbone in YOLOv5 series, which has the best feature extraction ability. The ‘6’ means
‘P6’, which adds a larger object output layer P6 to adapt the inputs with higher resolution (yolov5x
for 640×640 inputs and yolov5x6 for 1280×1280 inputs, the average input size of our training
dataset was 1486×1019). Besides, we also used the K-means clustering algorithm to calculate
the sizes of the anchors. At the model initial stage, we used the transfer learning strategy which
pre-trained the weights on the COCO dataset for 300 epochs. The model was then fine-tuned
with an SGD optimizer until it stopped through early stopping to prevent overfitting, resulting
in additional 90 epochs. Hyperparameters of the training procedure such as initial learning rate,
final cycle learning rate, SGD momentum, optimizer weight decay, number of warmup epochs,
box and class loss gain and the probability of various data augmentation could significantly
influence the final performance of the model. Therefore, we refined the hyperparameters
through hyperparameter evolvement based on genetic algorithm. This procedure usually
requires hundreds or thousands of GPU hours. Thus, we used the hyperparameter which
has evolved on COCO dataset for 306 generations and get a relative better performance in
training object detection models because the limited challenge time. Furthermore, we used
multi-scale training to train our models. The size of the input image has a significant impact on
the performance of the detection model. Multi-scale is one of the most obvious tricks to improve
the model generalizability. A feature map that is dozens of times smaller than the original image
is generated in the backbone of the model, which makes it difficult for the features of small
objects to be captured by the feature extraction network. By inputting images with various
sizes either larger or smaller for training, the robustness of the detection model to different
sizes of objects can be improved to a certain extent. Therefore, we change the size of the input
images to a random value between 640 to 1920 (+/- 50% scaling for 1280) every epoch when
dataloader load the images into the model at the beginning of the epoch.



3.3. Post-processing

We use non-maximum suppression (NMS). In the selection of the IoU threshold, we applied prior
knowledge from the colonoscopy domain and the training dataset. We noticed that the number
of polyps per frame of colonoscopy is usually very small and the distribution is relatively sparse
unless it is a polyposis patient. Besides, by analyzing the images of the training set, we find
that the annotators tend to put the polyps into the same bounding box if the polyps are close
to each other. Therefore, we set the IoU threshold to 0.3, which is a relatively small value. By
selecting this small IoU threshold, the bounding boxes of the neighboring polyps which has a
big IoU value will be suppressed by the NMS algorithm and remain only one final box.

3.4. Inference procedure

When inferring on the test set, we used Test Time Augmentation (TTA). It will create multiple
different versions of the input image, including cropping of different regions and changing
the zoom level and so on, and load them into the model. Then the average output of multiple
versions will be calculated as the final output of the image. To fully exert the effect of TTA, we
increased the image size of the test stage to 1.2 times the size of the train stage (1280×1280
for training; 1536×1536 for testing). Another trick we used in this stage is model ensemble.
We used 20 models with different weights generated during the training stage. All weights
were produced between model convergence and model overfitting and achieved a similar and
relatively optimal performance in our validation set.

4. RESULTS

Table 1 compares the results of the three SOTA object detection baselines on our validation
dataset of the EndoCV2021 detection task. To make a fair comparison, we unified the input size
of the images to 1280×1280, and chose the corresponding model (YOLOv5x-P6, ScaledYOLOv4-
P6, EfficientDet-D6). The results show the YOLOv5 obtained the best mAP:0.5:0.95 of 0.5635.
Therefore, we chose YOLOv5x-P6 as our final baseline. The results of the ablation experiment on
the same validation set are provided in Table 2. Our best single model got a mAP:0.5:0.95 of 0.6843
on the validation set. With ensemble 20 different models generated during the training process,
we get the best performance of 0.7178 mAP:0.5:0.95. Table 3 summarizes the detection results of
our submission for the 2 test sets. For round-I test dataset, our best detection performance was
achieved by 7 ensembled models, which got a score𝑑 of 0.7948 ± 0.8375 with the speed of 0.725
seconds per image (s/img). For round-II, the best score𝑑 of 0.8824 ± 0.2743 was obtained by
ensemble 20 models with a IoU-thres of 0.3. The speed of this method is 2.056s/img. Besides, we
also tested the performance of a single model without test-time augmentation (TTA) on the test
set round II. The model showed a score𝑑 of 0.7696 ± 0.2331 with a speed of 0.035s/img, which
has the potential to be applied to real-time colonoscopy in the clinical practice. Fig 4 visualizes
the difference between the bbox of our prediction and ground truth.



Figure 4: Ground truths and prediction results on some images from the validation dataset.
The left two columns show the good result for polyps with different sizes. The right two columns show
the bad result of false positive, false negative and error location.

Table 1
Results of baselines on EndoCV2021 detection task validation set

Baseline Img-size mAP:0.5:0.95

YOLOv5x-P6 1280×1280 0.5635
ScaledYOLOv4-P6 1280×1280 0.5601

EfficientDet-D6 1280×1280 0.4453

5. DISCUSSION & CONCLUSION

EndoCV2021 is an international endoscopy computer vision challenge for polyp detection and
segmentation. For the task of polyp detection, we evaluated three state-of-the-art detection
architectures: EfficientDet, ScaledYOLOv4 and YOLOv5. As a result, YOLOv5 was chosen
as the baseline of our method because of the relatively better performance. The size of the
training dataset is small, which has only 2910 images. To avoid over-fitting and improve the
generalization ability of the model, several data augmentation methods were used, such as
flipping, scaling, shearing, mixup, and mosaic. In addition, post-processing methods such as
TTA and model ensemble were also used to improve the performance of the model. Finally,
our method achieved state-of-the-art results on the test set. The score reached 0.7948 on the
round-I test set, and 0.8824 on the round-II test set.

According to the ablation experiment, the performance of the model on small and medium
objects showed obvious improvement when mosaic and mixup were used. This is because the
original training set has only a small number of small objects. Mosaic and mixup methods
could increase the number of small objects, which make the dataset more balanced. Besides,
multi-scale training could improve the robustness of the model to input of different sizes. And



Table 2
Ablation experimental results on EndoCV2021 detection task validation set

Method mAP:0.5:0.95 APsmall APmedium APlarge

YOLOv5x-P6 0.5324 0.2134 0.4577 0.5832
YOLOv5x-P6

Mosaic, Mixup 0.5635 0.2721 0.5182 0.5923
YOLOv5x-P6

Mosaic, Mixup + Multi-scale Training 0.6608 0.2877 0.4662 0.7075
YOLOv5x-P6

Mosaic, Mixup + Multi-scale Training
TTA 0.6843 0.3453 0.4768 0.7334

YOLOv5x-P6
Mosaic, Mixup + Multi-scale Training

TTA + Ensemble (7 models) 0.7107 0.2688 0.5387 0.7533
YOLOv5x-P6

Mosaic, Mixup + Multi-scale Training
TTA + Ensemble (20 models) 0.7178 0.2361 0.5304 0.7629

Table 3
Results on EndoCV2021 detection task test set

Method Test Phase IoU-thres Score Speed

YOLOv5x-P6
Mosaic, Mixup + Multi-scale traing

TTA + Ensemble (7 models) Round I 0.6 0.7948±0.8375 0.725 s/img
YOLOv5x-P6

Mosaic, Mixup + Multi-scale traing Round II 0.6 0.7696±0.2331 0.035 s/img
YOLOv5x-P6

Mosaic, Mixup + Multi-scale training
TTA Round II 0.6 0.8062±0.1250 0.104 s/img

YOLOv5x-P6
Mosaic, Mixup + Multi-scale Training

TTA + Ensemble (7 models) Round II 0.6 0.8322±0.2785 0.722 s/img
YOLOv5x-P6

Mosaic, Mixup + Multi-scale Training
TTA + Ensemble (12 models) Round II 0.6 0.8611±0.2292 1.232 s/img

YOLOv5x-P6
Mosaic, Mixup + Multi-scale Training

TTA + Ensemble (20 models) Round II 0.6 0.8615±0.2954 2.148 s/img
YOLOv5x-P6

Mosaic, Mixup + Multi-scale Training
TTA + Ensemble (20 models) Round II 0.3 0.8824±0.2743 2.056 s/img

because images with large objects occupy a large proportion in the dataset, APlarge on the
validation set significantly increased when multi-scale training was used.

In addition, TTA and model ensemble were also helpful to improve the performance of the



model, because they both combined multiple calculation results, which reduced the error of
the model. However, we noticed that after using model ensemble, the performance on small
objects became worse. This might be caused by the ensemble strategy that we chose was based
on non-maximum suppression. For the detection of one small object, it’s easier to get two
bounding boxes from two models which had small IoU. So it would be detected as two different
objects, which made the result worse. Furthermore, the results on the test set suggested that
appropriately reducing the IoU threshold of the non-maximum suppression processing could
also improve the performance of the model. It could be caused by the small IoU of the bounding
boxes in the dataset.

Although our model has achieved state-of-the-art results on the test set, it has some unresolved
problems. For example, it is time consuming for inference due to the usage of TTA and model
ensemble. The model with the best performance on the round-II test set requires 2.056s/img
for inference. In addition, it is difficult to use hyperparameter evolution algorithm based on
this dataset due to the time limitation of the challenge. Moreover, according to [11], the masks
provided by the dataset for segmentation can also be used to help train the detection model,
which may also improve the performance of our method.
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