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Abstract
We present an end-to-end system for extracting deontic logic formulae from legal text using a generic semantic parsing
module and task-specific graph grammars, and for performing automated reasoning on the extracted formulae. The pipeline
enables automated compliance checking and is applied to text documents of the zoning map of the city of Vienna. All
components are released as open-source software, the full pipeline is showcased in an online demo.
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1. Introduction
We present an end-to-end system for extracting deontic
logic formulae from legal text using a generic semantic
parsing module and task-specific graph grammars, and
for performing automated reasoning on the extracted
formulae. An overview of the pipeline is shown in Fig. 1.
Plain text regulations are processed by a pipeline of
domain-agnostic language processing tools, including a
system for building syntax-independent concept graphs
that represent the meaning of each sentence. These
graphs serve as the input for a task-specific rule extrac-
tion module that maps them to deontic logic formulae,
which in turn are used in an automated reasoning system.
The proposed pipeline is applied to text documents of the
zoning map of the city of Vienna1, an exciting corpus of
legal regulations whose highly structured nature renders
it very well suited for formal approaches. In absence of a
large-scale annotated corpus we evaluate our approach
on a toy dataset of manually analyzed sentences that
were selected to cover the most frequent attributes in
the full dataset. Possible applications include automated
compliance checking and question answering. The se-
mantic parser and rule extractor components are both
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1See https://www.wien.gv.at/flaechenwidmung/public/
for the map and https://www.data.gv.at/katalog/dataset/
flachenwidmungs-und-bebauungsplan-plandokumente-wien
for how to obtain the text documents (in German).

entirely rule-based, making our system an example of
true explainable AI (XAI). Unlike in deep learning-based
information extraction systems, extracted rules can be
directly traced back to text patterns, making it straight-
forward to provide natural language explanations for
decisions made based on them. This explainable nature
also enables human-in-the-loop operation and provides
safeguards against biased decision-making. Our main
contributions are:

• Specification of a formal representation of deontic
statements including those of the construction
regulation domain for automated rule extraction
and reasoning

• A preprocessed, structured corpus of sentences
extracted from the zoning plan of the City of Vi-
enna, a small subset of which is annotated manu-
ally with formal rule representations

• A grammar-based system for explainable rule ex-
traction from semantic graphs, evaluated on the
annotated corpus

• The adaption and extension of a general theorem
prover to the reasoning domain, including natural
language output

• System architecture and working prototype for
an end-to-end system for rule extraction and au-
tomated reasoning from raw text

The paper is structured as follows. In Sec. 2 we re-
view recent work on semantic parsing, automatic rule
extraction, and automated reasoning for legal-tech ap-
plications, and present the dependencies of our pipeline:
a task-independent semantic parser and a deontic logic
prover. Sec. 3 presents the rule extraction method, Sec. 4
describes the architecture of the full pipeline. Sec. 5
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Figure 1: Overview of our pipeline. The solid rectangle indicates the newly contributed component and format, dashed
rectangles mark existing tools that we modify or extend.

provides preliminary evaluation of our rule extraction
method, Sec. 6 discusses next steps and draws some con-
clusions. All components of our system are available
as open-source software2. The example application is
showcased in an online demo3.

2. Related work
The related work for the two main components of the sys-
tem is presented: (i) semantic parsing for extracting logic
expressions directly from legal text, and (ii) deontic logic
for performing automated reasoning on the extracted
formulae.

2.1. Semantic parsing
Semantic parsing is the task of automatically mapping
natural language text to a formal representation of its
meaning. Most contemporary architectures for solving
information extraction tasks do not perform semantic
parsing, instead relying on models which directly en-
code the correspondence between natural language text
and some set of task-specific structures such as labels,
sequences, attribute-value structures, etc. These mod-
els are primarily built using machine learning methods,
whose performance is dependent on the quality and quan-
tity of available training data and whose decisions are
difficult to interpret and prone to bias. Rule-based mod-
els, on the other hand, require considerable expert effort
to build and maintain and can still be difficult to adapt
to changes in the task definition. The architecture we
propose tackles the information extraction task in two
steps: the mapping of natural language text to task- and
domain-independent meaning representations (semantic
parsing) followed by a task-specific information extrac-
tion step that operates on these representations. In this
section we give a brief overview of common approaches
to semantic parsing and of the representation framework
used by our pipeline.

Unlike other forms of automated linguistic annotation
such as part-of-speech tagging or syntactic parsing, se-
mantic parsing is not in any way standardized in the
natural language processing (NLP) community. Even
those few frameworks that have recently attracted grow-
ing interest in the task are rarely used as intermediate

2https://github.com/recski/brise-plandok
3https://ir-group.ec.tuwien.ac.at/brise-extract

representations in NLP pipelines. Abstract Meaning Rep-
resentations (AMRs) [1] represent sentence meaning as
directed graphs of words, but do not provide a model
of word meaning and are highly English-specific, not
intended as a language-independent framework of mean-
ing representation. The task of parsing raw text to AMR
graphs has recently attracted growing interest and is usu-
ally performed using deep neural networks [2, 3] trained
on annotated corpora, also called sembanks. Universal
Conceptual Cognitive Annotation (UCCA) [4] takes a
language-agnostic approach to meaning representation,
modeling sentence meaning with directed acyclic graphs
(DAGs) representing scenes evoked by predicates. Top
UCCA parsers also rely on manually annotated corpora
and neural networks [5, 6, 7, 8]. Since these frameworks
do not provide a generic parsing algorithm, building
representations for a new language and/or new domain
would require the manual compilation of large annotated
datasets that could be used to train end-to-end machine
learning models. For the pipeline presented in this paper
we choose the language-independent 4lang framework
[9], for which a robust parsing method [10] with an open-
source implementation4 [11] is also available.

The 4lang framework represents the meaning of both
words and larger units like phrases and sentences as di-
rected graphs of concepts. The representation is syntax-
independent, concepts do not have types such as part-of-
speech or even as predicate and argument. A key feature
of 4lang graphs that enables uniform treatment of syn-
tactically different constructions is the 0-relation ( 0−→), a
single representation for a range of closely related seman-
tic relationships such as the ISA relationship (e.g. roof 0−→
covering), attribution (e.g. sidewalk 0−→ paved), and pred-
ication (e.g. platform 0−→ extend). 4lang graphs can be
built from raw text automatically using a rule-based sys-
tem that uses Universal Dependencies (UD) [12] as an
intermediate step. UD trees encode grammatical relations
(dependencies) between pairs of words in a sentence — an
example of such an analysis is shown in Fig. 2, described
later. UD parsers are available for dozens of languages,
in this pipeline we use the stanza package5 [13]. The
transformation of UD trees into 4lang graphs is based
on a small set of rules described in [10] and implemented
by [11] as parsing and decoding of an Interpreted Regu-
lar Tree Grammar (IRTG) [14], a formalism that we also
use in this work for implementing the rule extraction

4https://github.com/adaamko/wikt2def
5https://stanfordnlp.github.io/stanza
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mechanism that maps 4lang semantic graphs to trees of
attributes (see Sec. 3.2). Most rules map a single UD edge
between two content words to 4lang edges connecting
the corresponding concepts (e.g., in the example in Fig. 2,
the relations amod and nsubj : pass are mapped to a
0-edge and a 2-edge, respectively).

2.2. Automated reasoning and deontic
logic

The investigation of automated reasoning methods in the
legal domain has a long history, see, e.g., the seminal [15].
More recently, automated reasoning methods have been
considered for legal texts or company regulations [16, 17],
and a large number of reasoning frameworks and tools
are available, see, e.g., [18, 19] for an overview. Follow-
ing the approach in [17], here we consider a general and
formalism-independent representation of the regulations,
which can be translated into different frameworks. For-
tunately, the structure of the intended application, the
regulations of the zoning map of Vienna, is relatively
clear, and mostly does not require advanced features of
the formal language such as nested deontic operators in
the assumptions [16] or macros [20].

The specific reasoning engine used in this paper, the
theorem prover BRISEprover6, is an extension and modi-
fication of the theorem prover deonticProver2.07 devel-
oped in [21] for reasoning with assumptions in dyadic de-
ontic logic. In this logical framework, propositional logic
is extended with dyadic deontic operators obl, for and per.
Formulae obl(𝐴,𝐵), for(𝐴,𝐵) and per(𝐴,𝐵) are read
as “it is obligatory that 𝐴 given 𝐵”, “it is forbidden that
𝐴 given 𝐵” and “it is permitted that 𝐴 given 𝐵”, respec-
tively. As the first extension considered here we extend
the language with predicate symbols to capture proper-
ties, e.g., “building height at most 9 metres”, in atomic for-
mulae, e.g., buildingHeightMax(9). Note that it would
be straightforward to include an additional argument rep-
resenting the subject, i.e., which building has a height of
at most 9 metres. Since in our case this is clear from the
context we simplify the representation by assuming the
subject is always the same. The prover decides derivabil-
ity from a set of factual and deontic assumptions, i.e., non-
deontic and non-nested deontic formulae respectively.
The reasoning engine supports the specificity principle
in the form that more specific deontic assumptions over-
ride less specific conflicting ones. E.g., the assumption
obl(buildingHeightMax(9), facingStreet), stating
that buildings facing the street must have a maximal
height of 9 metres, overrides the less specific assump-
tion obl(buildingHeightMin(10),⊤), stating that un-
der the always true condition ⊤ buildings must have a

6See http://subsell.logic.at/bprover/briseprover/
7See http://subsell.logic.at/bprover/deonticProver/version2.0/

minimal height of 10 metres. Due to this property the rea-
soning process is non-monotone: While from the single
assumption obl(buildingHeightMin(10),⊤) we can
derive the formula

obl(¬buildingHeightExactly(8), facingStreet),

stating that the height of buildings facing the street
must not be exactly 8 metres, we cannot derive
the same formula with the additional assumption
obl(buildingHeightMax(9), facingStreet) any-
more. As a second modification from the original
deonticProver2.0, here we consider a different conflict
resolution mechanism, resulting in particular in higher
efficiency of the implementation. Reasoning in this
logic is implemented via backwards proof search in a
sequent system with underivability statements, both in
the system from [21] and in a slight modified reasoning
engine. See op. cit. for the details of the original system
and Sec. 4.4 for the modifications.

We are thankful to one of the reviewers for bringing ad-
ditional relevant literature to our attention [22, 23, 24, 25,
26]. Unfortunately, space and time constraints prevented
a detailed comparison for the final version.

3. Rule extraction
The pipeline presented here takes as its input raw text
documents containing regulations of the zoning map of
the City of Vienna, builds representations of their mean-
ing using the 4lang system (see Sec. 2.1), uses the re-
sulting semantic graphs to extract the legal content of
regulations and makes them available to the prover (see
Sec. 2.2), which verifies whether some statement is deriv-
able given a set of assumptions. The full architecture is
described in Sec. 4, we now present the novel rule extrac-
tion component and its interfaces to semantic parsing
and automated reasoning.

3.1. Representation
Since we do not want to commit to modeling regu-

lations in a particular formalism, and to facilitate the
integration of different reasoning engines we first con-
vert the legal content of the regulations into a generic
representation. For this we assume that a deontic regula-
tion, i.e., a regulation stating an obligation, prohibition
or permission, is comprised of the following parts:

• Modality: This states whether the regulation is
an obligation, a prohibition or a permission;

• Content: The content of the regulation, i.e., what
is obligatory / prohibited / permitted;

• Conditions: The conditions of the regulation stat-
ing when the regulation applies;

3
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NOUN ADP ADP DET NOUN ADP NUM NOUN AUX ADP DET NOUN DET ADJ NOUN PART VERB
Flachdächer bis zu einer Dachneigung von fünf Grad sind entsprechend dem Stand der technischen Wissenschaften zu begrünen

nsubj:pass

aux:pass
obl

mark

Dachneigung

case

case

det

nmod

case

nummod

case

det

nmod

det

amod

{"modality": "obligation",
"attributes": [

{"type": "content",
"name": "BegruenungDach",
"value": null},

{"type": "condition",
"name": "Dachart",
"value": "Flachdach"},

{"type": "condition",
"name": "DachneigungMax",
"value": "5Grad"}}

Figure 2: Universal Dependency analysis, 4lang semantic graph, and formal rule representation for the sentence Flachdächer
bis zu einer Dachneigung von fünf Grad sind entsprechend dem Stand der technischen Wissenschaften zu begrünen. ‘Flat roofs
with a pitch not exceeding 5 degrees must be greened using state of the art technologies.’

• ConditionExceptions: Possible exceptions to the
conditions, stating when the regulation does not
apply. E.g., in the regulation “Flat roofs should
be green roofs, unless they are glass roofs”, the
“glass roofs” is an exception to the condition.

• ContentExceptions: Possible exceptions to the
content. E.g., in the regulation “Windows are
prohibited except for portholes” the “portholes”
are an exception to the content.

This level of granularity seems to capture the necessary
details of the sentences found in the documents from the
city of Vienna zoning map while being flexible enough to
permit translation into different frameworks like dyadic
deontic logic, defeasible deontic logic [16], argumenta-
tion based approaches [27] or input output logic [28].
Concretely, we represent this structure as a JSON object

{”modality” : Modality, ”attributes” : List}

where the key “modality” takes one of the values “obli-
gation”, “prohibition”, “permission”, and where List is
an array containing attributes of the following form:

{”name” : Name, ”value” : Value, ”type” : Type}.

Here Name is the name of the attribute, Value is its value,
and Type is one of “Content”, “Condition”, “ConditionEx-
ception”, “ContentException”. We obtained the attribute
names via collaboration with domain experts from the
City of Vienna Baupolizei and verified that the structure
is appropriate by manually annotating several hundred
sentences from the documents of the zoning map.

As an example, the generic representation of the de-
ontic regulation “Flat roofs should be green roofs unless
they are glass roofs” is given by:
{ ”modality” : ”obligation”,

”attributes” : [

{ ”name” : ”roofType”, ”value” : ”flatRoof”,

”type” : ”condition”},
{ ”name” : ”greenRoof”, ”value” : NIL,

”type” : ”content”},
{ ”name” : ”roofType”, ”value” : ”glassRoof”,

”type” : ”conditionException”}]}
Here we modelled both flat roofs and glass roofs as roof
types, while modelling the property of being a green
roof as an atomic propositional statement because the
latter in the documents corresponds to a more complex
proposition.

Note that in contrast to, e.g., the approach in [17] at
this stage we do not commit to a particular modelling of
exceptions by negation-as-failure or negated conditions.
This retains the flexibility of the general format necessary
for subsequent specification into a large number of dif-
ferent formalisms. There are of course some limitations
inherent in this representation, in particular we do not
model negation. See Sec. 6 for a more detailed discussion.

3.2. Extraction
The mapping from semantic graphs to the rules described
is implemented in two steps. An IRTG grammar similar
to that of the semantic parsing system (see Sec. 2.1) is
used to extract all attributes, values, and expressions of

4



Gabor Recski et al. CEUR Workshop Proceedings 1–13

modality that occur within a single sentence. A simple
heuristic then matches these elements with each other in
order to create the generic rule representations described
in the previous section. The mapping we establish is
between patterns in generic semantic graphs and formal
rules. This two-step approach is an arbitrary simplifica-
tion that makes implementation simpler and more flexi-
ble. We shall now describe the approach using some ex-
amples and point out some of its current limitations. The
first component of our rule extraction system is an IRTG
grammar mapping 4lang graphs to lists of strings rep-
resenting attribute names (e.g. DachneigungMax ‘max-
imal roof pitch’), modalities (e.g. OBL ‘obligation’), as
well as numbers and units of measurement that may be
interpreted as attribute values (e.g. 5 and m). We shall
refer to this grammar as fl_to_attr. The heuristics
for matching values and modalities to attribute names,
described later in this section, can only disambiguate
between multiple solutions if it is informed about the
positions of patterns relative to each other. Hence we
use a Tree Grammar as the output interpretation, which
allows us to represent these strings as leaves of a tree
that resembles the order in which they were recognized,
corresponding to steps of composing the 4lang graph
from subgraphs. An example of this mapping is presented
in Fig. 3. Each IRTG rule encoding the correspondence
between a 4lang subgraph and an attribute or tree of
attributes is a mapping between rule applications in an
s-graph algebra [29] and a tree algebra. S-graphs are
graphs whose nodes may be marked by special labels
called sources and the s-graph algebra’s core operation
merge creates new s-graphs by taking the union of its
arguments but merging nodes that have the same source.
We now illustrate this mechanism with a simple exam-
ple, for a more detailed introduction to s-graph algebras
and their application to semantic parsing the reader is
referred to [29]. The IRTG rule presented in Fig. 4 de-
fines two binary operations, to be performed in parallel
on corresponding pairs of s-graphs and trees. The op-
eration of the 4lang interpretation merges two graphs
along their root nodes with the two nodes of the edge
Gebäudehöhe 0−→ maximal to create a single graph, while
the operation of the attr interpretation merges the two
attribute trees with each other and subsequently with a
tree of two nodes (OBL, GebaeudeHoeheMax). S-graph
algebras use three types of operations: the merge opera-
tion merges two graphs on nodes with matching sources
while the rename and forget operations can be used to
change or delete sources. In the example rule in Fig. 4
the two argument graphs are renamed so that their root
sources become src and tgt, and these sources need to
be deleted after the merge operation.

Once all relevant strings have been extracted from the
semantic graph, the next step is to build the rule represen-

⇕

v_5q_Grad

DachneigungMaxv_FlachdachDachart

BegruenungDach

OBL

Figure 3: Example mapping implemented by the
fl_to_attr grammar for the sentence in Figure 2.

E -> a_gebaeudehoehe_maximal(E, E) [100]
[fl] f_src(f_tgt(merge(r_src(?1), merge(r_tgt(?2),
"(u<src> / Gebaeudehoehe :0 (v<tgt> / maximal))"))))
[attr] *(*(?1, ?2), *("OBL", "GebaeudeHoeheMax"))

Figure 4: Example rule of the fl_to_attr IRTG grammar.
The first interpretation line is wrapped for readability, the op-
erations are explained in the text.

tation by heuristically matching modalities as well as po-
tential attribute values to attribute names. We illustrate
this process using an example with multiple attributes;
consider the following sentence fragment, a subordinate
clause of a longer regulation: bei einer Straßenbreite ab 10
m entlang der Fluchtlinien Gehsteige mit einer Breite von
mindestens 2,0 m herzustellen sind. ‘in case of a street
width of 10 m or more, sidewalks with a width of at least
2.0 m are to be constructed along the alignment lines.’.
The pipeline described so far will extract from this sen-
tence three attribute names (StrassenbreiteMin ‘min-
imum street width’, GehsteigbreiteMin ‘minimum
sidewalk width’, AnFluchtlinie ‘along the alignment
line’), two numbers (10, 2.0), two occurrences of the unit
of measurement m, and the modality OBL ‘obligation’ (the
latter based on the word form herzustellen composed of
the verb herstellen ‘construct, produce’ and the infinitive
marker zu). These eight elements are organized in a tree
structure according to the order in which they appeared
in the IRTG derivation of the corresponding semantic
graph, shown in Fig. 5. The tree of attributes is stored
in a custom data structure that in every node stores the
length of the shortest path between any pair of attributes
below that node. This means that by querying the root of
the tree we can retrieve for any attribute a list of all other

5
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2.0m

10m

StrassenbreiteMin

GehsteigbreiteMin

OBL

AnFluchtLinie

Figure 5: Example of attribute matching for the sentence
. . . bei einer Straßenbreite ab 10 m entlang der Fluchtlinien
Gehsteige mit einer Breite von mindestens 2,0 m herzustellen
sind. ‘in case of a street width of 10 m or more, sidewalks
with a width of at least 2.0 m are to be constructed along the
alignment lines.’

attributes ranked by their relative distance in the tree. We
first match all units of measurement to the nearest value
in the tree, allowing each value to be associated with at
most one unit of measurement. Next, all non-boolean at-
tributes are matched to the nearest value, using a greedy
algorithm: all possible attribute-value pairs are sorted
by their relative distance in the tree, the pair with the
shortest path is stored as a match, its members are re-
moved from the lists of attributes and values that are still
to be matched, and this step is repeated until at least one
of the lists becomes empty. For example, in Fig. 5 the
attribute StrassenbreiteMin ‘minimum road width’ is
paired with the value 10, since they are the closest of
any pairs of attribute and value in the tree (the attribute
AnFluchtLinie is excluded from this process because it
is listed as a boolean attribute). In the second step the at-
tribute GehsteigbreiteMin ‘minimum sidewalk width’
is matched with the only remaining value, 2.0. Finally,
the type of each attribute must be detected, i.e. it must be
determined whether an attribute is a condition of the
rule, part of the content, or an exception to either one of
these (contentException, conditionException, see
Sec. 3.1). Some attrbutes are explicitly listed as always be-
ing of type condition, e.g., Planzeichen and Widmung
which refer to the ID and designation of an area. Next, the
extracted modality elements OBL, FOR, EXC are matched
to the nearest of the remaining attributes, which are
in turn determined to be part of the content (in case
of FOR and OBL) or a conditionException (in case of
EXC). Finally, all remaining attributes are given the type
condition.

These simple heuristics, which are already capable
of correctly matching attributes to their values and for
distinguishing between the roles each attribute plays in
a rule, allow us to keep the grammar simpler than it
would be if it was to directly generate structures like our
generic rule representations. The IRTG rules currently
used (and exemplified in Fig. 4) simply represent one-
to-one correspondences between 4lang subgraphs and
strings, but the underlying Regular Tree Grammar only
uses a single nonterminal symbol, i.e. rules are not sen-
sitive to which other rules were used to construct their
arguments. It would be quite straightforward to intro-
duce non-terminal symbols representing attribute names,
numbers, measurement units, and modalities, so that the
IRTG itself would enforce the structure that is currently
built in a postprocessing step. The tree in Figure 5 re-
sembles the order in which patterns corresponding to
each element were found in the semantic graph, which
in turn correspond to disjoint subgraphs of the semantic
representation that are each connected to the concept
herstellen and roughly correspond to fragments of the
original sentence such as Gehsteig mit einer Breite von
mindenstens 2,0 m herstellen ‘construct sidewalk with a
width of at least 2.0 m’, bei einer Straßenbreite ab 10 m
‘with a road width of at least 10 m’, entlang der Fluchtlin-
ien ‘along the alignment lines’, etc. Here we limit our
grammar to the task of understanding each of these pat-
terns independently because this proves sufficient for our
purposes of constructing formal rules from sentences of
the zoning map of the City of Vienna, which tend to be
in a one-to-one correspondence with rules of the general
structure described in Sec. 3.1. I.e., we greatly simplify
our task by exploiting the fact that authors of this piece of
legislation rarely express a rule in multiple sentences or
incorporate several rules in a single sentence. A notable
exception is when some conditions such as the ID or des-
ignation of the areas that a rule refers to are not repeated
in every sentence within the same section. These condi-
tions are propagated by a simple inheritence mechanism
that assumes the values of such attributes to hold within
a single section (see Sec. 4 for how section boundaries
are detected).

3.3. Specification to dyadic deontic logic
The extracted rules in the generic format are then trans-
lated into the language of dyadic deontic logic. We chose
this particular framework because the sentences of the
zoning map of Vienna exhibit a very clear deontic struc-
ture, in contrast, e.g., to the largely definitional character
of the British Nationality Act investigated in [15]. The
translation is dependent on the modality in the following
way. Given a rule representation

{”modality” : Modality, ”attributes” : List}

6
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let

Cnd := cnd1(cndV1) ∧ · · · ∧ cnd𝑛(cndV𝑛)

CntEx := ctEx1(ctExV1) ∨ · · · ∨ ctEx𝑚(ctExV𝑚)

CndEx := cdEx1(cdExV1) ∨ · · · ∨ cdExℓ(cdExVℓ)

where the cnd𝑖 are all the attributes occurring with type
“condition” in List, and the cndV𝑖 are their respective
values, and similarly for ctEx for type “contentException”
and cdEx for type “conditionException”. For the content,
let further

Cnt := cnt1(cntV1) ∧ · · · ∧ cnt𝑚(cntV𝑚)

Cntfor := cnt1(cntV1) ∨ · · · ∨ cnt𝑚(cntV𝑚)

Where again the cnt𝑖 are the attributes of type “content”
and the cntV𝑖 their respective values. The translation of
a rule representation with modality “obligation” then is:

obl(Cnt ∨ CntEx, Cnd) ∧ per(¬(Cnt ∨ CntEx), CndEx)

The translation of a rule with modality “prohibition” is:

for(Cntfor ∧ ¬CntEx, Cnd) ∧ per(Cntfor ∧ ¬CntEx, CndEx)

For the modality “permission” the translation is:

per(Cnt ∨ CntEx, Cnd) ∧ for(Cnt ∨ CntEx, CndEx)

Note that this translation commits to formalising, e.g.,
condition exceptions to obligations or prohibitions as
additional permissions. Of course this is by no means
the only possible translation: we could have chosen to
embed the condition exception explicitly in the condi-
tion of the resulting formula. This choice is due to the
fact that it facilitates the derivation of a general state-
ment like “Flat roofs should be green roofs” from “Flat
roofs should be green roofs unless they are glass roofs”
in the particular logic used in the prover. In particular,
when checking whether a flat roof in general should be
a green roof we do not need to explicitly state that none
of the condition exceptions are satisfied, in line with the
standard approach in non-monotonic logic and default
reasoning [30].

4. Architecture
We describe the system architecture of the full pipeline
that takes raw text documents as input, builds semantic
graphs using the system described in Section 2.1, ex-
tracts rules using our method presented in Section 3.2,
maps them to deontic logic formulae as described in Sec-
tion 3.3 and provides them as input to the prover (see
Section 2.2). All components of our system are available
as open-source software8 under an MIT license and the
end-to-end pipeline is showcased in an online demo9

integrating all of them.
8https://github.com/recski/brise-plandok
9https://ir-group.ec.tuwien.ac.at/brise-extract

4.1. Preprocessing and segmentation
The input to our pipeline consists of PDF documents
downloaded from the public website of the City of Vi-
enna. Each PDF document contains regulations pertain-
ing to one zoning area (Plangebiet), indicated by a four-
digit ID. We discard the fraction of documents that are
scanned images of printed documents and do not con-
tain machine-readable text data (253/1431 = 17.7%) —
we could include these in our experiments by running
optical character recognition (OCR). PDF documents are
then converted to plain text using the pdftotext util-
ity, part of the open-source Poppler library10. We use
the −layout option of the tool to maintain page layout
in the output text file, this greatly simplifies the subse-
quent extraction of document structure. Next we use
a small set of regular expressions to establish section
boundaries and extract section numbers from the text.
Section numbering often makes use of several levels (e.g.
1, 1.1, 1.1.1, etc.), but this is not consistent across doc-
uments, therefore we only consider top-level sections
in subsequent steps that are sensitive to section bound-
aries. Besides the inheritance mechanism described in
Section 3.2, this decision is crucial for sentence segmen-
tation, the next step in our pipeline, for which we use
a customized version of the German sentence splitting
model of the stanza11[13] library. The output of the stan-
dard model is postprocessed to undo sentence splits that
have been made in error (e.g. those after periods follow-
ing abbreviations characteristic of legal text) and also
those made after colons (:) that separate a predicate from
its object(s), such as in the text Für die mit BB4 bezeich-
neten Grundflächen wird bestimmt: Die Errichtung von
Gebäuden mit einer maximalen Gebäudehöhe von 8 m ist
zulässig. ‘For areas marked BB4 it is determined: con-
struction of buildings with a maximum building height
of 8 m is allowed.’. The custom sentence segmentation
step is followed by stanza’s default German pipeline
(de− gsd, stanza model version 1.1.0) for tokenization,
part-of-speech (POS) tagging and universal dependency
parsing.

4.2. Semantic parsing
The next step in our pipeline is to construct semantic
graphs from each sentence. The rule extraction algorithm
described in Section 3 assumes that all relevant informa-
tion present in the input text is available in the semantic
graph that is the output of the generic semantic parsing
pipeline described in Section 2.1. To ensure that this is the
case some minor modifications of the semantic parsing al-
gorithm were also necessary. First, we introduced a small
set of rules in the grammar mapping Universal Depen-

10https://gitlab.freedesktop.org/poppler/poppler
11https://stanfordnlp.github.io/stanza
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dency representations to semantic graphs for common
words expressing negation and modality. The lemmas
nicht and kein trigger the addition of the NEG element to
the 4lang graph, dürfen ‘may’ and zulässig ‘permitted’
are mapped to PER, untersagen ‘prohibit‘ and unzulässig
‘not permitted’ to FOR, and müssen to OBL. Additionally,
the German construction consisting of the particle zu
followed by the infinitive form of a verb must also trigger
the OBL element, since it can express modality without
any additional linguistic elements. This latter rule is im-
plemented by two mechanisms, one that looks for the
lemma zu with the universal part-of-speech tag (UPOS)
PART, the other for the language-specific part-of-speech
tag (XPOS) VVIZU marking verbs that contain the par-
ticle as an infix (e.g. herzustellen from herstellen ‘create,
produce’. While even the most rudimentary treatment
of the semantics of German modal expressions would
go beyond the simplicity of such a simple categorization
(and the scope of this work), in practice this small en-
hancement of the semantic representation of the input
text was sufficient to allow for the detection of modality
by the rule extraction mechanism. Finally we also added
an ad-hoc rule for detecting exceptions: the presence
of the word sofern and soweit, both roughly equivalent
to the English conjunction ‘provided’ and introducing a
clause that limits the applicability of a previous statement,
triggers the addition of an element EXC to the semantic
graph which is then also available for processing by the
rule extraction mechanism.

4.3. Rule extraction
We now describe the implementation details of the two-
step rule extraction method presented in Section 3.2. The
output of the semantic parser, which serves as the input
to rule extraction, is a single directed graph for each in-
put sentence, generated by an Interpreted Regular Tree
Grammar from Universal Dependency structures (see
Section 2.1 for details). For recognizing subgraphs and
mapping them to attributes we also use an IRTG over
an algebra of s-graphs, this allows us to pipe the output
of the semantic parser directly into our rule extraction
grammar. For each 4lang graph we dynamically gener-
ate a unique grammar. The static set of rules encoding
the correspondence between generic semantic structures
and task-specific attributes is extended with empty termi-
nal rules for each concept in the input graph, this ensures
that the entire graph can be constructed by a sequence of
operations that is derivable by the underlying RTG and
thus the object can be parsed by the IRTG. The output
interpretation of the IRTG is an algebra of trees, whose
leaves are the individual strings that we use to construct
rules in a subsequent step. The trees resemble the order
in which these strings (names and values of attributes,
modal elements, units of measurement) have been added

to the output in parallel to the construction of the seman-
tic graph, it is this additional information that allows us
to implement the matching heuristics described in Sec-
tion 3.2. For parsing of 4lang graphs and generation of
attribute trees with these IRTGs we use the open-source
alto12 library, which also implements s-graph algebras
and tree algebras. The alto system also supports proba-
bilistic parsing with weighted grammars, and we rely on
rule weights to ensure that rules which map subgraphs to
attributes always take precedence over the ‘empty’ rules
that are only added to the grammar to ensure that the
full graph is derivable. In those few cases when more
than one such ‘content’ rule matches the same subgraph,
precedence is given to rules that cover larger substruc-
tures. The trees output by the IRTG parser serve as the
input to the heuristic construction of rules described in
the previous section. Finally, rules are converted from the
generic (JSON) format to the language of dyadic deontic
logic, as described in Section 3.3.

4.4. The prover
The final step in our pipeline consists of an exemplary rea-
soning mechanism to draw inferences from the extracted
rules. This step is based on our adaption13 of the generic
theorem prover deonticProver2.014 which implements
backwards proof search in a sequent system for a dyadic
deontic logic extended with rules for defeasibly reasoning
from deontic assumptions [21]. Apart from specifying
the prover to the language obtained from the examples
we needed to further modify it in two ways. First, in order
to be able to handle attributes with numerical arguments,
such as DachneigungMax for the maximal angle of the
roof, or with strings as argument, such as Dachart for
the roof type, we extended the prover and the underly-
ing reasoning system to handle atomic propositions with
arguments. In addition, we added ground sequents, i.e.,
structures which can be used as leaves in a derivation, cor-
responding to basic properties of measure-like attributes
with natural numbers as values: Where msr is a basic
attribute for a measure such as Dachneigung, we con-
sidered a triple consisting of the attributes msrGenau(𝑛),
msrMin(𝑛) and msrMax(𝑛), expressing the facts that msr
is exactly 𝑛, at least 𝑛, or at most 𝑛, respectively. The
relations between these three attributes are given by:

• msrGenau(𝑛) → msrMin(𝑛) ∧ msrMax(𝑛)

• msrMin(𝑛) → msrMin(𝑚), where 𝑚 ≤ 𝑛

• msrMax(𝑛) → msrMax(𝑚), where 𝑛 ≤ 𝑚

• msrMax(𝑛) → ¬msrMin(𝑚), where 𝑛 < 𝑚

The ground sequents added to the prover then absorb ba-
sic reasoning on these axioms, so that, e.g., the formulae

¬(DachneigungGenau(𝑛) ∧ DachneigungGenau(𝑚))

12https://github.com/coli-saar/alto
13https://github.com/blellmann/BRISEprover
14http://subsell.logic.at/bprover/deonticProver/version2.0/
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are derivable for 𝑛 ̸= 𝑚, stating that the exact angle of
a roof does not have two different values.

Second, and more significantly, to be more in line with
other approaches in the area of deontic reasoning such
as [31] as well as for efficiency reasons we modified the
mechanism how the prover handles specificity reasoning
when reasoning from deontic assumptions. To illustrate,
assume the deontic assumption

obl(DachneigungMax(5) ∧ BegruenungDach,

Plangeb(7181))
(1)

stating that the maximal angle of the roof must be 5
degrees and the roof must be green under the condition
that the building is in zone 7181. This would be partially
overruled by the additional more specific assumption

obl(¬BegruenungDach, Plangeb(7181)
∧Planzeichen(BB1))

(2)

stating that roofs in areas of zone 7181 marked with the
label BB1 on the map must be not green roofs. The latter
assumption is considered more specific than (1) because
its condition Plangeb(7181) ∧ Planzeichen(BB1)
strictly implies the condition Plangeb(7181) of assump-
tion (1). In deonticProver2.0 the assumption (1) could
still be used to infer obligations from the part of its con-
tent not in conflict with the content of the more specific
assumption (2), such as

obl(¬DachneigungGenau(7), Plangeb(7181)
∧Planzeichen(BB1))

(3)

stating that in areas of zone 7181 marked with the label
BB1 the exact angle of the roof must not be 7 degrees.
In our prover we changed this behaviour so that any
assumption which is a in conflict with a more specific
applicable one cannot be used to derive any obligations.
Thus (disregarding prohibition and permission opera-
tors for the sake of exposition) to check whether (3) is
derivable we now check whether there is an assumption
obl(𝐴,𝐵) such that

1. 𝐴 → ¬DachneigungGenau(7) is derivable

2. Plangeb(7181) ∧ Planzeichen(BB1) → 𝐵 is deriv-
able

3. there is no applicable and more specific assumption
conflicting with obl(𝐴,𝐵), i.e., there is no obl(𝐶,𝐷)
such that

a) Plangeb(7181) ∧ Planzeichen(BB1) → 𝐷
and 𝐷 → 𝐵 are derivable

b) 𝐶 → ¬𝐴 is derivable

Crucially, the “no-conflict” check in item (3b) above only
needs to be performed between two assumptions and
not between the formula to be proved and an assump-
tion. This means that instead of checking for conflicts
many times redundantly in the search for a derivation
(as is done in deonticProver2.0) it suffices to perform this

check once in a preprocessing stage, store for every de-
ontic assumption the list of conflicting ones, and only
check that none of the assumptions in this list is appli-
cable and more specific during the actual computation.
In our experiments this increased efficiency was neces-
sary for reasoning with a non-trivial number of deontic
assumptions. To compare the two reasoning methods
the user can switch between the original (“classic”) and
modified (“modern”) versions on the web interface15 for
the prover. For the sake of simplicity the web interface
for the whole pipeline only uses the modified version.

Originally, for derivable input deonticProver2.0 out-
puts a pdf file with a derivation in the calculus. How-
ever, since the derivations can become rather large (even
breaking the maximal limit on object size in TeX) and the
average user might not be acquainted with the specific
formalism used in the prover, we further extended the
output module with an option to print the derivation as
an explanation in pseudo-natural language. Explanations
can be unfolded step by step by clicking on a button la-
belled “Why?” after the “The statement ... is derivable.”
output. In unfolding the explanation, propositional steps
are skipped by default to reveal the crucial deontic state-
ments and assumed facts used there. These intermediary
steps can additionally be unfolded by clicking on a “Why
does it follow from the above?” button. In the demo the
user can select the output format.

We stress again that here our prover serves mainly as
an example for a possible reasoning mechanism and that
we do not claim that the underlying logic is necessarily
the most appropriate. For this reason we also defer the
theoretical details of the modifications of the underlying
sequent system to a forthcoming companion paper.

5. Evaluation
The rule systems presented in Sec. 3.2 were developed
based on a small annoted sample of sentences from
the zoning plan of the City of Vienna. In order to es-
tablish a representative sample, we started by estimat-
ing the distribution of attributes in the entire corpus
by manually labeling the sentences of 10 randomly se-
lected documents with the attributes they mention (ei-
ther as condition or content). This sample contains 344
mentions of attributes in 193 sentences (as well as 118
sentences without attribute mentions, mostly from the
preambles). The number of unique attributes in the sam-
ple is 84, but 193 of the 344 instances (56%) come from
the 16 most frequent attributes. We then chose 6 sen-
tences from this sample that together contain mentions
of 7 of these 16 attributes, including the 3 most fre-
quent ones (GebaeudeHoeheMax, AbschlussDachMax,
GebaeudeHoeheArt) that are alone responsible for 17%

15http://subsell.logic.at/bprover/briseprover/

9

http://subsell.logic.at/bprover/briseprover/


Gabor Recski et al. CEUR Workshop Proceedings 1–13

of all attribute mentions in the larger sample. We anno-
tated these 6 sentences with the full representation of all
rules stated by them and developed our rule extraction
system to achieve perfect performance on this toy corpus.
Both this fully annotated set and the larger sample of
10 documents annotated for attribute mentions only are
released along with the software16. While our method of
selecting the sentences for the toy corpus ensures that
the attribute extraction step of our method has high cov-
erage (recall above 51% with a precision above 93% on
the sample of 10 documents and 344 attribute instances),
this cannot be considered as quantitative evaluation of
the full rule extraction pipeline. The limited amount
of annotated data also does not permit any conclusions
about the effect of errors in syntactic parsing made by
the stanza model, but our assumption that this should not
become a bottleneck for such standard text is reinforced
by the fact that we did not observe any such errors in our
sample. A larger-scale annotation of attribute mentions
is currently in progress.

6. Discussion
In this article we have presented a system for extract-
ing formal rules from legal text using generic semantic
parsing and domain-specific pattern-matching, and con-
verting them to deontic logic for use in an automated
reasoning system. All components of the pipeline, includ-
ing those contributed in this paper, are made available
as open-source software under the MIT license, for un-
restricted use in future applications. Unlike machine
learning based information extraction systems, our rule
extraction model is fully explainable and serves as an
example for a specific application of semantic parsing
to domain-specific information extraction. While the se-
mantic representation and parsing algorithms used in
our pipeline are language-agnostic, they may require
adaptation to new languages and domains. Furthermore,
for domains and text genres that more closely resemble
everyday language use, deep semantic analysis would
require lexical inference, a notoriously difficult task in
computational semantics [32, 33]. In our general rule
representation we concentrated on deontic statements of
a reasonably simple form. While this form seems to be
well adapted to the regulations provided in the texts for
the zoning maps of Vienna, there are some obvious limi-
tations. First, since we always assume the presence of a
deontic modality (obligation, prohibition or permission),
at the moment we cannot treat constitutive norms [34]
such as “The area marked on the map with the label
BB1 is designated a residential area”. This issue could
be addressed by adding an additional modality “consitu-
tiveNorm” to the general representation together with

16https://github.com/recski/brise-plandok

an appropriate translation. Second, our propositional
language is currently rather restricted, since we do not
permit, e.g., disjunctions in the conditions or content
of an obligation. Again, this could be addressed rather
straightforwardly by extending the format of our repre-
sentation, possibly along the lines of JsonLogic17. We also
do not consider quantification or nested deontic opera-
tors. For the current application these features seemed
not to be necessary. Most of these limitations are in line
with other current approaches, e.g., [16, 28].

The proof-of-concept application presented in this pa-
per can serve as a blueprint for semantics-based solutions
to a wide range of information extraction tasks includ-
ing variants of entity recognition and relation extraction.
Such systems are generally more flexible, interpretable,
and less prone to bias than the large neural network mod-
els used for similar tasks. However, to make such systems
a viable alternative for everyday NLP applications, novel
methods must be devised for the (semi-)automatic learn-
ing of task-specific rule systems like the one manually
built for this project. Concerning the automated reason-
ing part, we plan to consider specifications to different
frameworks in the future, including those of argumen-
tation theory [27], I/O logic [28], and defeasible deontic
logic [16], and integrate existing provers for these for-
malisms such as TOAST18, SPINdle19 or TurnipBox20. Ad-
ditionally, we plan to implement alternative translations
from the generic representation to the language of dyadic
deontic logic, corresponding to different interpretations
of the logical structure of deontic statements. Along the
lines of [35] this could be used to compare such differ-
ent interpretations. Finally, we would like to investigate
whether the part of our pipeline creating general rule
representations could be used in combination with the
NAI suite [17]. Our rule-based approach could be used as
a first step to automatically suggest a formalisation of a
given legal text, which then could be converted into the
format used in the NAI suite and run through the quality
assurance function provided there. The benefit would be
that the legal experts do not need to actively formulate
the formalisation of a legal text, but only to potentially
adjust it based on the quality assurance checks.
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