
Mining Markov Network Surrogates to Explain
the Results of Metaheuristic Optimisation∗

Alexander E.I. Brownlee, Aidan Wallace, and David Cairns

University of Stirling sbr@cs.stir.ac.uk
http://www.cs.stir.ac.uk/~sbr

Abstract. Metaheuristics are randomised search algorithms that are
effective at finding ”good enough” solutions to optimisation problems.
However, they present no justification for the generated solutions, and are
non-trivial to analyse. We propose that identifying which combinations
of variables strongly influence solution quality, and the nature of that
relationship, represents a step towards explaining the choices made by
the algorithm. Here, we present an approach to mining this information
from a “surrogate fitness function” within a metaheuristic. The approach
is demonstrated with two simple examples and a real-world case study.
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1 Introduction

Metaheuristic algorithms exploit randomised search to approximate optimal so-
lutions to difficult optimisation problems such as workforce scheduling or mak-
ing thousands of design decisions for a house. Explainable AI has made ad-
vances towards explaining the decisions of black-box systems like deep neural
networks [10,12]. However, there is little like this for metaheuristics. Approaches
that come close include systematic analysis of the relationships between vari-
ables and objectives [5] and using solutions arising from the search process to
seed classic sensitivity analysis [18]. Deb et al [9] proposed “innovization” to
yield additional problem-based knowledge alongside the generated optimal so-
lutions, by seeking common principles among Pareto-optimal solutions. More
recently, Urquhart [15] used MAP-Elites to increase trust by addressing the com-
mon complaint from end users, when presented with a solution constructed by
a metaheuristic, that they themselves had no role in the solution’s construction.
An archive of high performing but diverse solutions are found using MAP-Elites,
and presented via an interactive decision making tool.

For an optimisation problem, a decision maker might seek two key insights
to accept solutions found by metaheuristics. I1: Does the solution solve the prob-
lem, or have we found an error or loophole in the problem’s definition? I2:
What characteristics of the solution are crucial to optimality, and which are
simply artefacts of the stochastic processes inherent to metaheuristics, that could
be amended for aesthetic or implementation purposes? In this paper, we pro-
pose that such explanation can be achieved by identifying which combinations
of variables strongly influence solution quality, and which can be ignored; the
ideal values for the variables; and interactions between variables. We do this by
following an approach to mining “surrogate fitness functions” described in [4].

∗Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

http://www.cs.stir.ac.uk/~sbr


2 A. Brownlee et al.

Surrogate fitness functions [7, 11] are well-established for improving meta-
heuristic search efficiency. A computationally cheap model is trained in parallel
with the optimization, replacing calls to a costly fitness function such as a long-
running simulation [6, 7, 14]). We exploit a little-used additional benefit: a sur-
rogate is an explicit model of the problem, as seen through the solutions visited
by the algorithm. Given that the initial motivation for using the surrogate was
to improve the speed of the search, this model is effectively “for free”.

This paper revisits the Markov network Fitness Model (MFM), a probabilistic
model for bit string encoded problems originally developed for the Estimation of
Distribution Algorithm, DEUM [13]. The relationship between MFM parameters
and global optima for a given problem can be exploited to yield explanations in
the form of characteristics that make a solution high in fitness.

2 Markov Network Fitness model

We begin with a brief recap of the Markov Network Fitness Model surrogate,
further detailed in [3]. Let Ω = {0, 1}n be the search space (i.e., bit string
encoded solutions). f(x)⇒ R is the fitness function and X = (X1, . . . , Xn) is the
variable vector. Xi = xi denotes that variable Xi has value xi, and x = x1 . . . xn
denotes a joint configuration of X. Vk(x) is a Walsh transformation [1], which
encodes the values of a binary variable xi from [0, 1] into [−1, 1], and groups
multiple variables as their product. The Markov Network Fitness Model specifies,
for each solution x = x1, . . . , xn, a negative log relationship between the fitness
function and the Walsh transformation of the variables:

− lnf(x) = U(x) =
∑
K

αKVK(x) (1)

With a large enough population of solutions and their fitnesses, (1) yields a
system of equations that can be solved using a least-squares approximation to
estimate the αK (this stage can be seen as a linear regression problem [16]). With
the parameters specified, (1) becomes a model of the fitness function, which we
can use to predict the fitness f(x) for solutions.

3 Mining the MFM

[2, 3] detailed how MFM α values can yield insights into fitness and the region
around the optima. Equation (1) specifies a negative log relationship between
energy and fitness, so minimising energy is equivalent to maximising fitness. For
a univariate term, Vi(x) (corresponding to a single xi), if αi > 0, setting xi = 0
will minimise energy and thus maximise fitness and, if αi < 0, setting xi = 1 will
maximise fitness. For terms with two variables Vi,j(x), then αi,j > 0 requires xi
!= xj to maximise fitness; αi,j < 0 requires xi == xj . So, the signs of the αK
point towards values taken by variables in the globally optimal solutions. The
magnitude indicates the sensitivity of f(x) to the values taken by each clique.

Two examples from [2, 3] focus on a toy benchmark problem, Checkerboard,
and a biocontrol problem. With Checkerboard, the goal is to maximise the num-
ber of cells with oppositely-valued neighbours when the bit string is laid out in
a grid. The univariate terms (corresponding to each variable xi) were all around
zero, implying that cells could either be 0 or 1 in the optima. All pairwise coef-
ficients for a 25-bit checkerboard (Figure 1) are positive: i.e., neighbouring cells
should take opposite values. The coefficients that are double the magnitude of
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Fig. 1. Pairwise coefficients for checkerboard (left) and Univariate coefficients for the
biocontrol problem and larval lifecycle (right)

the others correspond to the pairs of cells in the centre of the checkerboard,
where they might be expected to have most influence.

The bio-control problem seeks to minimise insect larvae growth on mush-
rooms by choosing optimal times to spray the crop with nematode worms. So-
lutions are encoded as 50 bits representing times at which the bio-control spray
is applied or not. Most of the univariate coefficients (each corresponding to one
bit) (Figure 1) are positive, indicating no spraying. The few negative coefficients,
when spray should be applied, coincide with growth points in the life cycle of
the pest being targeted (represented by the blue dotted line).

For both problems, MFM coefficients, determined using only a few hundred
randomly generated solutions, have a clear relationship with the underlying prob-
lem. The coefficients point towards optimal solutions and show sensitivity of the
objective to particular variables or variable interactions.

4 Case Study: Cellular Windows

Fig. 2. Fully glazed façade

Our case study seeks to optimise the location
of windows on a Chicago commercial build-
ing’s southern façade; the goal is a design
which minimises energy use and capital con-
struction cost. This was previously studied
in [8,17,19]. The external wall is divided into
120 cells which may be glazed, in a 15x8m
grid. Fig 2 shows the fully glazed building.

Objective 1: Minimise Energy. The un-
weighted sum of energy for heating, cooling
and lighting over a year, computed by the En-
ergyPlus building simulation package. This is
non-trivial: incoming sunlight reduces electric
lighting demand but solar gain increases cool-
ing and decreases heating energy demand. Heat loss through glass at night has
the opposite effect. A single simulation run takes 1-2 minutes on an Intel i7 CPU:
the original motivation for the use of surrogates to speed up the optimisation.
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Fig. 3. Minimal, median and maximal cost solutions from the best attainment curve.
White cells are unglazed, blue cells are glazed.

Objective 2: Minimise Cost. Construction cost for specified window configura-
tion. A straightforward linear function of the number of windows.

Variables and Encoding. The wall is divided into 120 cells in a 15 x 8 grid. Each
cell may be glazed or unglazed. This translates into a 120 variable bit string. A
bit is true for a glazed cell and false otherwise.

5 Optimisation Results

Comparisons and analysis of results from several multi-objective evolutionary
algorithms applied to this problem can be found in [8, 19]. The present paper
focuses on mining a surrogate model, rather than on the optimisation process, so
for convenience we replicate the best optimisation results from [19]. The specific
algorithm is unimportant for this work and could be substituted by another
that uses fitness to drive the search; however NSGA-II was found to perform
well for this problem [8]. The algorithm used binary tournament selection; 100%
crossover rate using uniform crossover; single bit-flip mutation for each new
solution; population size 30 and a stopping criterion of 5000 unique evaluations.

Minimal, median and maximal cost solutions from the approximated Pareto
front from a typical run are plotted in Figure 3. The substantial range of capital
costs reflect the extra expense of glazing. The range of energy consumption is
more modest, but still around 6% of the maximal consumption, representing
considerable savings in emissions and energy costs over the building’s life.

The approximated Pareto-optimal trade-off and the specific designs in each
solution are already of great value to a decision maker, but themselves raise some
questions. It would appear that, as a result of the algorithm’s randomness, it
missed the lowest cost solution (no glazing). It also produced odd glazing shapes
on the higher-cost solutions. It would be helpful to know what the impact might
be of making small aesthetic changes to these solutions.

One approach to explaining the contribution of individual glazing cells to
optimality is a local sensitivity analysis [19]. For selected solutions, each cell
was flipped from glazed to unglazed (or vice-versa), and the change in energy
use determined. This is illustrated in Figure 4. The local sensitivities help to
identify cells that were glazed or unglazed as a result of noise coming from using
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Fig. 4. Local sensitivities around the minimal cost solution. Arrows indicate the direc-
tion of change in energy consumption caused by mutating that bit in the solution and
the shading shows the magnitude of the change.

a stochastic algorithm, and those which could be changed without impacting
negatively on the objectives. However, the approach has the disadvantage that
it requires further runs of the building performance simulation.

6 Mining the Surrogate

We constructed two MFMs for this problem; one each for energy and cost. We
now mine these surrogates for explanations. The structure for the MFM (the
neighbourhoods for each xi) was fixed. Two sets of experiments were performed
using different structures for the MFM.

Fig. 5. Mean αK values for energy. 1-120
are univariate αK ; 121-360 are pairwise αK

between neighbouring cells on the façade.
Error bars are one standard deviation.

Lattice structure. Initially, a grid
structure was adopted, based on the
intuition that glazing one cell would
impact neighbouring cells. The MFM
included 120 univariate VK (one term
per cell), and 240 pairwise VK repre-
senting neighbouring cell pairs. Thus,
there are 361 parameters in the model
(including a constant), and a training
population of around 1.1x this value
should be used to obtain a good model
[3]. The fittest (lowest energy or cost)
400 of the first 1000 solutions vis-
ited by NSGA-II were used as train-
ing data for one MFM per objective,
for each of 30 repeat runs. The r2 val-
ues comparing the predicted objective
values with the true objective values
from the simulation were 0.982 for energy and 0.997 for cost.

The mean and standard deviation for each αK in the MFM was calculated
over all the energy MFMs and all the cost MFMs. These values are plotted in
Figure 5 for energy (for cost, the plot is similar, but with the higher points
level rather than showing a gradual increase). The jump at α 120 coincides with
the change from univariate αKs to the pairwise αKs. For both energy and cost
objectives, the pairwise αK values are all near zero. This means that they have
little to no influence on either objective: it would seem that only the univariate
αK have any influence on the objectives (having non-zero values in the MFMs
for both objectives) and our intuition on the appropriate structure was incorrect.



6 A. Brownlee et al.

Fig. 6. Mean coefficient values for energy MFM, arranged to match the locations of
cells on the façade. Blue cells have high values, white medium, and red have low values.

Univariate structure. We repeated the process using a univariate structure
(i.e., 120 αKs, one per variable) for both MFMs. The model was trained on the
fittest 140 of the first 1000 solutions visited in the optimisation run. Median r2

for the models on 400 unseen solutions was 0.993 for energy and 0.998 for cost.
The mean values for these coefficients for energy are shown in Fig 6 as a grid
corresponding to the façade. Cell colour shows each coefficient’s value relative
to the others: high values being blue, through white to red. For both objectives,
all αk are positive.

For the energy objective, there is a clear (though small) bias towards the
upper right (East) of the façade, also visible in the rising values in Fig 6, sug-
gesting that glazing should be concentrated in that region. This matches the
local sensitivity analysis (Fig 4), but has the benefit that no additional eval-
uations were needed, and is rooted in models representing solutions spanning
several generations rather than just the last one. It is also concordant with the
real-world problem: high central glazing allows maximum penetration of day-
light with less glazing, balancing heat gain+loss, and lighting needs (although it
is less clear specifically how much glass there should be or precisely to place it,
thus motivating the use of optimisation). A slight bias East also catches more
early morning sunlight. Not illustrated due to space, for cost, the magnitudes of
the αk are highly similar, suggesting that optimal solutions should be unglazed
and individual cells make equal contributions to cost. This matches with the
problem definition, whereby an equal cost is associated with each cell.

7 Conclusion

We can make a step toward explainability for optimisation by metaheuristics by
reporting relationships between problem variables and sensitivity of the objec-
tives to them. This brings several benefits:

– Knowing the sensitive variables, solutions can be adjusted for factors not
considered by the optimisation, knowing the likely impact on optimality.
e.g., odd window shapes made more visually appealing.

– If the returned solutions match the conclusions drawn from the model, the
decision maker can have added confidence in the optimality of the results.

– The model can point towards global optima long before the algorithm con-
verges. With the glazing problem, the model suggested the overall glazing
shape after the first 1000 of a 5000 solution run. This could show where al-
gorithm has missed the global optimum, and with long-running simulations,
make early suggestions of optima: particularly helpful if this indicates flaws
in the problem formulation.
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We applied the MFM surrogate to a glazing optimisation problem. Analysis
of the model coefficients yields simple explanations for the optimisation results.
This builds on earlier work [2, 3] showing that MFM coefficients point towards
the global optima of benchmark functions. Considerably more needs done to
generalise the concept of surrogate model mining to a wider range of problems
and representations. In particular, how best to layout the visualisations is crucial.
What this work has done is set out the possibility that surrogates can be used
as the basis of explaining metaheuristic optimisation results.
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