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Abstract
The project aims to study and develop a computational logic framework inspired and informed by the
theories of concepts as they can be found across the disciplines of Cognitive Science and Experimental
Psychology. It concentrates on the representation of different phenomena permeating human cognition,
focusing mainly on aspects linked to the categorisation task (e.g. typicality effect, exceptions handling,
concept vagueness) and the concept combination task (dominance effect, overextension, underextension,
alignment of features).

Keywords
Description Logic, Weighted Logic, Cognitive adequacy, Typicality effects, User evaluation

1. Motivation and state of the art

What is a concept? This question is meaningful in philosophy, cognitive sciences, psychology,
and in AI, however answers rarely converge. Knowledge Representation (KR) is a relevant goal
whether the aim is explaining our cognitive processes or realizing intelligent applications or
even understanding what characterizes our knowledge from an ontological or epistemological
viewpoint. How to deal with and interpret the notion of ‘concept’ is, however, still an unresolved
and hotly debated topic.

Classical Logic mostly interprets the meaning of concepts in terms of their extensions: con-
cepts are represented as sets of objects, and concepts’ extensions are precisely defined. For each
object it would be possible to specify whether it falls within the definition of the concept or not.
At the same time, the operations on concepts are usually conceived as set theoretic operations,
so that the combination of two concepts is usually understood as a simple set intersection. More-
over, Classical Logic is normally characterised by the principle of compositionality, according to
which any complex expression, is understood as a function of the parts it is composed of, plus a
set of syntactic operations to combine them. Classical logic then comes equipped with the so
called Classical Theory of concepts. According to the Classical Theory, a concept is definable by
a set of individually necessary and jointly sufficient conditions: everything satisfying that set
of conditions is considered an instance of that concept; and, vice versa, so that something is
considered an instance of a concept, it must satisfy that set of conditions. Category membership
is then neatly determined: borderline cases, vagueness and imprecision are excluded.

Psychological evidence, however, demonstrated a more complex and diverse reality. It turned
out that human concepts are not characterised by the neatness supposed by the Classical Theory.
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Some experiments showed that it is not always clear whether an object belongs to a category or
not, and that the distinction between members and non-members of a category forms essentially
a continuum of choices. The important work of Eleanor Rosch [1] demonstrated that concepts
show typicality effects: some class members are more representative than others (e.g. cats are
more typical Pet than iguanas). It was also shown that the spectrum of concept combinations
is much wider than what is expressible simply in terms of intersections of sets [2]. Early KR
systems oriented towards conceptual modeling tried to take into account indications from
psychological research. In the 1970s, both the semantic networks of Quillian [3] and Minsky’s
frame systems [4] were developed. Both can be considered associative models definable in terms
of network structures. These systems were extremely simple and allowed the representation of
prototypical information associated with ordinary concepts. Nevertheless, their lack of formal
semantics made the study of their properties increasingly difficult [5].

From the attempt to give a formal semantical grounding to frames and semantic networks,
the field of Description Logics developed, which is to a large extend the study of well-behaved
subsets of first-order predicate logic associated with the usual Tarskian semantics for first-order
logic. Being decidable fragments of first-order logic, however, DLs are again fragments of purely
extensional, classical logic. The use of truth-conditional semantics also involves an implicit
admission of the principle of compositionality, which, according to the well-known argument
of Pet-Fish proposed by Fodor 1 [6], contrasts with the representation of typicality effects.
Description Logics face, just as Classical Logic, a problem of lack of expressiveness. Several
extensions to Description Logic have been proposed to overcome the described restrictions:
from logics for probabilistic reasoning [7], to fuzzy logics [8]. Extensions of DLs dealing with
typicality effects and reasoning with exceptions can be divided into two (overlapping) groups.
Many works make use of the notion of defeasible subsumption [9, 10, 11], having their roots in
the seminal work of Kraus, Lehmann and Magidor [12] on non-monotonic reasoning. Other
works, instead, explicitly introduce a “typicality operator" within the language, in order to
select the most typical instances of a concept [13, 14, 15]. In both cases, the notion of typicality
is normally simply taken from granted and assumed within the model. Also, both kinds of
approaches implies the use of a preferential semantics, so that typicality is reduced to an order
relation over the elements of the domain - a quite counter-intuitive way of treating typicality.

2. Tooth operator and cognitive adequacy

It therefore remains an important goal to study and develop a computational logic framework
informed by the theories of concepts as they can be found across the disciplines of Cognitive
Science and Experimental Psychology. We concentrate here on the representation of different
phenomena permeating human cognition, focusing mainly on aspects linked to the categori-
sation task and the concept combination task. Categorization and concept combination are
indeed considered basic cornerstones of cognition, according to which the validity of theories
of concepts is tested [16]. Providing a formal and computational model for categorisation

1The concept of "pet-fish" result from the composition of the concepts "pet" and "fish". The prototype of the
concept "pet" may be furry, the one of "fish" is probably greyish, while the prototype of "pet-fish" is neither furry,
nor greyish.
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and concept combination able to take into account cognitive phenomena would thus improve
the connections between experimental science and Artificial Intelligence. Part of the work
has been focused on extending Description Logics to model cognitively relevant features of
classification and concept combination. In order to do that, we introduced, in a series of papers,
a new logical operator, the so-called “Tooth operator”, which allows introducing weights into
the standard representation language. This choice was guided by the intuition that different
properties, or features, may have different importance in the definition of a concept, and then
also in identifying instances and their typicality. For instance, in defining the concept of an
elephant (and in classifying instances as ‘elephants’), having a trunk may be considered more
important than having a tail. This idea was first proposed in [17], where we introduced a family
of operators within 𝒜ℒ𝒞, one of the most widely used Description Logic formalism. These
operators, in particular, apply to sets of concept descriptions and return a composed concept
whose instances are those that satisfy “enough” of the listed concept descriptions. To provide a
formal meaning of “enough”, the operator takes a list of weighted concepts as argument, as well
as a threshold. The combined concept applies to every instance whose sum of the weights of
the concepts it satisfies meets the threshold. The study of the formal properties of the operator
was further carried out in [18, 19], where a link between this formalism and linear classification
models was showed.

The design of the Tooth operator was inspired by the Prototype Theory [1]. For this reason,
it is said to be cognitively grounded. This alone, however, has little to say about its cognitive
adequacy. The notion of cognitive adequacy is a very diversified one, as it applies to distinct
contexts with a slightly different meaning. In cognitive modelling, a first notion of cognitive
adequacy relates to “phenomenon adequacy": the focus is on the ability of a system to replicate
experimental data and cognitive phenomena, as they are observed and studied within the field of
experimental psychology and cognitive science. In the context of categorisation, a paradigmatic
example is the one of typicality, on which, as mentioned above, a large number of logical and
formal approaches have been tested. Rather obviously, typicality is however just one of many
phenomena observed, and according to which the adequacy of a modelling framework may
be tested. Overextension in conjunction and attributes emergence [2], situational effects [20],
dominance effect [2] are all additional phenomena that hardly reconcile with compositionality,
and integrating them in a logic-based framework is an open challenge.

In [17], the tooth operator was shown to be able to represent the typicality effect in the
classification task, as well as to represent fine-grained dependencies among the attributes that
define a concept. In [21, 22], the usefulness of the proposed approach to model cognitively
relevant features of categorization and concept combination was further analysed, proposing an
analysis and representation of some of the cognitive phenomena linked to concept combination
previously mentioned (namely overextension, underextension and dominance [2]).

3. Further directions:

There is also another nuance for the notion of cognitive adequacy, which pairs well with the
one of understandability - namely the capability of a representation framework to be intuitive
and readable also for non-experts, making it then more interpretable and less error-prone.
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Understandability and cognitive adequacy are related because if a representation framework is
similar to the representation system in the human mind, using and understanding it should be
consequently easier.

The notion of understandability (or comprehensibility) has gained popularity in recent years,
and this is also due to the increasing interest in Explainable AI. How to precisely characterise
understandability is however far from being obvious, and there is, in general, no consensus on a
precise definition. It is further normally assumed that measuring understandability implies the
use of “human-grounded metrics” [23]. To operationalise this idea, different strategies have been
adopted in the literature. In order to measure a system’s understandability, subjects are usually
presented with (at least) two different representation frameworks and asked to perform the
same task (often, a classification task) in the two different ‘environments’. Across the different
studies, the evaluation metrics can then differ, but normally range between 3 parameters, namely
accuracy (how many times did the subjects reply correctly?), speed (how fast they were?), and
confidence (how confident did they feel in the reply?). In [24], for instance, the understandability
of decision tables, binary decision trees, and propositional rules is tested, and the evaluation
is carried out combining the metrics of accuracy, speed, and confidence of the interpretation.
[25] focus on the interpretability of decision tree models and rule-based models, using perceived
understandability as the only metric for the evaluation (which is somehow similar to what is
elsewhere called confidence). [26] compare different propositional theories and evaluate their
interpretability in terms of accuracy, confidence, and speed. The same parameters are also taken
into account in [27], to measure the understandability of decision trees. Following this line
of research, we plan to experimentally compare the understandability of Tooth-formulas and
disjunctive normal form (DNF) formulas 2, adopting a setting analogous to the one proposed in
[27], and evaluating subjects performances on accuracy, speed, and confidence in the reply. We
plan two kinds of experiments. The first one addressed to logic-experts, to directly present and
evaluate the two formalisms. The second one directed at a more general audience, translating
both DNF and Tooth expressions into natural language: this would allow the evaluation of the
algorithm of classification behind the two formalisms. We argue that such a study will provide
a new perspective, and a well-rounded description, on the cognitive adequacy of the proposed
approach.
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