
Intellectual Method of Program Interactions
Visualisation in Unix-like Systems for Information
Security Purposes
Mikhail Buinevicha, Konstantin Izrailovb,c and Grigory Ganovb

aSaint-Petersburg University of State Fire Service of EMERCOM of Russia, Moskovskiy prospect 149, Saint-Petersburg,
196105, Russia
bThe Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 22 Prospekt Bolshevikov,
Saint-Petersburg, 193232, Russia
cSt. Petersburg Federal Research Center of the Russian Academy of Sciences, 14 Line, 39, Saint-Petersburg, 199178,
Russia

Abstract
One of the tasks of information security audit is to monitor data exchange processes between the pro-
grams of operation system. Expert can’t monitoring data exchange manually because of huge amount
of data files and dissimilar data exchange between programs and operation system. But full automation
of this process is very complicated for implementation due to weak formalization of information about
data exchange processes and criteria of their insecurity. In this paper, we propose a partial solution
to the issue by visualizing programs interactions for an expert in the form of an appropriate method,
consisting of 8 steps; the scheme of the method is attached. In order to implementing the method, the
following types of programs are identified: PE, ELF, bytecode and script. Program interactions as direct
and emulated calls, direct and emulated imports, indirect exchange are considered as well. The under-
lying formal model of the method is presented. The expediency of using artificial intelligence as one
of the steps of the method is justified. The applicability of such machine learning areas as classifica-
tion, anomalization, clustering, regression and dimensionality reduction is described. The developed
prototype of the tool and its modules are described. The prototype of the tool is being tested on the
Unix-like application Termite. The resulting visualization of data files interactions in the attachment is
given, including details of individual links that are hypothetically of interest to an information security
expert.

Keywords
operating system, software, information security, artificial intelligence, static analysis, audit,
interaction, visualization

1. Introduction

Lately software have been becoming the basis for the functioning of most modern devices. As
a result, it leads to an increase in the number of information security threats (hereinafter –

Proceedings of the 12th Majorov International Conference on Software Engineering and Computer Systems, December
10–11, 2020, Online Saint Petersburg, Russia
" bmv1958@yandex.ru (M. Buinevich); konstantin.izrailov@mail.ru (K. Izrailov); ganov99@rambler.ru (G.
Ganov)
� 0000-0001-8146-0022 (M. Buinevich); 0000-0002-9412-5693 (K. Izrailov); 0000-0001-5236-3805 (G. Ganov)

© 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:bmv1958@yandex.ru
mailto:konstantin.izrailov@mail.ru
mailto:ganov99@rambler.ru
https://orcid.org/0000-0001-8146-0022
https://orcid.org/0000-0002-9412-5693
https://orcid.org/0000-0001-5236-3805
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


IS), which also affect the correct performance of aforementioned devices. And if at the dawn
of this trend, IS threats problem was solved via the search in individual program for the pres-
ence of errors in the code, now the scale and structure of software do not allow us to apply
such approach. The reason for this is the following scientific contradiction. On one hand,
it is necessary to determine the existence and types of control-flows and data between parts
of the software; since the emergence of a new flow may be indicative of unauthorized call
(one module calls another module to bypass the standard procedure) or an invasion of privacy
(unauthorized data is sent to a module) and the disappearance of the old data — about the
malfunction (one module is not able to call alleged module) or the interruption of availability
(legitimate data transfer was interrupted). On the other hand, modern “medium” and “large”
size software present itself as entire operating systems (hereinafter – OS), where the aforemen-
tioned flows are provided by the interaction of programs through the file system (hereinafter
– FS). The situation is complicated by the lack of formalization of information for such flows,
which is necessary for the involvement of IS experts to manually analyze relationships be-
tween programs, identify suspicious locations, and conduct specialized analysis of them. A
partial resolution of the contradiction can be obtained by providing a complete visual picture
of the OS program interactions (or OS critical parts, for example, the system directory), while
being able manually configure visualization process. Also, considering the huge number of files
even in the "average" OS, the use of intelligent analysis methods (as an aid to the expert) will
increase analysis effectiveness, reduce the cost of analysis time and expert’s psycho-emotional
resources with virtually unchanged performance. Thus, the task of intelligent visualization of
program interaction is certainly relevant; one of its possible solutions in the form of a corre-
sponding method (hereinafter – the Method) is proposed by the authors of the article. It is
important to note that the formulation of the problem assumes static analysis of the FS, which
unlike dynamic analysis, does not imply real program calling. Although, dynamic analysis has
a number of advantages over static analysis, in case of a large file number, the coverage of all
interactions will be ineffective and the static analysis is to be preferred.

2. State of Art

Let’s review the existing scientific works devoted to the static analysis of OS programs and
their interconnections, as well as the use of intelligent methods for file analysis.

Scientists in [1] use machine learning (hereinafter — ML) classification methods to separate
programs into FS blocks. Article [2] describes the application of the ML clustering method for
grouping text files. Publication [3] is devoted to detecting packed Windows programs using
the Support Vector Machine. An intelligent way of detecting executable files in other programs
is described in [4] using anomaly detection method. The classical classification of files (pro-
grams, documents, etc.) using a complex of ML methods is given in [5]. In [6] is described file
identification of the Unix OS based on the Chi-square and Kolmogorov-Smirnov criteria. In
[7] is provided an algorithm for detecting library functions in Windows programs using signa-
tures. In [8] is proposed to counteract virus software, identification of which is possible based
on group file characteristics.

Despite certain work in certain areas related to the current task of the study, not even close



solution was found. Thus, the development of the author’s method, in addition to being rele-
vant, certainly has a novelty.

3. Model of the interactions of programs

Since the essence of the method is to visualize interactions between OS programs, it is obvious
that its algorithms should work on some representation of such relationships – that is, on the
corresponding model (hereinafter – the Model). Therefore, before creating the Method itself,
the structure of the Model needed to be defined (the main elements and their relationships). In
the interests of this, we will review the main types of programs and data transfer mechanisms
between software (limited only to the FS), the analysis of which will allow the expert to audit
the OS IS [9].

3.1. Program types

Initially, it was indicated that interactions of OS programs is considered, but not text files or
images. This is justified by the fact that any data transfer implies some action, files that provide
the transfer must perform certain operations – that is, files must be executable. Based on this,
we will define the following types of modern OS programs (directly related to their binary
format):

1. PE-program are programs that run in the Windows family of operating systems [10]; the
prefix PE (abbr. from Portable Executable) means the structure of header and format of
the file itself. Dynamic link libraries files are considered of this type as well.

2. ELF-programs are similar to PE-programs, but run in the Unix-like OS family [11]; the
ELF prefix (abbr. from Executable and Linkable Format) means the structure of header
and file format. So-called shared objects with functionality of libraries are belong to
ELF-programs type, similar to libraries for PE-programs;

3. Bytecode-programs that contain a set of instructions that are executed on a virtual ma-
chine; the most well-known are the following: Java-programs that have JBC (abbr. from
Java Byte Code) executed by the Java virtual machine [12]; .Net-programs that have CIL
bytecode (abbr. from Common Intermediate Language), executed by the .Net virtual ma-
chine [13]; Ruby-programs that have bytecode executed by the YARVM (abbr. from Yet
Another Ruby Virtual Machine) [14]; Python-programs that have bytecode executed by
the corresponding VM [15];

4. Script-programs are source code executed by interpreter without explicitly compiling
intermediate assemble code or machine code; for example, command-line scripts for bash
(in Unix-like OS) and PowerShell (in Windows OS).

Naturally, there are other types of programs (with their own formats), which are not con-
sidered due to obsolescence or rarity of use; for example, LE (addr. from Linear Executable) for
running on OS/2, the latest version of which was released in 2001.

Each of these program types can interact with other programs of the same type, as well as
with most other program types, by calling them directly. Also it should be noted that programs



can interact via intermediate files. For example, one program can generate a set of structured
data (often in JSON or XML format), while another program reads this data.

3.2. Types of interaction

While selecting involved in the interaction file types, possible types of interactions were par-
tially specified. However, let’s look at them in more detail:

1. Direct call, which means calling one program directly by another: for example, a PE-
program can call another PE-program, then run a Java-program and a PowerShell script;

2. Emulated call, similar to the Direct call, but with the difference that a program created for
another OS is called; for this, a special software environment is used that integrates appli-
cations, data and resources of these operating systems; for example, Windows Subsystem
for Linux allows you to run ELF-programs from PE-programs, and in wine environment
- vice versa.

3. Direct import, which means loading an external library by the program: for example, the
executable code calls functions from the system library;

4. Emulated import is completely analogous to Direct import, but using the Emulated call
mechanism – i.e. through a software environment to "provide" execution in another OS
family.

5. Indirect exchange that provides data exchange between programs through intermediate
files: for example, a bash script can generate a configuration file, pass the path to it as an
argument when calling a group of ELF- and Java-programs, and then read and analyze the
results of this group’s work saved in separate files. In this case, the indirect interaction
of programs is precisely carried out through these intermediate files.

It should be noted that there are other types of interactions that are not considered due to
more complex methods of detection. For example, one program can use the functionality of
another, using RPC (abbr. from Remote Procedure Call). Also, in Unix-like systems, processes
and sockets can be reflected in the FS in the form of files – i.e. some intermediaries through
which other programs can interact.

Based on the importance of file links in the aspect of OS IS, when visualizing interactions,
it is advisable to display each of the types in a different way – with its own color, line shape,
comment, etc.

3.3. Model structure

Since the Model must display all possible information exchanges between all programs, its
logical structure can be presented as system of individual levels for each type of program,
within and between which there are all types of relationships. In this case, it is advisable
to take into account the fact that PE- and ELF-programs are directly executed (i.e. without
emulation) on different operating systems. Generalized Model (since it is a kind of template
that is not tied to a specific OS implementation) is shown in Fig. 1.



Figure 1: Generalized model of program interactions

Note. Direct Call, Direct Import, and Indirect Exchange are indicated on the Model by a continuous arrow, while
Emulated Call and Import are indicated by a dashed arrow. Also, the Model displays the potential for interaction
with other operating systems, which have their own individual levels – in the right part of the figure.

3.4. Method of interactions visualization

Based on the generalized Model of program interactions, a visualization Method is proposed
that would display such connections in an understandable to an expert form. The intellectual
characteristic of the Method will mean the use of special ML methods on it, which simplify the
subsequent analysis. The Method consists of the following steps.

Step 1. Preparation. The first step in any multi-step method usually is to perform general
preparatory steps. First of all, it should be possible to set a path (or a set of them) to investi-
gated files. It is necessary for the subsequent establishment of relationships and visualization,
settings for intelligent algorithms, visualization parameters, etc.

Step 2. Scanning files. Since the examination is carried out within the framework of static
analysis, information about the state of processes in the system does not play a big role. There-
fore, at this stage, files are collected and processed according to the paths, extensions and other
information indicated in the preparatory step. This is done by a trivial recursive traversal of
directories and getting their contents.

Step 3. Determining types of programs. At this step, programs types are determined. Al-
though this action is not trivial, there are a number of algorithms for its implementation. First
of all, the type of program can be partially determined by the file extension. Second, since PE-
and ELF-programs have a header with a specific signature at the beginning of the files, their
type can be determined from it; a similar situation will be with Bytecode programs. Thirdly,
Script programs that have the form of text can also contain comments at the beginning of the
code, which determine their belonging to the programming language. In the general case, the
prediction of the file type can be made on the basis of obtaining its frequency-byte character-
istics.

Step 4. Determine types of interactions. The step is intended to determine types of interactions
that have distinct features for each type of program; These are indicated below.

1. Direct call: the machine code of PE- and ELF-programs can contain system calls of func-
tions for launching external programs of the same level; Bytecode-program instructions
may contain system calls of functions for launching external programs of any level; the



source text of the Script-Programs may contain commands for launching external pro-
grams;

2. Emulated call: the machine code of PE- and ELF-programs may contain system calls of
functions for launching external programs from the level of another OS family;

3. Direct import: the header sections of PE- and ELF-programs can contain names of exter-
nal dynamic link libraries of the same level; a special pool of constants of the Bytecode-
programs can contain names of external dynamically connected classes; the source text
of Script-programs may contain commands for connecting external libraries;

4. Emulated imports: sections of the header of PE- and ELF-programs may contain names
of external dynamic link libraries from the level of another OS family;

5. Indirect exchange: the machine code of PE- and ELF-programs, as well as instructions of
Bytecode-programs, may contain system calls of functions for accessing (reading, writ-
ing) external files; the source text of Script-programs may contain commands for access
(read, write) to external files;

Thus, each of the designated types of interactions can theoretically be defined for each of
the types of programs. To define some types of interactions, it may also be necessary to define
types of machine code processor architectures [16, 17, 18].

Step 5. Building a model of interactions. Having defined types of programs (at Step 3) and
interactions (at Step 4), it is possible to build a full-fledged formal model of interaction, for
which this step is intended. Thus, each detected and scanned program in Step 2 is located at its
own level, and then communicates with other programs according to its interactions. Formally,
such a model can look like this:

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝑀 = ⟨{𝐿𝑖} ,
{
𝐹𝑗
}
, {𝑅𝑘}⟩

𝐿𝑖 = ⟨𝐿𝑇 , {𝑃𝑙}⟩ , 𝐿𝑇 ∈ {𝑃𝐸, 𝐸𝐿𝐹 , 𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒, 𝑆𝑐𝑟𝑖𝑝𝑡}
𝐹𝑗 = ⟨𝐹𝑇 , {𝐿𝑖}⟩ , 𝐹𝑇 ∈ {𝑈𝑛𝑖𝑥𝐿𝑖𝑘𝑒,𝑊 𝑖𝑛𝑑𝑜𝑤𝑠}

𝑅𝑘 = ⟨𝑅𝑇 , ⟨𝑃𝑙1, 𝑃𝑙2⟩⟩ , 𝑃𝑙 = 𝑃𝐹 𝑖𝑙𝑒𝑁𝑎𝑚𝑒

𝑅𝑇 ∈
{

𝐷𝑖𝑟𝑒𝑐𝑡𝐶𝑎𝑙𝑙, 𝐸𝑚𝑢𝑙𝑎𝑡𝑒𝐶𝑎𝑙𝑙,
𝐷𝑖𝑟𝑒𝑐𝑡𝐼𝑚𝑝𝑜𝑟𝑡, 𝐸𝑚𝑢𝑙𝑎𝑡𝑒𝐼𝑚𝑝𝑜𝑟𝑡, 𝐼 𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑤𝑎𝑝

}

where M is an interaction model that is a tuple of a set of levels of types of programs with {𝐿𝑖}
programs, a set of {𝐹𝑗} OS families and a set of links between {𝑅𝑘} programs; each 𝐿𝑖 level
is a tuple of 𝐿𝑇 type and the set of {𝑃𝑙} programs; the level type takes one of the previously
described values: PE, ELF, ByteCode, Script; each 𝐹𝑗 OS family is defined by a tuple of its 𝐹𝑇
type and a set of levels of program types; OS family type takes one of the previously described
values: Unix-like, Windows; each connection between 𝑅𝑘 programs is defined by a tuple of its
𝑅𝑇 type and a laid out tuple of the initial and final 𝑃𝑙1 and 𝑃𝑙2 programs; each 𝑃𝑙 program is
identified by its file name 𝑃𝐹 𝑖𝑙𝑒𝑁𝑎𝑚𝑒 ; the link type takes one of the previously described values
– DirectCall, EmulateCall, DirectImport, EmulateImport, IndirectSwap.

Thus, the Model determines the levels of program 𝐿𝑖 types, some of which exist only in
certain OS families – 𝐹𝑗 ; 𝑃𝑙 programs at each level have 𝑅𝑘 interactions with other programs.

Step 6. Intellectual analysis. The construction (at Step 5) of the Model makes possible, on
its basis, to implement ML algorithms for the analysis of interactions [19, 20]. Here are the
possible applications of the main methods of ML in the interests of the set research problem.



Classification, after preliminary training, allows one to classify groups of programs into legal
and hostile, relying solely on the signs of their internal interactions, as well as OS system calls.
Anomalization allows you to identify programs, specifics of which are significantly different
from all others. Clustering provides a grouping of logically related programs, which makes
it possible to analyze interactions between groups. The use of regression, which is the pre-
diction of new data using existing one, will hypothetically allow predicting the appearance
of module interactions in subsequent releases of the OS or its programs, which will give the
expert information about future IS. Dimension reduction is rarely used to detect malicious pro-
grams; nevertheless, with the help of this ML method, it is possible to significantly optimize
the information visualized by an expert (by reducing its volume).

A feature of the ML application is that in some cases manual adjustment are necessary. Thus,
in addition to adjusting the operation of a step, an expert may need to perform it again if the
result obtained by the Method turns out to be incorrect or insufficient.

Step 7. Visualization of interactions. Visualization transforms results of Step 6 into a form
suitable for graphical analysis by an expert. So, for example, it is possible to create a description
of the Model with additional information in the form of a graph or generate a complete listing
with detailed information about all elements of the Model.

Step 8. Making adjustments. The final step in the Method is intended to provide the expert
with the ability of customization of the previous steps results, i.e. correct the Method. The
most obvious application, already mentioned earlier, is to return to Step 6 if the resulting vi-
sualization is not suitable for the expert. Naturally, in this way, an expert will only be able to
fine-tune the ML algorithms, although the Method can be extended to adjust for earlier steps.

The described diagram of the method with highlighting the areas of interaction with an
expert, steps and input/output data is shown in Fig. 2

3.5. Experiments

To test the performance of the Method, a prototype of the visualization software was created,
on which the experiment was then carried out. The prototype supports scanning ELF- and
PE-programs and detecting direct imports of libraries. The prototype architecture ensured
consistent execution of the Method and consisted of the 8 modules. The composition and
order of execution of modules corresponds to the steps of the Method, which, if the prototype
is operational, will also speak of the Method’s operability. Note, that currently, intellectual
analysis (Step 6) will be performed manually.

The directory with the Termite application in the Unix-like OS – Arch Linux 5.9.6-arch1-1
was taken as path to the directory for analysis. Despite modest functionality of the prototype
and lack of Step 6 implementation (i.e. intellectual analysis), the experiment was carried out re-
sulting in synthesizing certain information for the expert. For visualization was used the Gephi
tool with the Force Atlas algorithm (which showed good representativeness for perception by
an expert), the result of which was the graph in Fig. 3; the graph contains both ELF-programs
and imported libraries. An expert analysis was conducted on the resulting visualization. First
of all, there are two nodes worth noting, the “usr/liblibc.so.6” library and the “/bin/termite”
utility, these are located in the center of the graph and therefore linked to the most of other
nodes. The first one is a system library and therefore is often used. The second is the main



Figure 2: Diagram of the method for visualizing interactions

program of the application in question. This situation is quite natural and do not pose any in-
terest to an expert, since system libraries are usually called (imported) by many user programs,
and each software utility has single launch point.

Secondly, the graph contains 5 isolated groups of nodes (enclosed in dotted circles), con-
nected with only one local central node, which in turn is connected to the main part of the
graph; they are shown in Fig. 4 (designations of groups a) – e) correspond to those in Fig. 3).

These isolated groups (see Fig. 4) should be examined by an expert for security purposes.
Possible prerequisites for the examination may be the presence of local centers and libraries
exclusively imported to the local center, which indicates of specific functionality of group.
Functionality can be determined by investigation of these centers. Thus, central nodes have
following functionality: 1) /usr/lib/libgnutls.so.30 – implementation of the TLS (Transport Layer
Security), SSL (Secure Sockets Layer) and DTLS (Datagram Transport Layer Security) proto-
cols; 2) /usr/lib/libsystemd.so.0 – management of Unix-like OS services; 3) /usr/lib/libcairo.so.2
– drawing vector graphics; 4) /usr/lib/libgtk-3.so.0 – displays the GTK (GIMP ToolKit) GUI; 5)
/usr/lib/libgdk-3.so.0 – wrapper over low-level functions of graphical primitives.

The use of such clustering allows expert to restore the architecture of applications, which
will allow the detection of high-level vulnerabilities [21]. The use of ML (Step 6) will make this
process automated.



Figure 3: Visualization of programs interaction synthesized by Gephi tool

4. Discussion

Let’s consider the main disadvantages of the proposed Method and ways to eliminate or miti-
gate them.

Firstly, not all anomalous connections unambiguously indicate a violation of IS and require
special attention from an expert; nevertheless, the development of the automated intellectual
analysis will partially reduce the costs of the expert’s time and resources. Also, applying fil-
tering to directories and file names will cut off objects that are not essential for analysis in
advance.

Secondly, even for the average volume of the directory, the visualization of all its programs
and links will receive an image that is huge in size and number of links, which will significantly
complicate the understanding of the Model by an expert. In this case, the decisive factor is the
reduction of dimensions at Step 6, which will highlight only the most essential programs and
connections.

Thirdly, the Method does not consider more complex types of interactions (RPC, Unix-like
intermediaries, etc.). To take them into account, a deeper analysis of the program code, oper-
ating mechanisms of the OS and partial use of dynamic analysis or logging will be required.

And, fourthly, the problems that hypothetically arising in any automation of the process
can be smoothed out by providing an expert with opportunities to influence configuration of
the Method’s steps. So, in addition to Step 6, the expert can customize paths in Step 1, types
of scanned files in Step 2, features of analyzed program types in Step 3, configure algorithms
determining interaction types in Step 4, explicitly indicate not automatically determined inter-
actions in Step 5, and adjust synthesized visualization in Step 7.



(a) (b)

(c) (d)

(e)

Figure 4: Visualization of the isolated groups interaction synthesized by Gephi tool

5. Conclusions

The Method proposed by the authors has an novelty, since it seeks to take into account all
possible interactions of programs (and not just one of its types), while processing the results
during its performance full machine learning functionality.

Created prototype, which possesses the minimum necessary functionality, confirmed effi-
ciency of the Method (with the exception of intellectual analysis), having already received
results that allow making certain conclusions regarding examined directories.

A further direction of research should be a full-fledged implementation of algorithms for
determining all types of programs, as well as their interactions (including those mentioned,



but not taken into account in the Method). At the same time, following the current trend,
special efforts must be paid to the application of ML methods in the interests of the problem
under consideration, since it is obvious that no matter how successful the visualization of the
entire set of programs and their connections is, without the help of artificial intelligence, the
expert will not be able to conduct a full audit in the foreseeable future. There is no conflict of
interest.

References

[1] L. Sportiello, S. Zanero, File block classification by support vector machine, in: 2011
Sixth International Conference on Availability, Reliability and Security, 2011, pp. 307–
312. doi:10.1109/ARES.2011.52.

[2] W. Arif, N. A. Mahoto, Document clustering – a feasible demonstration with k-means
algorithm, in: 2019 2nd International Conference on Computing, Mathematics and Engi-
neering Technologies (iCoMET), 2019, pp. 1–6. doi:10.1109/ICOMET.2019.8673480.

[3] T. Wang, C. Wu, Detection of packed executables using support vector machines, in:
2011 International Conference on Machine Learning and Cybernetics, volume 2, 2011, pp.
717–722. doi:10.1109/ICMLC.2011.6016774.

[4] N. Hubballi, H. Dogra, Detecting packed executable file: Supervised or anomaly detection
method?, in: 2016 11th International Conference on Availability, Reliability and Security
(ARES), 2016, pp. 638–643. doi:10.1109/ARES.2016.18.

[5] B. Shravan Kumar, R. Vadlamani, Text document classification with pca and one-class
svm, in: 5th International Conference on Frontiers in Intelligent Computing: Theory and
Applications, 2017, pp. 107–115. doi:10.1007/978-981-10-3153-3_11.

[6] I. E. Krivtsova, I. S. Lebedev, K. I. Salakhutdinova, Identification of executable files on
the basis of statistical criteria, in: 2017 20th Conference of Open Innovations Association
(FRUCT), 2017, pp. 202–208. doi:10.23919/FRUCT.2017.8071312.

[7] Q. Su, S. Si, W. Wu, J. Huang, W. Fan, X. Li, The library function recognition algorithm of
pe file disassembler research and implementation, in: 2011 IEEE International Symposium
on IT in Medicine and Education, volume 2, 2011, pp. 132–135. doi:10.1109/ITiME.
2011.6132073.

[8] I. Seo, I. Kim, J. Yoon, J. Ryou, Detection of unknown malicious codes based on group file
characteristics, in: 2010 Proceedings of the 5th International Conference on Ubiquitous
Information Technologies and Applications, 2010, pp. 1–6. doi:10.1109/ICUT.2010.
5677901.

[9] I. I. Livshitz, K. A. Nikiforova, P. A. Lontsikh, S. N. Karasev, The new aspects for the
instantaneous information security audit, in: 2016 IEEE Conference on Quality Manage-
ment, Transport and Information Security, Information Technologies (IT MQ IS), 2016,
pp. 125–127. doi:10.1109/ITMQIS.2016.7751920.

[10] H. Shukla, S. Patil, D. Solanki, L. Singh, M. Swarnkar, H. K. Thakkar, On the design of
supervised binary classifiers for malware detection using portable executable files, in:
2019 IEEE 9th International Conference on Advanced Computing (IACC), 2019, pp. 141–
146. doi:10.1109/IACC48062.2019.8971519.

http://dx.doi.org/10.1109/ARES.2011.52
http://dx.doi.org/10.1109/ICOMET.2019.8673480
http://dx.doi.org/10.1109/ICMLC.2011.6016774
http://dx.doi.org/10.1109/ARES.2016.18
http://dx.doi.org/10.1007/978-981-10-3153-3_11
http://dx.doi.org/10.23919/FRUCT.2017.8071312
http://dx.doi.org/10.1109/ITiME.2011.6132073
http://dx.doi.org/10.1109/ITiME.2011.6132073
http://dx.doi.org/10.1109/ICUT.2010.5677901
http://dx.doi.org/10.1109/ICUT.2010.5677901
http://dx.doi.org/10.1109/ITMQIS.2016.7751920
http://dx.doi.org/10.1109/IACC48062.2019.8971519


[11] H. Jeong, J. Baik, K. Kang, Functional level hot-patching platform for executable and
linkable format binaries, in: 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2017, pp. 489–494. doi:10.1109/SMC.2017.8122653.

[12] A. Amine, B. Mohammed, L. Jean-Louis, Generating control flow graph from java card
byte code, in: 2014 Third IEEE International Colloquium in Information Science and
Technology (CIST), 2014, pp. 206–212. doi:10.1109/CIST.2014.7016620.

[13] P. Ferrara, A. Cortesi, F. Spoto, Cil to java-bytecode translation for static analysis leverag-
ing, in: 2018 IEEE/ACM 6th International FME Workshop on Formal Methods in Software
Engineering (FormaliSE), 2018, pp. 40–49.

[14] N. Feng, J. Xie, Y. Wu, Comparison of ruby on rails development tools, in: 2009 WRI
World Congress on Software Engineering, volume 4, 2009, pp. 290–294. doi:10.1109/
WCSE.2009.229.

[15] Z. Chen, L. Chen, B. Xu, Hybrid information flow analysis for python bytecode, in:
2014 11th Web Information System and Application Conference, 2014, pp. 95–100. doi:10.
1109/WISA.2014.26.

[16] M. Buinevich, K. Izrailov, Identification of processor’s architecture of executable code
based on machine learning. part 1. frequency byte model, Proc. of Telecom. Universities
6 (2020) 77–85. doi:10.31854/1813-324X-2020-6-1-77-85.

[17] M. Buinevich, K. Izrailov, Identification of processor’s architecture of executable code
based on machine learning. part 2. identification method, Proc. of Telecom. Universities
6 (2020) 104–112. doi:10.31854/1813-324X-2020-6-2-104-112.

[18] M. Buinevich, K. Izrailov, Identification of processor’s architecture of exe-
cutable code based on machine learning. part 3. assessment quality and applica-
bility border, Proc. of Telecom. Universities 6 (2020) 48–57. doi:DOI:10.31854/
1813-324X-2020-6-3-48-57.

[19] M. Berman, S. Adams, T. Sherburne, C. Fleming, P. Beling, Active learning to improve
static analysis, in: 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA), 2019, pp. 1322–1327. doi:10.1109/ICMLA.2019.00215.

[20] A. M. Radwan, Machine learning techniques to detect maliciousness of portable exe-
cutable files, in: 2019 International Conference on Promising Electronic Technologies
(ICPET), 2019, pp. 86–90. doi:10.1109/ICPET.2019.00023.

[21] M. Buinevich, K. Izrailov, A. Vladyko, The life cycle of vulnerabilities in the represen-
tations of software for telecommunication devices, in: 2016 18th International Con-
ference on Advanced Communication Technology (ICACT), 2016, pp. 430–435. doi:10.
1109/ICACT.2016.7423420.

http://dx.doi.org/10.1109/SMC.2017.8122653
http://dx.doi.org/10.1109/CIST.2014.7016620
http://dx.doi.org/10.1109/WCSE.2009.229
http://dx.doi.org/10.1109/WCSE.2009.229
http://dx.doi.org/10.1109/WISA.2014.26
http://dx.doi.org/10.1109/WISA.2014.26
http://dx.doi.org/10.31854/1813-324X-2020-6-1-77-85
http://dx.doi.org/10.31854/1813-324X-2020-6-2-104-112
http://dx.doi.org/DOI:10.31854/1813-324X-2020-6-3-48-57
http://dx.doi.org/DOI:10.31854/1813-324X-2020-6-3-48-57
http://dx.doi.org/10.1109/ICMLA.2019.00215.
http://dx.doi.org/10.1109/ICPET.2019.00023
http://dx.doi.org/10.1109/ICACT.2016.7423420
http://dx.doi.org/10.1109/ICACT.2016.7423420

	1 Introduction
	2 State of Art
	3 Model of the interactions of programs
	3.1 Program types
	3.2 Types of interaction
	3.3 Model structure
	3.4 Method of interactions visualization
	3.5 Experiments

	4 Discussion
	5 Conclusions

