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Abstract. Textbooks have been the traditional method of providing learning con-
tent to students for decades, and therefore have become the standard in high- 
quality content. Yet the static textbook format is unable to take advantage of the 
cognitive and learning science research on effective interactive learning methods. 
This gap between quality content and highly efficient methods of learning can be 
closed with advances in artificial intelligence. This paper will contextualize the 
need for improving textbooks as a learning resource using research-based cogni-
tive and learning science methods, and describe a process by which artificial in-
telligence transforms textbooks into more effective online learning environments. 
The goal of this paper is to evaluate textbook-based automatic question genera-
tion using student data from a variety of natural learning environments. We be-
lieve this analysis, based on 786,242 total observations of student-question inter-
actions, is the largest evaluation of automatically generated questions using per-
formance metrics and student data from natural learning contexts known to date, 
and will provide valuable insights into how automatic question generation can 
continue to enhance content. The implications for this integration of textbook 
content and learning science for effective learning at scale will be discussed.  

Keywords: Automatic Question Generation, Artificial Intelligence, Textbooks, 
Formative Practice, Learning by Doing, Doer Effect, Courseware. 

1 Introduction 

Textbooks are the de facto standard in quality educational content, and yet are not the 
standard in effective learning. Students encounter long sections of content that they 
must find a way to absorb, and risk reading passively with little retention. Entire disci-
plines of study have arisen from the need to identify techniques that will help students 
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learn this content (see [8]). Instructors may assign reading with the expectation that said 
readings will be absorbed prior to a learning activity, and yet have no way of monitoring 
student progress in real time. Students often do not read the textbook as instructors 
intend, limiting learning gains [9, 19]. This disconnect between textbook content and 
learning produces a tension that ultimately puts students at a disadvantage. 
 Research in cognitive and learning science has proven that certain methods are 
markedly more effective for learning content in online contexts. For example, integrat-
ing formative practice questions with short sections of content creates a method of 
learning by doing that has been shown to increase student learning gains while also 
decreasing the amount of time students spend studying [16]. Doing practice while read-
ing had a six times larger relationship to learning outcomes than just reading the content 
[12], and follow-up research has shown this “doer effect” to be causal [13, 14, 17]. 
Doing practice is widely understood to be beneficial for learning, but learning science 
has identified that doing practice at frequent intervals while reading causes learning. 
 Given this simple yet highly effective learning method, why has it not been incor-
porated into every online textbook? The main contributing factor is an issue of scale. 
The volume of formative practice items needed to engage students in this type of learn-
ing by doing is in the hundreds or thousands for a typical full-semester course—a scale 
that becomes prohibitive in both time and cost. Question writing is a labor-intensive 
process that requires both subject matter and item writing expertise. The formative 
practice element of the courseware learning environment is therefore often a barrier too 
high for either content providers or teaching faculty to overcome.  

Artificial intelligence is a promising solution for overcoming this barrier. Recent 
advances in natural language processing (NLP) and machine learning (ML) have pro-
vided tools needed to take high-quality textbook content and transform it to 
courseware—a process that organizes content into shorter, topical lessons and creates 
and embeds formative practice within those lessons. Automatic question generation 
(AQG) has gained increasing focus in recent years, and yet few studies have evaluated 
these questions empirically in a natural learning context using student data [15]. This 
paper makes the following contributions to the AQG literature beyond the recent sys-
tematic review by Kurdi et al. [15]. Data are evaluated from 945 students across six 
textbook-based courseware environments containing 2,610 automatically generated 
(AG) questions, making this the largest study on natural student usage of AG questions 
reported as of that review. We evaluate AG questions alongside human-authored (HA) 
questions in the same courseware on three key performance metrics: engagement, dif-
ficulty, and persistence. Our initial smaller-scale research found AG and HA questions 
to be similar on these metrics, suggesting students did not perceive a difference that 
caused them to behave differently with the AG questions [22]. Prior studies have fo-
cused on difficulty but not on engagement-based metrics crucial to formative practice. 

2 Methods 

2.1 The SmartStart Process 

VitalSource is engaged in a large-scale project, called SmartStart [7], for automatically 
creating learning by doing courseware from textbooks. SmartStart uses NLP and ML 
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methods to accomplish three main tasks: identify short lessons of content to appear on 
a courseware page, find and align learning objectives to those lessons of content, and 
generate formative practice questions for each lesson page. These actions are completed 
in an application interface with options for customization by a course designer. The 
goal is to use this process to easily and quickly create foundational courseware that 
engages students in learning by doing as they read the traditional textbook material. 
The courseware that this process produces can be used as is, or can be further custom-
ized in an authoring interface to include adaptivity and additional assessments.  
 
Content Sections. Most often, textbooks contain units or chapters on broad topics that 
cover significant amounts of content in contiguous blocks. While there may be a series 
of subheadings, the content flows together in a single unit. This large volume of reading 
poses a long-held concern about students becoming passive readers and having diffi-
culty reading for understanding [3]. A set of expert rules for the content chunking pro-
cess was derived from prior experience with several dozen custom-built courseware 
developed with the methods of Carnegie Mellon University’s Open Learning Initiative 
[16]. These environments were used by thousands of students and historical data pro-
vided insights on how different lesson lengths affected student retention and activity. 
Using these rules, SmartStart analyzes the textbook structure and proposes how the 
content could be presented in shorter, topically aligned lessons in a courseware inter-
face. It also uses expert rules to identify any potential issues with the content sections 
for human evaluation.  
 
Learning Objectives. In addition to shorter sections of content, learning objectives 
help students construct mental models by providing clear guidance on what they are 
expected to learn, as well as an indication as to how they will be evaluated on that 
content. Learning objectives also provide a practical function in courseware environ-
ments, as they are tagged to formative practice and feed data to instructor dashboards 
that are organized by objective in addition to post hoc analyses. Most textbooks provide 
students with these types of learning statements, but their phrasing and location are 
highly variable. Therefore, SmartStart must first locate the learning objectives. The lack 
of consistency in phrasing, format, placement, and HTML markup observed across 
even just a few dozen textbooks made a rule-based system for locating them infeasible, 
so instead, a supervised ML model is used. The model includes features that represent 
specific identifiers, placement characteristics, and Bloom’s Taxonomy verbs [4]. The 
learning objective identification model and other ML models used in SmartStart were 
developed using the scikit-learn library [18]. Once the learning objectives have been 
located and extracted, the next task is to place them with the lessons created in the 
structure task. Another model evaluates the content of each learning objective and les-
son and proposes the best placement. Placing the learning objective with lesson content 
will also tag any formative questions placed on that lesson page, completing the data 
collection and instrumentation architecture of the courseware.  
 
Automatic Question Generation. The key feature that turns static textbook content 
into a learning by doing environment that takes advantage of the doer effect is formative 
practice questions. Two types of formative cloze questions are generated by this AQG 
process: fill-in-the-blank (FITB) and matching (as seen in Figure 1). The FITB provides 
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a sentence with a term missing for students to enter, making this question a recall type 
on Bloom’s cognitive process dimension [4]. The matching question provides a sen-
tence with three missing terms and the student must drag and drop the terms into the 
correct location, making this a recognition type on that dimension. Both recognition 
and recall questions have long been researched for their learning value [5] and are both 
on the first level of Bloom’s Taxonomy [4]. As formative practice, students can con-
tinue to answer until they reach the correct response and receive immediate feedback. 

 
Fig. 1. Example of AG matching and FITB questions from the Microbiology courseware. 

AQG is the most complex step in the SmartStart process given the number of re-
quirements and variables involved. AQG has been an increasingly researched topic 
given its relevance to several fields, and there have been many differing approaches 
developed. To describe the current approach, we will use the classification system de-
veloped in [15]: level(s) of understanding and procedure(s) of transformation. The level 
of understanding for this AQG uses both syntactic and semantic information from the 
textbook. The NLP analyses are carried out using the spaCy library [11]. This infor-
mation is used to accomplish two primary tasks: selecting the content sentences for the 
questions and selecting the term(s) to be used as the answer(s). Syntactic information, 
such as part-of-speech tagging and dependency parsing, is used in both sentence selec-
tion and answer term selection. Semantic knowledge is also used for detecting im-
portant content. The procedure of transformation is primarily a rule-based method. A 
set of rules is used to select the question sentences and answer terms, and these rules 
use both syntactic and semantic information to select the best options. 

After the syntactic and semantic processing of the textbook has been completed 
and the selection rules applied, a set of questions has been generated. However, this set 
contains more questions than will ultimately appear to students. The SmartStart AQG 
uses an overgenerate-and-rank approach [10] to select only the top questions of each 
type to appear on the lesson page. As these questions are to be used by students in their 
natural learning environment and not as part of an experiment, the question sets were 
further scrutinized in a human review pass. The goal of this review was not to evaluate 
the questions from the perspective of a subject matter expert, but rather to search for 
quality issues common to the field of AQG. For example, some questions may be too 
easily guessable (e.g., “The father of psychoanalysis was Sigmund _____.” or have 
grammatical problems such as an unresolved anaphoric reference in the question stem. 
For two of the six courses in this study (Communication A and Accounting, Table 1), 
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the textbook’s publisher also did a subsequent human review pass and made additional 
minor modifications to some of the remaining questions. 

2.2 Question Evaluation  

The purpose of this work is to expand upon the current AQG literature by furthering 
the empirical evaluation of AG questions. As noted in Kurdi et al.’s 2020 systematic 
review [15], the majority of studies generate questions for experimental settings. Only 
one study reported using AG questions in a class setting [27], but this study used tem-
plate-based programming exercises and evaluated student pre- and post-test scores, not 
individual item characteristics. Furthermore, only 14 of the 93 studies that met the cri-
teria for the review evaluated question difficulty. These studies primarily used small 
samples (under 100 questions) and evaluation was based on expert review, not natural 
student data (see [15]). This type of expert review was critical to the development of 
the current AQG system, but the true test is how the AG questions perform with stu-
dents in authentic learning contexts.  

These AG questions were evaluated using data from a set of six SmartStart courses 
that were created from existing textbooks and used by students in their natural learning 
environments. For example, an introductory behavioral neuroscience textbook [26] was 
used to generate the courseware discussed in detail in the next section. These courses 
were also enhanced with human-authored questions post-generation, providing a 
unique opportunity to compare AG and HA questions that the same students completed 
on the same lesson pages; details are given in Table 1. The manually added HA ques-
tions can also be categorized as recognition or recall. The recall category includes the 
AG FITB as well as the HA FITB (the most direct counterpart) and, in the Neuroscience 
course, HA numeric input. The recognition category includes the AG matching and all 
other HA question types. Most similar to the AG matching are the HA drag-and-drop 
(D&D) types and the pulldown type, where students select a term from a dropdown 
menu to complete a question stem. There are three types of HA multiple-choice varia-
tions: conventional multiple-choice (MC), multiple-choice multiple-select (MCMS), 
and multiple-choice grid (MC grid). The Neuroscience course also contains HA passage 
selection questions, in which students select content in a short passage of text according 
to the instructions. 

This type of in vivo experimentation across a variety of courses provides greater 
external validity, while comparing interactions of the same students with both types of 
question improves internal validity. To evaluate both question types through an empir-
ical approach, the performance metrics of engagement, difficulty, and persistence pro-
vide a basis for comparison [22]. 

The first metric studied is engagement—whether or not students chose to answer 
questions they encountered on a lesson page. For questions that were answered, a dif-
ficulty metric can provide insights into whether questions may be too easy or difficult. 
The last metric is persistence—when students initially answer a question incorrectly, 
how often do they continue to answer until they reach the correct answer? While mean 
performance metric values are insightful, a mixed effects logistic regression model will 
also be used to analyze these metrics more rigorously, including controlling for covari-
ates. The results will be presented and discussed in detail for a single course, followed 
by discussion of patterns observed across all courses. 
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Table 1. SmartStart courses with students and questions per course. 

Course Institutions Students AG Questions HA Questions 
Neuroscience [26] 18 516 747 888 
Communication A [1] 1 109 263 390 
Microbiology [21] 1 99 416 690 
Psychology [6] 1 91 607 48 
Communication B [2] 3 79 386 533 
Accounting [20] 1 51 191 403 

3 Results & Discussion 

3.1 Neuroscience 

Engagement. Doing the formative questions is what generates the doer effect, which 
helps students learn, so the first step is to evaluate how students choose to engage with 
the different question types. We hypothesize that if students perceived problems with 
the AG questions, they would engage with them less than HA questions or simply 
wouldn’t do them at all. The Neuroscience course will be used as a detailed example. 
This course has the largest data set, and also has the largest variety of HA question 
types, allowing broader comparison with the AG questions. This textbook-based 
courseware was used at 18 institutions in 21 total course sections, providing a wide 
range of contexts and the highest likelihood of heterogeneity of students. The data set 
was constructed as the set of all opportunities a student had to engage with a question. 
While at first a simple cross of all students with all questions would seem appropriate, 
there are many cases where a student did not visit a lesson page, and therefore did not 
have the opportunity to choose whether to answer those questions. Rather, engagement 
opportunities were taken as all student-question pairs on pages that the student visited 
(very short page visits of under 5 seconds were excluded). 
 Given this data set of student engagement opportunities, why not just use mean 
engagement to assess the question types? Data from courseware show that engagement 
typically declines over the course of a semester, and even within modules/chapters and 
pages [23]. The location of a question within the course may therefore impact the like-
lihood that students will engage with it, and so a more sophisticated model is needed to 
take this into consideration. Logistic regression can be used to model the probability 
that a student will answer a question they encountered as a function of question type, 
while also taking question location variables into account as covariates. Furthermore, 
because there are multiple observations per student and question, these are not inde-
pendent, and a mixed effects model is required. The AG FITB is the baseline for the 
question type categorical variable, facilitating comparison between this AG recall type 
and the other AG and HA types. The R formula that expresses the model is: 
 
glmer(answered ~ course_page_number + module_page_number 
               + page_question_number + question_type 
               + (1|student) + (1|question),  
               family=binomial(link=logit), data=df) 



7 

The data set for the Neuroscience course consists of 286,129 individual student-
question observations. An answered question was recorded as 1 and an unanswered 
question as 0. If we first consider the mean engagement of each question type, the range 
is from 43.4% to 29.7%. There are clusters of question types with similar means. For 
instance, AG matching, HA MC, HA MCMS, and HA numeric input all had engage-
ment around 43%. Next, AG FITB (41.1%), HA pulldown, and HA D&D table all had 
between 40% and 42% engagement. HA D&D image, HA FITB, and HA passage se-
lection all had engagement below 38%. This information on its own is useful; however, 
reviewing the results of the model in Table 2 gives additional insights. 

Table 2. Engagement regression results for the Neuroscience course. 
Significance codes: 0 *** 0.001 ** 0.01 * 0.05 

Fixed Effects Mean Significance Estimate p 
Intercept  *** -2.17527 < 2e-16 
Course Page  *** -0.74925 < 2e-16 
Module Page  *** -0.31960 < 2e-16 
Page Question   *** -0.09011 9.37e-06 
HA D&D Image  29.7  -0.19026 0.700107 
HA D&D Table 41.7  0.27267 0.356745 
HA Pulldown 40.2 ** 0.20531 0.009303 
AG Matching 43.3 *** 0.22083 0.000497 
HA MC 43.4 *** 0.24570 0.000536 
HA MCMS 43.2 * 0.19886 0.017558 
HA Passage Selection  30.4 *** -1.52872 0.000879 
HA FITB 37.1 **  -0.21440 0.004556 
HA Numeric Input 43.3   -0.13641 0.421057 

 The variables for the location of the questions were all significant (p < 0.001) and 
negative, verifying that students are less likely to engage with the practice as they get 
to the end of a page, module, and course. After controlling for the effects of question 
location, we can examine differences in engagement for the question types. The HA 
MC and AG matching questions, which had nearly identical mean engagement scores, 
also had very similar estimates and significance (p < 0.001) compared to the AG FITB. 
Both question types are recognition types, but one was human-authored and one auto-
matically generated. The HA pulldown and HA MCMS were both similar in mean 
scores and both more likely to be answered (p < 0.01 and p < 0.05 respectively). The 
AG FITB also had similar mean engagement with the HA numeric input, and the model 
showed no significant difference for engagement between these recall question types. 
Neither of the D&D question types were significantly different from the AG FITB, 
despite one having similar mean engagement scores and the other having much lower 
mean scores. The HA passage selection had the lowest mean engagement, and also was 
significantly less likely to be engaged with (p < 0.001). This could be due to the com-
plexity of the question type—requiring students to interpret instructions, read content, 
and then select a segment of that content. Finally, the HA FITB (as the most direct 
comparison to the AG FITB) had a lower mean score and the model showed that stu-
dents were less likely to engage with this type than the AG FITB (p < 0.01). 
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Difficulty. When students choose to answer the formative questions, we can evaluate 
the question difficulty through their first attempt accuracy. This difficulty data set con-
sists of all attempted questions for a total of 120,098 observations, with a correct answer 
recorded as 1 and an incorrect answer recorded as 0. When we first consider the mean 
difficulty scores per question type (Table 3), we see that there is a very wide range, 
from a high of 86.4% correct for HA D&D image to a low of 33.7% for HA passage 
selection. There are three general groupings of question types. The easiest questions, 
with means above 80%, were the HA D&D table, AG matching, and HA D&D image. 
The next group ranges from a high of 70.0% to a low of 64.1% (AG FITB) and includes 
the HA recognition types pulldown and MC, as well as all HA and AG recall types (HA 
FITB, HA numeric input, AG FITB). The most difficult question types were HA 
MCMS at 43.3% and HA passage selection at 33.7%.  

The same mixed effects logistic regression model was used, but with the difficulty 
data set (Table 3). The location variables, unlike for engagement, were not all signifi-
cant. The location of the question in the module was significant (p < 0.01), but neither 
the course page nor the location on the page was significant. Unlike for engagement, 
there was no consistent trend of location significance for difficulty or persistence, and 
so for brevity the location variable results are omitted from the remaining tables (full 
results are available at [25]), though the question type regression results are still con-
trolled for location. The regression model results for the question types were generally 
consistent with the trends for the unadjusted mean scores. Nearly all the questions with 
higher mean scores than the AG FITB (64.1%) were also easier than the AG FITB with 
varying degrees of significance. This also includes the HA FITB—the most direct coun-
terpart to the AG FITB. The two question types with lower means—HA passage selec-
tion and HA MCMS—were also more difficult than the AG FITB in the model. Inter-
estingly, the question type that was not statistically different from the AG FITB was 
another recall type, HA numeric input.  

Table 3. Difficulty regression results for the Neuroscience course 

Fixed Effects Mean Significance Estimate p 
HA D&D Image  86.4 * 1.47548 0.041173 
HA D&D Table 80.8 * 1.09198 0.011490 
HA Pulldown 70.0 *** 0.44359 0.000107 
AG Matching 84.3 *** 1.44140 < 2e-16 
HA MC 67.8 ** 0.27696 0.007248 
HA MCMS 43.3 *** -1.06100 < 2e-16 
HA Passage Selection  33.7 * -1.52609 0.025964 
HA FITB 69.0 * 0.26882 0.014033 
HA Numeric Input 68.6  0.31414 0.213834 

 
Persistence. The last performance metric is persistence—when a student gets a ques-
tion incorrect on their first attempt, do they continue to answer until they reach the 
correct response? The persistence data set is therefore a subset of the difficulty data set, 
including only the incorrect first attempts for questions for a total of 34,124 observa-
tions. If a student eventually achieves the correct response the outcome was recorded 
as 1, and if they did not persist until reaching the correct response the outcome was 
recorded as 0. We hypothesize that persistence could be related to the difficulty of a 
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question type; if a student perceives a question type as too easy or too difficult, they 
may not persist until reaching the correct response as often. It may seem that this per-
sistence metric is less impactful than engagement or difficulty, but VanLehn notes in a 
meta-analysis of literature on human and computer-based tutoring that getting students 
to finish problems correctly instead of giving up has a strong impact on learning [24]. 
The persistence metric should therefore not be overlooked.  

The table for persistence was omitted for brevity (see [25]), as the trends were less 
complex. There are six question types between 98.9% and 100% persistence, and all 
are recognition types, including the AG matching. The next group is the three recall 
question types: AG FITB (89.0%), HA FITB (85.7%), and HA numeric input (80.8%). 
The outlier is the HA passage selection at 42.3%. Comparatively, the regression model 
provides interesting results. Only three question types are significantly more likely (p 
< 0.001) to be answered until correct compared to the AG FITB: HA pulldown, AG 
matching, and HA MC. Note that these question types were statistically easier than the 
AG FITB, but they ranged from 67.8% to 84.3% correct. All three are recognition type 
questions, which may account for the range in difficulty yet similarities in persistence.  
 The HA MCMS was an outlier in terms of its high degree of difficulty, and yet had 
statistically higher persistence than the AG FITB. There were also three question types 
with significantly lower likelihood of persistence. The HA passage selection is the most 
expected, given its high difficulty and low mean persistence. However, the other two 
HA recall types had statistically lower persistence than the AG FITB. Students were 
more likely to persist in the AG FITB than either the HA FITB or HA numeric input. 

3.2 Trends Across Courses 

As seen in the regression models for each of the performance metrics above, there are 
valuable insights into how students engage with different question types. In this section, 
we present the mean values with the effects from the regression model for each course, 
for each metric. Trends as well as anomalies can be detected when looking across 
courses that can provide a higher degree of generalizability for findings and suggest 
interesting areas for future research. Each course was different in terms of the HA ques-
tion types that were added to the SmartStart courseware. To discern trends that may be 
characteristic of a question type, only types appearing in at least three of the six courses 
are presented in the tables below; however, all of each course's question types were 
included in its regression model (see [25]). If a question type was not used in a course, 
its cells contain n/a. The mean is presented for every question type, but only significant 
effects from the model are presented with their signs for ease of interpretation. 
 
Engagement for All Courses. First, the mean engagement trends for question types 
(Table 4) show similar patterns to the Neuroscience course. The AG matching questions 
have means within a few percentage points of the HA MC for all courses, and often 
close to other types such as the HA pulldown or HA MCMS. This shows that engage-
ment is similar for all these recognition types, regardless of the AG or HA origins. 
Similarly, the mean engagement for the AG FITB is typically within a few percentage 
points of the HA FITB, with three of four courses showing the AG FITB with slightly 
higher engagement, indicating the recall question types are generally close in mean 
engagement. 
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The mean engagement values also show variation between courses in their overall 
spread. In some courses, mean engagement for all question types is very close, such as 
for Communication A (43.4–50.5%), Communication B (44.8–53.3%), or Psychology 
(84.9–87.4%). Other courses have a wider variation in question type engagement 
means, such as Accounting (52.0–77.9%) or Microbiology (42.3–69.3%). Courses also 
have different ranges from one another; while Communication A and B have low mean 
engagement across all question types, Psychology has much higher mean engagement 
for all question types. While the reason for these differences is not discernible from the 
data, it is likely that the implementation of the courseware in the classroom could be a 
strong contributing factor, as data have shown that instructor implementation practices 
can greatly influence student engagement with formative practice [23]. 
 Considering the effects from the regression model, none of the question types had 
consistent positive or negative significant differences in engagement compared to the 
AG FITB across all courses. The AG matching was positively significant in five out of 
six courses, and the HA MC had positive significant engagement in four out of six 
courses. The HA pulldown was positively significant in four courses and negatively 
significant in one. Interestingly, the HA MCMS was not significantly different from the 
AG FITB in three of five courses. While this question type is a recognition type, it is 
also more complex than others like the HA MC or pulldown, which could be impacting 
how often students choose to engage. The HA FITB was not significantly different from 
AG FITB in three courses, and negatively significant in one. As the recall counterpart 
to AG FITB, this strongly suggests that students treat recall questions similarly regard-
ing engagement. These trends indicate that the context of the course implementation 
will likely influence the overall engagement patterns, but there is not evidence to sug-
gest that students engaged with AG question types differently than similar HA types. 

Table 4. Engagement means and regression model effects for all courses. 

 Neurosci Comm A Microbio Psychology Comm B Accounting 
Observations 286,129 43,538 71,119 34,757 35,351 14,661 
HA D&D Table 41.7  50.5 +** 47.1  n/a n/a n/a n/a 52.7  
HA Pulldown 40.2 +** 48.5 +* 42.3 –*** n/a n/a 53.3 +*** 72.0 +** 
AG Matching 43.3 +*** 45.1 +* 66.9 +*** 85.0 +*** 52.1 +*** 57.6  
HA MC 43.4 +*** 43.4 +* 69.3  87.4 +*** 49.9 +*** 52.0  
HA MCMS 43.2 +* 47.1  54.9  n/a n/a 51.7 +*** 77.9  
AG FITB 41.1 n/a 49.5 n/a 61.9 n/a 84.9 n/a 47.2 n/a 62.5 n/a 
HA FITB  43.3  45.0  n/a n/a n/a n/a 44.8  58.9 –*** 

 
Difficulty for All Courses. The difficulty means show trends consistent across courses 
(Table 5). For instance, each course shows a range of difficulties across question types, 
generally from the mid-forty to eighty percent accuracy range. This aligns with expec-
tations that some question types may be easier or more difficult than others.  
 The effects from the regression model show differences in question difficulty when 
we compare question types to the AG FITB. The AG matching question type is signif-
icantly easier (p < 0.001) than the AG FITB in every course. The HA pulldown is also 
statistically easier in four courses, with no statistical difference in one course. The HA 
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MC questions present an interesting mix across courses. They are statistically easier 
than the AG FITB in three courses, not statistically different in one course, and statis-
tically more difficult in two courses. While the HA MC is a recognition type, which 
typically trends easier than recall, the question type does not solely determine the dif-
ficulty level. In particular, a question’s content obviously also contributes to its diffi-
culty; one possible explanation for the observed results is that the MC format has more 
flexibility for question authoring than certain other formats, including FITB, as the en-
tire text of the stem and distractors are up to the author. For example, it is more feasible 
to create higher-level Bloom’s questions in a MC format than one where the answer is 
a single word. Although beyond the scope of the present study, this is an interesting 
area for future investigation. Similarly, the HA MCMS is a recognition type but is sta-
tistically more difficult than AG FITB in three courses and not different in two courses. 

For the recall question types, the HA FITB was statistically easier than the AG 
FITB in one course and more difficult in one. For the remaining two courses, the HA 
FITB was negative with marginal significance (p = 0.0521 and p = 0.06233); while not 
reported as significant, this points to an interesting trend. Given the similarity of these 
question types, differences in difficulty should be investigated further in future work. 

Table 5. Difficulty means and regression model effects for all courses. 

 Neurosci Comm A Microbio Psychology Comm B Accounting 
Observations 120,098 20,990 42,114 29,583 17,547 8,309 
HA D&D Table 80.8 +* 75.6  56.7  n/a n/a n/a n/a 84.2 +*** 
HA Pulldown 70.0 +*** 71.7  68.2 +** n/a n/a 79.8 +*** 86.7 +*** 
AG Matching 84.3 +*** 81.6 +*** 90.5 +*** 89.8 +*** 81.0 +*** 86.5 +*** 
HA MC 67.8 +** 65.8 –* 69.6 +*** 64.6 –*** 75.5 +*** 63.3  
HA MCMS 43.3 –*** 57.6  43.3 –** n/a n/a 50.7 –*** 54.8  
AG FITB 64.1 n/a 73.1 n/a 62.8 n/a 89.9 n/a 68.6 n/a 60.1 n/a 
HA FITB 69.0 +* 45.1 –*** n/a n/a n/a n/a 63.6  28.4  

 
Persistence for All Courses. The table of persistence means and regression model ef-
fects is omitted for brevity (see [25]). Of the three metrics, persistence had the least 
variation across question types and courses, and so we simply summarize the results. 
The persistence data sets ranged from 34,124 observations (Neuroscience) to 2,027 ob-
servations (Accounting). Mean persistence is generally high across all question types 
and courses. High persistence is ideal, as this means students continue to answer until 
they reach the correct response. Mean persistence was over 80% in all but a few in-
stances. Several recognition types had consistently high persistence in all courses: HA 
pulldown, AG matching, and HA MC. These also all have positive significance com-
pared to the AG FITB, with the exception of one HA MC case that was not significantly 
different. These are encouraging findings, as the AG matching are grouped very closely 
with other HA recognition types. The AG matching was generally one of the least dif-
ficult question types, and yet that did not discourage students from persisting when they 
did answer them incorrectly. The HA FITB had negative significant results (p < 0.001) 
compared to the AG FITB in each course. Students were less likely to persist on the 
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HA FITB, which is interesting given how similar the question type is to the AG FITB. 
This trend will be a focus of future research. 

4 Conclusion 

The current advances in artificial intelligence, natural language processing, and ma-
chine learning make it possible to take high-quality textbook content and automatically 
transform it into learning by doing courseware designed to be more effective for student 
learning. AQG that is directly based on the textbook content is a practical solution to 
achieve this goal of combining content and learning science-based practices at large 
scale. However, the AG questions should be rigorously evaluated to ensure they meet 
certain standards, and a comparison of performance metrics to HA questions provides 
the first step to ensuring the quality of these questions.  
 Through the analysis of data from 945 students who used six textbook-based 
courseware containing a total of 2,610 AG questions, several interesting trends were 
revealed. Student engagement with AG matching questions was very similar to other 
HA types such as multiple choice or pulldown. The AG FITB was similar in engage-
ment to the HA FITB and numeric input. This indicates that there was not a difference 
in engagement between comparable AG and HA question types, but rather that the 
recognition vs. recall nature of the question type had the greatest impact. When consid-
ering difficulty, the AG matching was generally one of the easiest question types while 
the AG FITB was typically in the middle of the range. Across courses it was seen that 
the difficulty of question types can vary. The HA MC questions were sometimes easier 
and sometimes more difficult than the AG FITB, suggesting the influence that content 
can have on the difficulty of question types. Finally, we see high persistence rates for 
most question types in general. The AG matching was very similar in persistence to 
other HA recognition types, indicating the easier questions did not deter students from 
answering them until correct. However, the HA FITB—sometimes more difficult than 
the AG FITB—had statistically lower persistence than its AG recall counterpart.  
 Overall, the trends from this large-scale data analysis indicate that students in nat-
ural learning contexts do not treat the automatically generated questions differently than 
their human-authored counterparts. Along with continuing to expand the scope of 
courses analyzed, future research will involve comparison of AG and HA questions on 
additional metrics such as discrimination and alignment. As previously noted, some of 
the unanticipated results also suggest interesting avenues for investigation. The ultimate 
validation, however, will be to investigate the impact of AG questions on student learn-
ing directly, such as in replication of studies of the doer effect on summative assess-
ments [12–14, 17]. There is still much more to learn, but these findings give optimism 
that textbook-based, automatically generated questions could provide a scalable path to 
delivering the learning benefits that have been shown with human-authored questions. 
This will continue to be a major research focus for some time to come. 
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