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Abstract. An intelligent textbook may be defined as an interaction layer between 

the text and the student, helping the student master the content in the text. The 

Mobile Fact and Concept Training System (MoFaCTS) is an adaptive instruc-

tional system for simple content that has been developed into an interaction layer 

to mediate textbook instruction and so is being transformed into the Mobile Fact 

and Concept Textbook System (MoFaCTS).  In this paper, we document the sev-

eral terms of the logistic regression model we use to track performance adap-

tively. We then examine the contribution of each component of our model when 

it is fit to 4 semesters of Anatomy and Physiology course practice data. Following 

this documentation of the model, we explain how it is applied in the MoFaCTS 

system to schedule performance by targeting practice for each item at an optimal 

efficiency threshold.  
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1 Introduction 

Many adaptive learning systems (ALS) are inspired by the idea of personalizing the 

selection of practice items for a student. However, existing ALS rarely quantify student-

level individual differences (e.g., learning rate) or consider efficiency when sequencing 

practice, so the potential of adaptive practice selection is rarely achieved in practice. 

Since the prominence of behaviorism, there has been an interest in using automated 

methods to sequence practice items to help students learn (e.g., [1]). Skinner advocated 

the construction of sequences to promote error-free learning through a content domain. 

Advocates expanded upon these ideas to produce systems with adaptive branching de-

pending on student responses (e.g., [2]). The transition to the information processing 

approach offered rich opportunities for adaptive practice since by proposing hypothet-

ical cognitive constructs like memories or skills; it became easier to make computa-

tional models that tracked such constructs (e.g., [1, 3, 4]. This early work was so influ-

ential that one of the largest systems with adaptive sequencing, Carnegie Learning’s 

Cognitive Tutor series of products, currently uses a system with many similarities to 

earlier models (e.g., [3, 5, 6]. 
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We are currently developing and testing an adaptive textbook system to teach com-

munity college students Anatomy and Physiology content (see Fig. 1 below) using cloze 

practice. Students have used our system during four semesters as a supplement to course 

content. The practice content is currently cloze sentences created with NLP algorithms 

and the course textbook [7, 8]. Over the past two years, we have iteratively refined all 

aspects of the system based on practice data, teacher feedback, student survey data, and 

system log data (e.g., student performance).  

Below we describe the motivating literature of our approach, followed by our itera-

tive process to improve our ALS to integrate these additional student variables. While 

we describe this work embedded in our development context, we are explicitly design-

ing the system as a generic textbook supplement that might be applied to any textbook 

to help students practice that content [8].  

 

"The __________ __________ is composed predominantly of 

neural tissue, but also includes blood vessels and connective tissue." 

(fill-in is nervous system) 

“Once __________ __________ are secreted, phosphates fil-

tered into the fluid of the renal tubule buffer them, aided by ammo-

nia.” (fill-in is hydrogen ions) 

Fig. 1. Easy and hard example cloze items. 

2 Review of Adaptive Learning Algorithms 

Our adaptive practice system is specifically designed for learning materials containing 

a set of knowledge components (KCs) that are interdependent and for which multiple 

KCs may be required to solve an individual problem. Despite this focus on complex 

content, the adaptive sequencing applies to both independent items (e.g., unrelated vo-

cabulary words) and dependent items within a KC model (e.g., practice questions nested 

within a concept). There are two primary novel components of our system that distin-

guish our approach. First, our system uses an adaptive practice algorithm, with practice 

chosen based on an empirically derived Optimal Efficiency Threshold (OET) [8, 9]. 

Second, the learner model in our system includes features that account for elapsed time 

between practice events and the difficulty of those events. Below we begin by describ-

ing relevant literature concerning adaptive practice algorithms and the existing adaptive 

learning systems within which they are used. Most of the relevant literature and existing 

adaptive systems involve what is essentially flashcard learning. The key distinctions 

among them are whether practice or not practice is scheduled adaptively (the practice 

algorithm) and whether decisions are made with the help of a learner model. Subse-

quently, we describe relevant literature on individual student and item differences and 

why learner models need to account for these differences. 

The Pimsleur method [10] was an early attempt to leverage spacing effects into lan-

guage learning practice. With this method, new vocabulary was introduced and tested 

with increasingly wide spacing intervals. Expanding practice intervals can be effective 

[11], but they may not be effective unless the interval is adaptive to the user's 
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performance [9, 12]. With the Pimsleur method, spacing intervals are increased regard-

less of item difficulty or student performance. This heuristic leads to overly difficult 

(and inefficient) practice for some items. The Leitner system [13] offered an improved 

algorithm that was adaptive to student performance. Put simply, practice schedules for 

items practiced according to the Leitner method were increased or decreased according 

to whether the student was answering correctly (increase spacing) or incorrectly (de-

crease spacing). Decreasing spacing for harder items can improve learning [14] and has 

been successfully implemented in adaptive practice algorithms [9, 15, 16]. 

In their simplest forms, ALS do not have a model estimating knowledge; they have 

a decision rule dictating when a concept is sufficiently well understood and adaptive 

feedback triggered by incorrect answers. For example, the Assistments system consid-

ers content mastered when the student answers questions about that content correctly 

three times in a row [17, 18]. Relevant feedback and hints are provided if the student 

answers incorrectly. While this approach is superior to undifferentiated instruction and 

problem sequencing [19], including a model can further improve practice efficiency. A 

particularly prominent model-informed adaptive system is the Cognitive Tutor System. 

It uses a Bayesian Knowledge Tracing (BKT) model to trace the learning of mathemat-

ical skills or KCs (knowledge components), adapting practice to drop items from the 

practice set when they have been “mastered” according to the BKT model. BKT avoids 

inefficiencies that can arise from solely decision-rule-based scheduling (e.g., a student 

getting two in a row repeatedly but not progressing due to a 3 in a row requirement). 

While BKT accounts for learning and adapts to performance, it and other popular mod-

els (e.g., PFA) typically do not account for other important factors that can predict 

knowledge states, such as elapsed time between practice attempts, the increased predic-

tive utility of recent vs. older attempts, and forgetting. 

Recently, more advanced adaptive practice algorithms informed by psychological 

theories of memory have been tested. The Half-life Regression algorithm [20] and the 

difficulty-threshold system introduced by Eglington & Pavlik [9] produce practice 

scheduling similar to these methods but further improved upon compared to these ear-

lier heuristics by scheduling practice according to predictions by a learner model in-

spired by psychological theories of spacing and forgetting. Lindsey et al. [12] also 

demonstrated how scheduling practice according to a model could provide robust learn-

ing benefits over simpler scheduling algorithms. An important detail of these ap-

proaches is that the decision rule for which item to practice next is informed by prior 

theory that items more likely to have been forgotten are more productive items to prac-

tice [3, 21]. Thus, more learning gains may be achieved on such trials, but those trials 

may also be more time-consuming than efficiency-based approaches [9, 16]. We de-

scribe these issues in detail below. Next, we describe our approach, in which we also 

use a theoretically driven learner model, and also account for the efficiency of practice 

when making pedagogical decisions with those predictions. For our adaptive learning 

system (ALS), we chose a logistic regression framework instead due to its greater sim-

plicity and flexibility caused by the easy combination of multiple factors in the under-

lying regression, unlike methods like BKT, where the addition of additional factors 

greatly complexifies the optimization and implementation of the model. Using logistic 

regression allowed us to add features more easily with forgetting effects and spacing 
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effects, crucial for modeling declarative memory. This flexibility also allowed us to 

include features to account for linguistic features of practice items and student differ-

ences in prior knowledge, learning rate, and motivation. 

3 Logistic Regression Model 

3.1 Student differences 

Prior knowledge varies across students that use adaptive educational technology (e.g., 

[22]). This variability is part of the motivation for creating adaptive educational tech-

nology in the first place. Individual differences in prior knowledge are important be-

cause they determine the initial challenge of practice, which has ramifications for the 

efficacy of the practice and the student's subjective experience. Prior knowledge can 

also impact the rate at which the student can encode new information - if they already 

have a somewhat coherent mental model of the to-be-learned topic, they may better 

learn new related concepts [22]. Variability in student learning rates is an important 

topic and has been investigated to some extent already. Lee & Brunskill [23] demon-

strated that practice scheduled by a BKT model and mastery criterion might be more 

efficient if the BKT model included individual student parameters. Yudelson, 

Koedinger, & Gordon [24] provided further evidence that accounting for student-level 

learning rates could improve model fits, perhaps more than student prior knowledge. 

Mis-estimating learning rates can also lead to systematic errors when adaptively se-

quencing practice [25], reducing practice efficiency. If a system consistently overesti-

mates a students’ learning, that student may be subjected to overly challenging practice 

content. This overestimation may have other unintended consequences on the student. 

For instance, overly difficult or easy tasks can lead to inattention [26]. In other words, 

a mismatch between the model predictions and the student can reduce a students’ en-

gagement with the task [27, 28] and perhaps ultimately increase the probability of stu-

dent drop-out [29]. In sum, accounting for student-level differences is more important 

than simply improving model fit. Accounting for this variance can have tangible bene-

ficial effects on the efficiency of the ALS.  

3.2 Multi-level item differences 

Existing ALS assume KCs vary in difficulty [30]. This difficulty can be accounted for 

by estimating different learning rates across KCs. One advantage of differences intrin-

sic to KCs is that these differences frequently generalize across students and improve 

prediction accuracy for new students. Additionally, most learning materials (and repre-

sentative KCs) are taught repeatedly to many students. In other words, new students are 

more common than new content, and thus generalizing information about KCs can 

greatly enhance ALS predictive accuracy and usefulness. For example, in our research, 

we use cloze items as our primary trial type, providing learners with sentences with 

keywords omitted that they must fill in. We plan to eventually have difficulty measures 

for these items, treating them as KCs. However, currently, we do not estimate intercepts 
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for these KCs. Instead, item/KC learning is tracked at three nested levels: the student-

level, the fill-in-word (i.e., performance on prior attempts to recall that particular word 

across different cloze sentences), and the sentence-level (independent of which fill-in-

word for the sentence is chosen).  

3.3 Transitioning to a more comprehensive model 

The goal of our model was not to prove cognitive theories but to apply them. Though 

more detailed than models like AFM, PFA, or BKT, the learning effects of our model 

are simpler than cognitive architectures such as ACT-R. We included the additional 

complexity to account for robust learning effects that these simple popular models do 

have mechanisms to capture. However, in many cases, we use basic mechanisms from 

these models and variants of these models, which we find to combine well using logistic 

regression as the inference method. For example, as can be seen below, we use mecha-

nisms related to PFA variants such as R-PFA [31], PFA-Decay [32], and PFA difficulty 

[33], along with memory-based recency similar to ACT-R [34]. Below we describe this 

initial model used to track student learning and performance in Anatomy and Physiol-

ogy across four semesters. Following that, we introduce new features that attempt to 

account for additional student and item differences. Some of these features are derived 

from student self-report data, while others are new tracking features designed to account 

for student individual differences in learning rate and prior knowledge. 

3.4 Features in the model 

These features are strongly informed by cognitive theories of learning, although to our 

knowledge have not previously been utilized together in a live adaptive learning system. 

The model was parameterized for the first semester using a highly detailed cloze learn-

ing experiment with basic statistics sentences (for a description of this dataset, see [34]). 

We refit this model using the first semester Fall data; those parameters were subse-

quently used for successive semesters. The choice of model terms was based on the 

need to produce a model that would behave consistently (parameters showing high cor-

relation even though different) in all cases when presented with reasonable data, 

Temporal recency. There is a strong effect of elapsed time since a previous practice 

on performance [35]. Skills and memories decay rapidly as a function of time, and the 

most important part of this decay is well represented by a power-law function of the 

times since last practice. We included recency features for both cloze-level KCs and 

the cloze fill-in answers themselves for the present model. 

Long-term learning. While we might expect long-term forgetting, once recency is fac-

tored in and with the presence of the adaptive factors below, long-term learning is cap-

tured as permanent. Our model's long-term learning features were counts of correct and 

incorrect attempts, computed at the level of the cloze fill-in (KC) within-student. 

Counts of correctness were weighted by the difficulty of the attempt (operationalized 

as the predicted probability of correctness). An additional learning feature for correct 

counts was included in which the difficulty weighted counts were squared to represent 

the diminishing returns of additional correct attempts (PFA-Difficulty, [33]). This 
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approach has been shown to perform similarly to the PFA approach. However, it has 

the important implication that there is an optimal level of difficulty, which is more well 

supported theoretically than a constant effect of practice difficulty. In other words, the 

implied null hypothesis in most models is that difficulty is unimportant to learning, 

which contravenes many research findings (e.g., [9, 16, 21]),  and we think that is im-

plausible. Weighting by predicted difficulty means that the contribution of a given at-

tempt is specific to the particular student because the predictions are based on a model 

estimate of the student’s difficulty using that student's unique practice history. 

Tracking. As a student learns a concept, their performance should improve. Changes 

in performance over time can be used by computing a running average. However, recent 

trials are more informative of students’ ability, and thus running averages should weight 

recent trials more heavily. Such predictors have been shown to improve model fit (e.g., 

R-PFA, [31]). We used a similar approach, but instead of using a ratio of correctness 

vs. incorrectness, we used the logarithm of the correct/incorrect ratio. This alternative 

approach has additional flexibility by not being restricted to a range of  [0,1] and having 

the ability to indicate a decrease of performance expectation by using ghost success 

AND ghost failures [34]. 

Syllable hints. Providing hints to help students answer fill-in questions can increase 

the probability of success without reducing learning [36]. Thus providing hints may be 

productive in adaptive instructional systems. In order to quantify the correctness prob-

ability increase as a function of syllable hints, the model included separate intercepts 

for each level of hint syllable (0, 1, or 2 syllable hints). 

Intercepts for each prior semester. Student aptitude, instructional approaches, and 

other external factors may change across semesters. To reduce the impact of these po-

tential differences on the model, separate intercepts were included for each semester to 

improve model stability. 

 

Performance =  

Recent performance of student + 

Recent performance of student on the fill-in+ 

Temporal recency of the sentence/fill-in pair + 

Temporal recency of the fill-in + 

Long-term effect of practice difficulty of success + 

Long-term effect of count of failures + 

Intercept for each of the 3 hint condition levels +  

Intercept for each prior semester 

 

 

 

 

(1) 

In section 4, we look at the quantitative importance of each term to prediction. In 

section 5, we explore the qualitative results of the model applied to practice optimiza-

tion. Equation 1 fit with R2 = .1093, which is considerably lower than experimental 

results, but in line with other implemented systems [34]. Logistic regression using GLM 

showed that all predictors (except for semester intercepts) had coefficient Z-scores 

greater than 8. Since the model was fit for N = 93155 trials with only 16 parameters, 

there was no concern with overfitting within the context of our collected data, so we do 

not show cross-validation results for space reasons (but more complex models would 
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certainly face this problem). To better understand the parameterization, note that the 

first four terms required non-linear decay parameters that were solved for using an R 

optimizer that recomputed the feature and the logistic regression model iteratively to 

arrive at optimal non-linear parameters [32, 34]. The exact values of these parameters 

are specific to the data and can be obtained from the authors as needed. It was interest-

ing to note that recent memory was forgotten much more quickly for the sentence and 

fill-in word pair than the recency effect of the fill-in word across sentences, which per-

sisted longer.  

4 Participants and Data Screening 

359 participants were included in the present analysis. Demographics surveyed from a 

subset of the participants (N=133) indicated that this population is approximately 87% 

female and has a median age of 33 years old (SD = 9.1 years). 63% of respondents 

reported being African American. Practice attempts were only included up to the fifth 

repetition for each sentence/fill-in pair. Otherwise, all data were included. 

5 Model Fit 

To illustrate the importance (or lack thereof) for each component of the model, we 

computed the subject mean R2 differences for models that excluded 1 variable at a time 

from Equation 1 and for a dominance analysis used to compute the avg contribution of 

the parameter if used in all possible compositions of the 7 terms (excluding semester 

intercepts).  

Table 1. Comparison of the effect of each factor. 

Term Δ McFad-

den’s R2 

last term 

Δ McFad-

den’s R2 

avg. dom. 

Δ Loglike-

lihood 

Recent performance of student 0.0426 0.0495 2747.7 

Recent performance of student on the fill-in 0.0057 0.0174 367.3 

Temporal recency of the sentence/fill-in pair 0.0039 0.0061 254.4 

Temporal recency of the fill-in 0.0127 0.0131 820.9 

Long-term effect of practice difficulty of success 0.0025 0.0091 161.3 

Long-term effect of count of failures 0.0006 0.0015 38.8 

Intercept for each of the 3 hint condition levels 0.0083 0.0077 535.8 

 

The results in Table 1 show that the importance of each component varies greatly. 

For example, the effect of failures on long-term learning is extremely small (slightly 

negative coefficient in this case indicates it is likely overfit or not significant). This 

term may be removed in future versions, despite some indication it was positive in our 

early results. This situation illustrates the complexity of the model since this term is 
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almost certainly negative because it is multicollinear with all 4 recency terms (2 for 

performance and 2 for temporal recency), which means we cannot conclude that long-

term learning is actually near 0 for failures. It is more likely that the recency terms 

capture the short-term effects of failure well enough and that the feedback effect of 

review may be forgotten quickly. This result agrees well with theories of forgetting that 

suggest that successful testing results in durable learning. In contrast, passive study 

from a review is forgotten more quickly (e.g. [37]). 

6 Application Model to Pedagogical Optimality 

Our project is guided by the assumption that there is an optimal sequence in which 

practice items should be practiced for a given learning task. This optimal sequence is 

also assumed to be unique to the student and varies dynamically according to their prior 

practice history and performance. Historically, this has been achieved by using prior 

practice history as an input to algorithms that make pedagogical decisions. For instance, 

Smallwood [1] used prior performance (e.g., correctness percentage, learning rate) on 

mathematics problems to decide whether students were ready for new (more challeng-

ing) problems, should continue on the current problem type, or perhaps needs to revisit 

prior content. Additionally, our system's design assumes that there is an optimal diffi-

culty at which to practice for a given learning task. In this case, we are operationalizing 

difficulty as the probability of correctly answering a test question. The relevance of 

difficulty for practice optimality has been researched extensively in psychology (e.g. 

[38]). A general conclusion has been that imposing some difficulty benefits learning 

[39], but researchers disagree about how much difficulty to impose. Some have argued 

that imposing greater difficulty provides optimal learning benefits [3, 40]. One justifi-

cation for this approach is known as Discrepancy Reduction Theory, in which whatever 

content is least known should be practiced because that item can provide the largest 

potential learning gains. There is truth to this idea; learning gains are higher with more 

difficulty [21], although the benefit is not universal (e.g.[41]). However, a frequently 

overlooked variable that consistently correlates with difficulty is practice time. As dif-

ficulty increases, the time to complete the task or recall the information also increases 

[42, 43]. There are at least two reasons for this consistent finding. First, better-learned 

information (in the form of skills or memories) is recalled more quickly [44, 45]. Sec-

ond, as difficulty increases, so does the risk of failure. When failures occur, feedback 

is necessary for most practical contexts. This feedback is time-consuming and may not 

be necessary if the information is successfully recalled. Thus, feedback time is primar-

ily associated with failures and can dramatically increase the time cost of practice. Note 

that despite costing more time, failures do not necessarily confer more learning [46]. In 

short, imposing more difficulty may become inefficient even if per-trial it appears to 

provide more learning (e.g., [9, 16]).  

Considering the efficiency of pedagogical decisions can improve learning outcomes 

[9, 16]. Rather than schedule practice according to whichever item would provide the 

most gain, Pavlik & Anderson [16] instead had students practice whichever item pro-

vided the most gain per second. As a result, students’ practice time was more efficient, 
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and they completed many more practice trials. Furthermore, students that practiced ac-

cording to this algorithm had significantly higher memory retention than alternative 

algorithms based on discrepancy reduction theories [3] and other scheduling heuristics. 

In our A & P project, efficiency (utility) was determined by computing an optimal gain 

curve using Equation 2. 

 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 =
𝑝(𝐵0(𝑝−𝑝

2))+(1−𝑝)(𝐵1)

𝑝(𝐵3+𝐵4𝑒
−𝑞𝑙𝑜𝑔𝑖𝑠(𝑝))+(1−𝑝)(𝑓𝑖𝑥𝑒𝑑𝑐𝑜𝑠𝑡)

 (2)  

Confirming the efficacy of this method, Eglington and Pavlik [9] simulated student 

performance at various difficulties to determine an optimal difficulty empirically. Sim-

ulated student practice was estimated using a logistic regression model parameterized 

by fitting an existing dataset. They tested the simulation predictions by having students 

learn Japanese-English word pairs in which the same model scheduled practice at vari-

ous difficulties. Practicing at relatively low difficulty was found to be most beneficial 

for memory retention in contrast with prevailing theories [20, 21]. Importantly, they 

found that a discrepancy reduction approach (focusing practice on more challenging 

items) was both significantly worse than practicing at a lower difficulty (higher effi-

ciency) and also not significantly better than a non-adaptive control condition. It is im-

portant to note that the benefit of practicing at low difficulty is partially due to the 

learning materials - cloze learning trials are typically fast when answered correctly but 

relatively slow when incorrect due to the necessity of providing feedback. In short, the 

optimal difficulty may vary depending on the learning context.  

In order to schedule practice efficiently, the time cost for correct vs. incorrect at-

tempts must be known. Response time for successful recall is well fit by several models 

(e.g., [47, 48]). Incorrect response times are harder to model, but using median dura-

tions is effective [9]. We used prior data from students completing a similar cloze task 

to model correct and incorrect response times. Using this response time data, we com-

puted the optimally efficient threshold (OET) to practice, with our goal to use that dif-

ficulty (operationalized as the correctness probability) to schedule practice within 

MoFaCTS. For example, if the OET were determined to be .6, then on each trial, the 

system would estimate the correctness probability for each potential cloze item (based 

on that students’ practice history) and choose the item closest to .6. To compute the 

OET, we needed to compute learning gains as a function of correctness probability 

(difficulty) and divide those gains by the estimated time cost of practicing at that diffi-

culty. We computed learning gain by fitting our logistic regression model, which esti-

mates the long-term learning from practicing an item and being correct and practicing 

and being incorrect. There is a different time cost for each of these potential outcomes, 

the estimated trial duration for being correct or incorrect. Together, these computations 

give us an efficiency score (or utility) for each value of correctness probability (see 

Figure 2). In other words, the learning benefits of being correct or incorrect are linked 

to the time it takes for either outcome.  
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Figure 2. A visualization of computing Equation 1 to determine the optimal prac-

tice difficulty used to make pedagogical decisions in MoFaCTS. Given our current 

parameters, we find .75 to be the optimal level of practice. 

7 Implementation 

Fig. 3 Shows the fit of the model with 16 parameters characterizing the results across 

the four semesters for a split of the data into participants with mean performance greater 

than and mean performance less than 50%. We do not know the system's efficacy at 

this time since we have not begun efficacy testing. We see an encouraging correlation 

between system usage and performance of all other work in the courses, shown in Fig. 

4. However, as Fig. 3 suggests, we are falling short of our goal of providing practice 

near the OET for participants performing at less than 50%, while participants with 

>50% performance are averaging near the 75% OET (which was estimated at 72% in 

prior semesters). These results clarify that we have improvements to make if we are to 

serve better the approximately half of our population (51%) that produced means less 

than 50%. We suspect that the problem may have been caused by our prior model, 

suggesting a much higher gain for failures than we found after introducing changes in 

the model structure after Fall 2020 (the model in this paper). Perhaps not coincidentally, 

Fall 2020 coincided with making the system mandatory, which likely also meant the 

bottom 50% mean students may have been less motivated, unlike the extra credit sam-

ples from the prior semesters. 

max (p = .75) 
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Figure 3. Performance of the students with posthoc fit of 16 parameter model de-

scribed in this paper. Above 50% and below 50% subsets. Student data was collected 

with various prior versions of this same model. 
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Figure 4. Encouraging correlation between usage and class performance. 

8 Conclusion 

Our system’s scheduling algorithm extends beyond simpler scheduling flashcard para-

digms (e.g., the Leitner method) and models (mastery learning with standard BKT) us-

ing a model that allows the spaced sequencing of content according to rich features of 

the student history. Such a practice system may be a useful component of many iText-

books due to the importance of declarative and conceptual facts in many academic do-

mains. In our development research, we use cloze items as our primary trial type, which 

entails providing learners with sentences with keywords omitted that they must fill in. 

Future work plans to begin including outside of practice factors from our student sur-

veys to influence our model and reduce the cold start problem. In addition, we are cur-

rently developing new contextual and semantic features to add to the system. The con-

textual features include data like the class of the fill-in-response (e.g., content vs. con-

nector word) and its importance in the content domain. Semantic features are concep-

tual connections between sentence items independent of the already tracked fill-in-word 

and represent new KCs that should influence the model. 
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