
Semantic Annotation of Mobile Data for Language Access
Raimondas Lencevicius

Nokia Research Center Cambridge
3 Cambridge Center

Cambridge, MA 02142

Raimondas.Lencevicius@nokia.com

Alexander Ran
Nokia Research Center Cambridge

3 Cambridge Center
Cambridge, MA 02142

Alexander.Ran@nokia.com

ABSTRACT
Mobile devices both host and collect significant amount of data
that could be interesting to users. To make this data easily
accessible, it has to be stored in semantic repositories using a
well-defined ontology. Relationships between data from various
sources should be explicit. Natural language interface to such data
is an attractive option for information access. However, there are
semantic gaps between the data repositories and the formal
representation of meaning produced by language understanding
systems. This paper describes a solution to the issues above. We
have implemented a system that converts the mobile data into
RDF format and annotates it with information necessary for
efficient access via natural language. We have designed and
implemented Natural Query system that automates the interface of
natural language system and the semantic data repository.
Language tags are used to map between the natural language
meaning representation and the repository elements. Repository
graph search is used to discover the knowledge about the
repository structure.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval], H.5.2 [User
Interfaces]: Natural language, I.2.4 [Knowledge
Representation Formalisms and Methods]: Semantic networks

Keywords
Semantic annotation, query language, natural language.

1. INTRODUCTION
Natural language based interaction with software is

increasingly viewed as a promising addition and sometimes even
alternative to graphical user interfaces (GUIs), especially in the
domain of mobile devices. Mobile devices host structured and
semi-structured information bases, software services, and
integrated devices such as cameras, music players, etc. Mobile
devices also make a perfect user interface to the real-world
environment. They are constantly carried with the user [2]
enabling gathering of user location information. Mobile devices

are equipped with more and more sensors including GPS
receivers, Bluetooth transmitters and receivers, RFID receivers
and others. They also receive and store information about such
events as messages, phone calls, meetings, application usage and
access to digital services. It is therefore natural to expect that this
data should be collected and made accessible on mobile device.

However, there are some open questions that need to be
resolved in order to make this data useful and accessible both to
the programs and to the mobile device users. Collected real-world
data must be structured and integrated with other information
available on mobile devices such as the information found in the
user’s phone book or calendar. There also needs to be an intuitive
interface that allows flexible access to collected information.

Mobile devices store a rich set of structured information. The
address book or phone book application contains names, phone
numbers, addresses and affiliations of personal contacts. The
calendar application contains entries for meetings with
participants, meeting location and time. We exchange messages
and calls with people and organizations listed as our contacts. All
these data are related. Retrieving these data based on their relation
could be very useful for device owners. With such retrieval
capabilities they could learn who called them when they were in
California, or when is their next meeting with Ann from
Accenture. Unfortunately, the relations between different data
items are not always recorded explicitly when the events occur or
information is entered in some application. Therefore it is
important to integrate the collected data by explicating its relation
to the data available on the device. To achieve this goal, we have
developed an extended PIM ontology that covers all relevant
types of information available on the mobile device: from
observed events, information from external data stores, to on-
device data from several mobile applications. Once the data was
structured and augmented with relations, it is stored in RDF [15]
repository.

So far mobile applications have been designed with their
own user interfaces, mostly GUIs, and occasional dedicated
hardware controls. Most of the application software on the mobile
device could benefit from a natural language interface to its
functionality that would simplify and streamline performing
various tasks.

As a rule, language systems and mobile applications software
are developed independently of each other. To recoup the
investment in the development of a language system it must be
capable to integrate with a broad range of information sources.
Unfortunately information bases are not designed for interaction
using natural language. As a result this integration process is
mostly ad hoc, manual process. This severely limits the impact

that maturing language processing technology can have on
transforming the way we interact with the mobile devices.

In our research, we have investigated ways of created robust
and portable natural language interfaces to semantic repositories.
We created a novel Natural Query (NQ) language and data access
engine that greatly reduces the costs of providing natural language
interfaces to semantic repositories. NQ can heuristically attach
operational semantic interpretation to a database independent
meaning representation of a natural language question over a
given semantic repository. NQ enables us to provide a natural
language interface to the integrated real-world and on-device data.
NQ requires attaching basic linguistic information to structural
elements of semantic repository. In this paper we give a brief
overview of such annotations for ontology in the extended PIM
domain.

 The paper describes the mobile data conversion into RDF
and semantic annotation (Section 2). Additional annotation and
knowledge extraction is needed for automated natural language
interface to the data repository (Section 3). Our experience with
the system is presented in Section 4. We finish with the
description of related work and conclusions.

2. MOBILE DATA INTEGRATION INTO
SEMANTIC REPOSITORY

We had to deal with two major data sources: events gathered
by data collection framework and PIM data available from PIM
applications. This section describes data from both sources,
necessary data conversion and integration into semantic
repository.

2.1 Mobile Device Data
Data on mobile devices is owned by different applications.

This makes it hard to establish and explicitly indicate semantic
relationship between different data items. This situation is
acceptable as long as the users can only interact with their data
using the limited set of functionality provided by the applications.
However, if we open these data for language based access, it
becomes necessary to support access to different data items using
their semantic relationships. Some examples are referring to
people by their affiliations, titles, city of residence or office
location; referring to meeting by their participants, subject, or
location; referring to received calls by the name of caller’s
organization.

In our project we dealt with data that originated from the
phone book application (sometimes also called address book) and
the calendar application. Data in these applications are stored in
separate Symbian data bases [6]. Since these databases cannot be
changed without interfering with the functionality of standard
applications we chose to integrate all data in a separate semantic
repository. We designed an extended Personal Information
Management (PIM) ontology that adequately represented all data
items that we were interested in and their relationships. We
implemented a set of Python scripts that extract the data from
native databases and import them into the PIM ontology. We used
RDF repository for data storage.

We created the PIM ontology to cover all data available in
the device. We considered using such standard ontologies as W3C
foaf [8] and vcard [20]. However, the information available on the

mobile device was richer than the types supported by standard
ontologies; therefore we decided to create our own ontology.
Vcard also uses string values for certain objects that we wanted to
represent as full fledged RDF objects with URIs and attributes so
they would have identities and we could add information about
them. For example, city and country fields are represented as
strings in vcard. However in order to represent even basic
geographic relationships cities and countries must be represented
as objects.

We also considered mixing and matching types from several
ontologies for our data. This approach has the advantage of using
types possibly known by other systems. However this approach,
leads to a rather incoherent architecture of the ontology. We
decided that creating a single internally consistent ontology was
preferable in our case. If needed, classes and properties in our
ontology can be related to types in vcard and foaf via equivalence
declarations using RDFS and OWL [21].

Main class for contacts in our ontology is the Contact class.
It contains address, email, group, phoneNumber and URL
attributes. Organizations and persons can be Contacts, so we have
Organization and Person classes inheriting from the Contact
class. In addition to inherited attributes, Organization class also
has name and representative attributes. Person class adds
affiliation, birthday, btDevice, familyName, givenName, and
nickname attributes. Affiliation class showing the affiliation of a
person with some organization has organization and title
attributes. Part of the ontology relating these classes is shown in
Figure 1.

Figure 1. Part of Mobile PIM ontology

Group class describes groups of contacts, such as office
colleagues or baseball friends. It has contacts attribute that
contains contacts belonging to the group and name attribute.

Location is a generic class describing locations that has a
number of subclasses: Address, Country, GPSLocation,
GSMLocation, Locality, Pcode and Region. Address represents
detailed addresses and contains country, locality, pcode, pobox,
region, and street attributes. Country, Locality, Pcode and Region
classes are simple with just a name attribute for respective objects.
GSMLocation class describes locations as obtained from GSM
network. It has carrier, cellTower and lac attributes. Carrier is
the cellular network operator, cellTower has a single cell tower
ID, and lac is a Location Area Code describing a certain region
within the network. GPSLocation specifies locations using
latitude and longitude attributes.

Mobile device Calendar application contains information
about meetings. Meeting class has subject, location, participants,
start and end attributes.

Message class objects represent messages. They indicate
messageSubject, messageBody, receiver and sender.

One of the goals of semantic web is developing standard
universal ontologies. Unfortunately, neither the existing
ontologies, nor the one we used in our project can be claimed to
be standard. Attributes and data in different applications and
domains vary significantly. For example, some calendar
applications may specify participants, while others don’t. Some
address book applications may allow specifying birthdays for
contacts, but others do not. Ontologies seem to follow in their
structure the applications or uses that their creators considered at
the ontology creation time. Classes are created based on particular
use cases. Attributes are chosen based on data availability and
planned use of that data. Rather than focusing on the
standardization, we discovered that an important value of RDF
ontology is its extensibility – ability to accommodate new types
and attributes at any time.

2.2 Event Data
For data collection on mobile devices, we have used one of

the frameworks available within Nokia to collect events that occur
on a mobile device: phone calls, SMS messages, nearby Bluetooth
devices, and GSM locations. All of these events are tagged with a
timestamp when they occur. For phone calls the device records
the phone number called (or the phone number that called the
user) and call duration. For messages, the phone number and the
message text is recorded. A GSM location change event is
recorded when the cell tower associated with the phone changes.
Finally, the phone periodically scans for Bluetooth devices in its
vicinity and records their names and IDs. All observations are
stored in the objects of Observation subclasses:
BTDeviceObserved, CallObserved, MessageObserved, and
LocationObserved.

Although the gathered data is interesting by itself, it becomes
even more useful when properly linked to the data already
available in the device. For example, user may want to know
where the person who called them lives. This information could
be found by relating the call log to the phone book on the device
that maintains the association of phone numbers to people and
their addresses. To enable this connection, it is important to
collect and preserve semantically relevant information. The
connection of gathered information to other data can be achieved
through time and location relationships, phone numbers, email
addresses, Bluetooth IDs and other inverse functional properties.
Time and location can be used to relate data items that are either
associated with same time period or the same location. All event
data is time stamped, which makes such associations relatively
simple. Location can be related to time stamped data items
through location observed during the same period of time.
Unfortunately for establishing some other relationships however
there might be no generic approach. For example in order to
connect phone call and message data to other data associated with
the phone number, the phone number has to be known in a
standard form URI. We used the standard international form of
the phone number with country code and long distance code, for
example +1 555 555-5555. However, data processing may be

needed to infer and attach these codes to some phone numbers
that enter the system without such codes. For example, the phone
number supplied via caller ID does not always include the country
code. Custom code has to be written for many data items to
convert them on entry into the form required by the semantic
repository.

The attributes of Observation objects connect with other
objects of the repository. For example, the phoneNumber attribute
of a CallObserved is of type PhoneNumber, which is also used in
the attribute phoneNumber of a Person or Organization class.
Therefore the gathered data semantically integrates with the on-
device data. Common classes are basis for building relations
between data classes belonging to different applications.

Another area where observed data integrates with on-device
data is the location information. GSM locations gathered on the
phone can be related to geographical locations, such as cities,
states or countries. Some data processing and additional relations
in the RDF repository are needed for this. We use the partOf
relation between different objects to represent geographic or
organizational inclusions. For example, a relation can indicate that
Boston is a part of Massachusetts, which in turn is a part of the
USA. This attribute is also used to describe the GSM location
containment within a certain geographical object. Since GSM
locations are somewhat imprecise, we have chosen to associate
them with town or city level geographical entities. This provides
sufficient information in most cases. If a more precise location can
be determined, it could be associated with a city neighborhood,
street, house or even part of the office building.

For some other data, programs or users have to add
information to facilitate integration. Bluetooth device IDs need to
be associated with specific persons, since such association is not
usually available in the mobile device phone book. For this reason
we added btDevice attribute to the Person class. It has to be filled
in with concrete values in order to associate the
BTDeviceObserved observation to a specific person carrying a
Bluetooth device.

2.3 Discussion
In a number of cases we had to decide whether to represent

particular entities as strings or as objects using URIs. It seems that
constructing an object is almost always worthwhile, since such
objects can be later used for inter-object relations. For example,
by having Country, Region and City objects, we are able to
indicate partOf relations between them. Also a single URI for a
particular object, for example, city, allows to detect such
connections as people living or working in a single city.

Overall, we found that our RDF repository is significantly
more flexible than a relational database. It naturally supports
multiple classes of contacts, multiple affiliations per person, and
supports a sophisticated typing system.

3. NATURAL LANGUAGE INTERFACE
Although the repository of integrated real-world and in-

device data can be used in a variety of ways, for example, via
querying it using SPARQL [19], we were interested to provide an
intuitive and flexible user interface to it. A general natural
language interface to a rich data set could be more effective than a
GUI based application.

As a rule, information bases and language systems are
developed independently of each other. Therefore information
bases are not designed for interaction using natural language and
their integration process is mostly ad hoc, manual process. Figure
2 is a sketch of a typical architecture that is used to provide a
natural language interface to databases and other back-end or
native services.

Figure 2. Architecture sketch of Natural Language Interface
to Services

The speech recognition and generation components translate
between text and speech modalities. The language understanding
component converts the text into a formal representation of
meaning sometimes called semantic frame [17]. The language
generation component converts the formal meaning representation
to a natural language text [1]. The dialog manager uses the
context of conversation to complete frames received from the
language understanding module or created by the custom
integration code from responses of backend services. The custom
integration code also translates meaning representation frames it
receives from the dialog manager into a standard database query
or backend specific API requests.

Let us assume the user asks the system about contacts in
some organization and geographical location:

Who do I know at IBM Ulm?
Who are my contacts at IBM in Ulm?
What are the names of my contacts at IBM in Ulm?1

The operational semantics of these questions can be
adequately represented with a database query. Let us consider
how this request would need to be posed to an RDF repository.
SPARQL [19] query corresponding to our example question over
the ontology shown on Figure 1 looks as follows:

1 The name of the organization and the city were selected for

shortness and carry no other information

SELECT DISTINCT $person ?givenName ?familyName
FROM <http://localhost/pim.rdf>
WHERE { $person a pim:Person; pim:givenName

?givenName; pim:familyName ?familyName; pim:affiliation
?affiliation; pim:address ?person_address.

$affiliation pim:organization $organization.
$organization pim:address ?organization_address;

pim:name “IBM”.
{?person_address pim:locality “Ulm”} UNION
{?organization_address pim:locality “Ulm”}}

Unfortunately in order for a language system to generate
such semantic representation from the original questions, the
language system must contain a large amount of information
about the structure of the database and its content. Such
information includes the facts that IBM is a name of an
organization and Ulm is a name of a city, cities can be related to
organization through their addresses, organizations are related to
people through their affiliations, people are related to cities
through their home and office addresses, and all these
relationships and objects are represented by the specific structures
and entities of the database.

Entering such information into a language system is a tedious
and costly process that is not only domain dependent but also is
sensitive to specific choices of database organization. There is an
obvious advantage in maintaining some independence between
the database and the language system. One way to achieve this
independence is to have the language system generate semantic
representations of the questions that are as independent of the
database organization as possible.

In the example above semantic information contained in the
question and independent of database organization amounts to the
following meaning representation:

contact.name: ?
organization: IBM
city: Ulm

It is possible to have the language system produce such
database independent meaning representation of questions. But is
the information in such meaning representation of the question
sufficient to perform the requested operation? Obviously there
are several information gaps between this database independent
meaning representation and the database specific semantic
representation of the question in the form of a formal query.

The first gap is due to different names used to refer to the
same elements in the language system and the repository. For
example, the category called “city” in the language system
corresponds to the attribute locality of the Address class.
Therefore there is a need to maintain the mapping between the
two naming systems.

The second kind of gap between the two systems is that one
element in the language system may correspond to multiple
elements in the repository and vice versa. In our example the
reference to the address can map to home address, work address,
or the organization address of the contact. This is partly due to the
ambiguity of the natural language, which is not the main focus of
our discussion in this paper. There are also situations where the
granularity of categorization is different between natural language
and repository representations. This happens when several

different concepts exist in the repository for objects which are
viewed as instances of the same concept in natural language. In
our example this gap required the UNION in the query to
represent the original natural language request.

Third and the most important source of the information gap
between the meaning representation of the natural language
request and the SPARQL query is due to the fact that the query
must specify the navigation to the information in the repository
using the repository structure. This information about the
repository organization is entirely absent from the natural
language question and cannot appear in a database independent
semantic representation.

We have designed and implemented the Natural Query (NQ)
language and engine [14] that bridges the gaps identified above
thus opening a way for portable (database independent) natural
language interfaces to semantic repositories. NQ can
automatically map meaning representation produced by language
systems into precise queries. NQ employs two mechanisms:
language tags and data graph search to return requested data using
only the information in the database-independent meaning
representation of the user request.

3.1 Language Tags
Language tags are words, expressions, and linguistic tokens

attached to database elements such as classes and properties.
Multiple tags can be attached to a single element and a single tag
can be attached to multiple elements. Language tags are the names
of the corresponding categories used by the language system(s).
When a language system produces a form like the one in our
example,

contact.name: ?
organization: IBM
city: Ulm

under the NQ system its interpretation is:

find the attributes tagged as “name” of an instance of the
class tagged as “contact” related through properties tagged as
“organization” and “city” to values “IBM” and “Ulm”
respectively

First name

City

Last nameName

Contact

in

Address

First name

City

Last nameName

Contact

in

Address

Figure 3. Language tags for database elements

Language tags provide an opportunity for a semantic
annotation additional to the class names and their properties. In a
natural language system accessing an RDF repository data, we
have three layers of semantic information: database-independent

meaning representation, the data and ontology, and the language
tags. It could be argued that if there were correspondence between
the categories of database-independent meaning representation
and the data and ontology, the language tags would not be needed.
Unfortunately, if the ontology and language system are to be
developed independently, there is no way to maintain or ensure
such match. Thus language tags provide the many-to-many
mapping between the two independent systems of categorizations
and eliminate the first and second kind of information gaps
between the meaning representation and semantic repositories.

Figure 3 illustrates language tags associated with a part of
our PIM ontology. A generalization like “Contact” can be
attached to specific classes like “Person” and “Organization”. A
general reference like “Name” can be attached to multiple
elements like “givenName”, “familyName”, and so on. In our RDF
repository of real-world and in-device data, we added language
tags to the RDF objects using a subproperty of RDFS label field.

3.2 Graph search
The third gap that exists between the database independent

meaning representation of the natural language request and the
formal query that actuates it over a given database is the
information about the organization of the data repository. In order
to navigate from the given attributes of an object to the target of
the query, SPARQL queries need to know the specific path that
connects them on the database graph. In current language systems,
this path is encoded by the query and stored in the custom
integration code for every different type of query. Thus a query
defines a subgraph with given properties some of which are
specified in the database-independent meaning representation of
the natural language request and some are encoded in the custom
integration code component.

While a formal query defines a connected subgraph as
illustrated on Figure 4, the database-independent meaning
representation only identifies some nodes and edges of this
subgraph. Identified fragment might be disconnected. In the
example above it identifies “Person” and
“Organization” classes as well as “Ulm” value of “locality”
property (by reference to its language tag “city”) and “IBM” as a
value of “name” property of an instance of “Organization” class.
This leads to an important idea: that the knowledge embedded in
the formal queries that know the database organization, can be
also extracted from the natural language meaning representation
and the data repository itself.

Figure 4. Answering query via graph search

In Figure 4 it is possible to notice that for a given set of
elements identified by a meaning representation of natural
language request it is possible to identify the query subgraph by
searching the database. In other words, a program could find paths
connecting the nodes known from the meaning representation,
such as “Person”, “name”, “Organization”, “City”, “Ulm”, and
“IBM”. One of such paths is highlighted in the picture.

Therefore while traditional approaches to semantic analysis
of natural language questions over databases rely on hand crafted
code or data for representing the information about the
organization of the database, NQ extracts such knowledge from
the data repository by using graph search. Given a question “Who
are my contacts at IBM in Ulm?”, NQ finds paths connecting the
nodes known from the database independent meaning
representation, such as “Person”, “name”, “Organization”,
“City”, “Ulm”, and “IBM”.

3.3 NQE Discussion
NQE may find multiple subgraphs that connect all given

elements. In such cases we apply heuristic ranking of these
subgraphs in order to determine the most relevant ones. So far we
experimented with several ranking mechanisms all of which are
variations on path length (weight) between the elements specified
by the meaning representation. In all our experiments the results
retrieved by the system in response to natural language questions
correspond well with intuition of human subjects.

The results returned by NQE are designed to support the
needs of conversational interfaces. If no results are found that
match the elements specified in the meaning representation, NQE
returns best matches that include only a subset of elements in the
query. For example, if no contacts at IBM in Ulm can be found,
contacts at IBM in other cities would be returned as well as
contact from Ulm that are not affiliated with IBM

NQE can perform basic reasoning over type hierarchy. A
“Person” is substitutable for a “Contact”, a
“MobilePhoneNumber” for a “PhoneNumber”, but the opposite is
not true. NQE supports organizational and geographic inclusion
and can perform corresponding reasoning. When a calendar
application lists meetings in Helsinki and Oulu, NQE can answer
questions regarding meetings in Finland, where these cities are
located. Similarly information about organizational structure can
be used to answer questions about Nokia while the database only
records Nokia’s internal organizations like Multimedia or
Enterprise Solutions. Finally NQE creates structures that can be
used to produce explanations regarding how the answers relate to
the questions.

We have created a proof of concept implementation of NQ in
Python [12] that runs on S60 [16] mobile phones. Full description
of the Natural Query system implementation is outside the scope
of this paper.

4. EXPERIENCE WITH THE SYSTEM
We tested our system on a PIM test data set containing 550

contacts with about 150 meetings and 250 phone calls, which is
normal for executives with many active contacts and frequent
meetings. The repository contained over 11000 RDF triples. We
asked over 50 natural queries corresponding to over 600
parameterized questions.

The system can answer questions ranging from “What is the
email of John?” to “Where does Ann work?” to “My meetings next
week in Cambridge with John from MIT” and “Who called me
yesterday during the meeting with Ann?”. Some of these
questions would convert to quite complex relational or SPARQL
queries. For example for the query “Who called me yesterday”, we
need to find all telephone numbers of calls that occurred yesterday
and then find all people who have these telephone numbers. NQ
query for this is very simple: “:select ‘Person’ :where ("Received
Call", Time ('yesterday'))”.

If we classified questions according to domains, one domain
would contain questions about the personal information data from
an address book application, for example “Who works as a real
estate broker?”. Another set of questions is about meetings, for
example, “When are my meetings next month at MIT?”. Yet
another set is about calls and messages, for example, “Who called
me last Friday?”. Finally there are questions spanning multiple
domains, for example, “What are emails of people who
participated in a meeting on Monday?”, “Who called me when I
was in Finland?”, and so on. All these types of queries were
successfully created and executed on the extended PIM data store.

We found out that we could easily ask questions both about
the in-device data and the collected real-world data. Semantic
integration of multiple data sources enhanced our question
answering capability significantly, allowing such questions as
“Who called me when I was in Helsinki?”, “Which messages did I
receive during the meeting with Juha?”, etc. Although an out-of-
pattern detection of someone’s Bluetooth device is a weak
indication the phone user met the owner of the Bluetooth device,
in our experiments we assumed such implication. This allowed us
to ask questions such as “Who did I meet last week?” or “At what
time did I meet Ann last Saturday?”

Figure 5. Example question and answer

Test NQ queries mostly returned expected answers (96%
recall, 92% precision) (Figure 5) including the approximate
answers where the exact answers were not available. For example,
the question “When was my meetings with Sam last month?” had
no exact answers, so the system returned approximate answers of

meetings with Sam that did not occur last month as well as the
meetings that occurred last month, but did not include Sam.

The performance of the system was acceptable with answers
taking from less than a second to several seconds. The system
implementation is a prototype written in Python that was not
optimized for memory or speed. The detailed evaluation of system
performance is outside the scope of this paper. We are planning to
optimize the system performance in the near future.

5. RELATED AND FUTURE WORK
Mobile data storage in RDF repositories is investigated by

ConnectingMe [9] project at Nokia Research Center. We have
collaborated with ConnectingMe in the ontology and repository
development. Some tools for data extraction and conversion are
shared between our two projects.

Semantic markup and annotation of web [7][4] and media
[3] data is a topic of active research. Our research is related to the
mobile media data annotation. There has been a lot of research on
ontology creation tools. We used one of such tool—Protégé [11]
to design our extended PIM ontology.

Event data has been gathered on mobile devices by a number
of projects including Context [13] and Reality Mining [5]. In our
work, we have extended one of the data gathering frameworks
available at Nokia.

We have not discovered any research directly corresponding
to the Natural Query approach. The Precise system by Popescu et
al. [10] attaches language tokens to database elements in a way
very similar to language tags of NQ. Also the query derivation
approach of Precise is based on database graph search. NQ uses a
more flexible data model, supports incomplete answers, and
collects data for explanations.

In the future, we plan to connect our system to such natural
language and speech systems as TINA [17] and Galaxy [18]. We
plan to perform user trials to evaluate our system and its user
interface to real world data. We will collect additional data such
as email messages, songs listened, and pictures viewed and taken.
We will also optimize the current prototype implementation.

6. CONCLUSIONS
Mobile devices are now able to continuously collect various

events interesting to the user. Mobile devices also host structured
and semi-structured information bases. We have demonstrated the
integration of all this data using a flexible and powerful RDF
repository and a common ontology. We have designed and
implemented a query language and engine NQ that can
automatically map meaning representation produced by language
systems into formal queries on RDF repositories. We have used
language tags for mapping of the meaning representation to the
data classes. NQ uses graph search to extract the information
about the repository’s structure. Our experience shows that
semantic data annotation and knowledge extraction significantly
improves the capability of natural languages interfaces to mobile
data.

7. REFERENCES
[1] Baptist L. and S. Seneff, "Genesis-II: A Versatile System for

Language Generation in Conversational System

Applications," Proc. ICSLP '00, Vol. III, pp. 271-274,
Beijing, China, Oct. 2000.

[2] Chipchase, J., “Why do People Carry Mobile Phones?”,
http://www.janchipchase.com/blog/archives/2005/11/mobile
_essentia.html, 2005.

[3] Davis, M., King, S., Good, N., Sarvas, R., “From Context to
Content: Leveraging Context to Infer Media Metadata”
Proceedings of the 12th annual ACM international
Conference on Multimedia, New York, NY, USA, pp: 188 –
195, 2004.

[4] Dill, S, et al., “SemTag and Seeker: Bootstrapping the
Semantic Web via Automated Semantic Annotation”,
Proceedings of the 12th international conference on World
Wide Web, Budapest, Hungary, pp: 178 – 186, 2003.

[5] N. Eagle, "Machine Perception and Learning of Complex
Social Systems", Ph.D. Thesis, Program in Media Arts and
Sciences, Massachusetts Institute of Technology, June 2005.

[6] Edwards, L., Barker, R., et al. “Developing Series 60
Applications”, Addison Wesley 2004.

[7] M. Erdmann, A. Maedche, H.P. Schnurr, S. Staab, “From
manual to semi-automatic semantic annotation: About
ontology-based text annotation tools”, Proceedings of the
Workshop on Semantic Annotation and Intelligent Content,
2000.

[8] FOAF Vocabulary Specification 0.9,
http://xmlns.com/foaf/0.1/, 2007.

[9] Lassila, O. et al, “ConnectingMe”,
http://research.nokia.com/research/projects/connectingme/ind
ex.html, 2007.

[10] Popescu, A., Etzioni, O., and Kautz, H. 2003. Towards a
theory of natural language interfaces to databases.
Proceedings of the 8th international Conference on
intelligent User interfaces (Miami, Florida, USA, January 12
- 15, 2003). IUI '03. ACM Press, New York, NY, 149-157.

[11] Protégé Ontology Editor and Knowledge Acquisition
System, http://protege.stanford.edu/, 2007

[12] Python for S60, http://sourceforge.net/projects/pys60, 2007
[13] Mika Raento, “Context software - A prototype platform for

contextual mobile applications”. Proceedings of the
International Proactive Computing Workshop. University of
Helsinki, 2004.

[14] Ran, A., and Lencevicius, R., “Natural Language Query
System for RDF Repositories”, To appear in Proceedings of
the Seventh International Symposium on Natural Language
Processing, SNLP 2007, 2007.

[15] Resource Description Framework, http://www.w3.org/RDF/,
2007.

[16] S60 platform, http://www.s60.com, 2007
[17] S. Seneff, "TINA: A natural language system for spoken

language applications," Computational Linguistics, vol. 18,
no. 1, pp. 61-86, March 1992.

[18] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue,
"GALAXY-II: A Reference Architecture for Conversational

System Development," Proc. ICSLP 98, Sydney, Australia,
November 1998.

[19] SPARQL Query Language for RDF,
http://www.w3.org/TR/rdf-sparql-query/, 2007.

[20] Vcard, http://www.w3.org/TR/vcard-rdf, 2007.

[21] Web Ontology Language, http://www.w3.org/TR/owl-
features/, 2007.

