CEUR-WS.org/Vol-2895/paperld.pdf

Increasing Student Interaction with an
eTextbook using Programmed Instruction*

Mostafa Mohammed1[0000-0002-0652—2817] 4114 Clifford A.
Shaffer2[0000-0003—0001-0295]

Virginia Tech, Blacksburg VA, USA {profmdn, shaffer}@vt.edu

Abstract. Textbooks for theory courses in CS tend to be heavy on prose
and mathematics. We find that students do not engage such material, and
skip or rush through it without understanding. To increase students level
of engagement, we developed support within the OpenDSA eTextbook
system support for creating materials based on the Programmed Instruc-
tion pedagogical paradigm. This requires near-constant activity by the
student, who must read a little, ideally a sentence or a paragraph, and
then answer a question or complete an exercise related to that informa-
tion. Based on the question response, students are permitted to continue,
or must retry to solve the exercise. Versions of the eTextbook have been
used to teach the senior-level Formal Languages course at Virginia Tech
for two semesters. In this demonstration, we show how students interact
with material developed using the Programmed Instruction approach.

Keywords: Programmed Instruction - Formal Languages - Engagement
- Book Interactions - OpenDSA eTextbook.

1 Introduction

Programmed Instruction is an instructional approach first championed by B.
F. Skinner when he noticed some flaws in the teaching process in schools [3].
Skinner found that instructors give little attention to individual students in
class, books provide no immediate evaluation of student solutions, and since not
all students have the same prior knowledge, some of them are not prepared to
acquire knowledge from the textbook. These points made Skinner think about a
different teaching technique called the Programmed Instruction (PI) machine [5].
The PI machine works by presenting a small piece of information (a sentence

* Supported by NSF under grant DUE-1432008. The Egyptian Ministry of Higher

Education funded Mostafa Mohammed during his PhD. We are grateful to the many,
many students who have worked on OpenDSA, OpenFLAP, and the FLA eTextbook
over the years.

Copyright (©) 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 Mohammed and Shaffer

or short paragraph, called a frame) followed by a question that students must
answer to be able to see the next frame. If the student fails to answer the
question, the student must stay in the current frame and repeat the question.
In Skinner’s model of teaching, the machine acts like a personal tutor to the
student by giving them immediate feedback for each response. Students see the
PI machine like a game that gives them checkpoints after solving a question
and allows them to proceed in the book further after each successful answer.
Skinner [5] claimed that students would be able to learn twice as much with the
same time and effort as compared to the traditional teaching method.

After Skinner created his machine, similar teaching machines started to ap-
pear during and after the 1950s. During this period, PI research revolved around
addressing instructional effectiveness, learner pacing, reinforcement strategies,
and long-term effects [4]. Although there was considerable interest in PI due to
Skinner’s Teaching Machines and Technology of Teaching [6], PI was superseded
by Computer-Assisted Instruction (CAI), and the Keller Plan in the 1970s [3,
2.

The Personalized System of Instruction (PSI, or Keller Plan) became widely
used during the 1970s and 1980s [2]. Under the Keller Plan, students work on the
given materials at their own pace. Students can study the modules at any time
and as much as they want without the need to wait for the instructor to explain
the topic. Instructors then can focus on students that struggle with the material.
In the Keller Plan, the instructor’s role is minimized. Instructors should decide
what content students have to master, guide students through their studying,
and give tests and exams to students. Class time under the Keller Plan is just a
place for students to study their materials and take tests.

The OpenDSA project [1] is concerned with providing visualizations, content,
and interactive exercises for topics in computer science like Data Structures and
Algorithms, Computational Thinking, or Formal Languages. These eTextbooks
are enhanced with embedded artifacts such as visualizations, exercises with au-
tomated assessment, and slideshows to improve understanding. OpenDSA has
many features found in the Keller Plan. OpenDSA has modules, and throughout
each module, there are exercises that students should solve to prove their mas-
tery of the module. OpenDSA does not prevent students from moving further if
they are failed to solve these exercise. But it does follow the mastery approach
in that students can repeat exercises as many times as they wish, eventually
receiving credit whenever they demonstrate mastery.

2 Programmed Instruction eTextbook for Formal
Languages

Programmed Instruction frames limit the student’s ability to skip content by
enforcing them to satisfy a particular framed-satisfaction criterion, typically
answering the frame question. Whenever possible, we design the questions to
present different examples every time the student reloads the page. Suppose a
student wants to study for the final exam. If he/she sees the same question or the

Programmed Instruction Demo 3

same example that he already solved before then this will not helping him/her
to practice effectively. The Frames system randomly selects a different example
from a pool of available questions and auto generate frame questions.

2.1 Frame question types
Currently, the Frames system supports a number of different types of questions

— MCQ questions. The majority of Frame questions are MCQ. The idea for
PI is to answer the question to master the current information. So, having
MCQ question allows students to find a way to escape from the question if
they could not find the correct answer. This may case some students to pass
some questions without understanding the related information to the given
question. To overcome this problem, we added support to Frames questions
to give students a message to tell them why their answer is correct / not
correct. This message can give students hints in cases that they do not answer
the question correctly, see Figure 1(a). On the other hand, this message
gives students an enforcing statement to make the information more clear to
students in case they answer the question correctly, see Figure 1(b). More
examples for Frames questions are shown in Figure 2

— Embed an exercise IFrame. In general, instructors can embed any type of
HTML exercises in an [Frame inside the frameset.

2.2 Frames checkpoints and mastery points

Students are required to successfully solve frames questions to be able to proceed
in the frameset. Every time students solve a question the Frames system stores
their progress. This way students can retrieve their progress if they closed their
book or refreshed the module page, saving their time and effort to redo all the
question they already solved. Once students reach the end of the frameset, the
Frame system awards them mastery credit for completing the frameset.

2.3 Demonstration

In our demonstration we will present our eTextbook for the Formal Languages
course. The demo will show examples of framesets that help students to study
Formal Languages topics. We used this material to teach the course for two
semesters, Fall 2020 and Spring 2021. We will demonstrate our infrastructure
that allows instructors to create frame questions and provide useful hints that
can guide students to answer the frame question.

Mohammed and Shaffer

= O @ o

Let's start with an alphabet. We normally represent an alphabet with the symbol = \which of the following is an alphabet?
(Sigma). Alphabet = is just a set of symbols. The symbols we typically use are letters
or digits, but an alphabet could include any symbols}. {%a,x}
{a, b,c}
A
{0,1}

Submit

Incorrect: Make sure that you select all of the
alphabets, and that everything you select is a set.

= © & v

Given some alphabet set X, a string is a finite sequence of symbols (taken from =, of Suppose we have X = (a, b}. [T/F] bacbabcba is a vaild

course). string in =

True
O False

Correct: It contains characters not in the alphabet.

Fig.1: PI Frames hints for correct/incorrect students answers

Regular Grammar from NFA Example.
18/21 (e}

(5]
Q

s < (<) ©
A tht remains i fo pick the st o fina saie. To Go s, look at 0 st f hatar the final state forthe DFA? - Y @
states (fom the NFA) that are fsed on thlabes for each node n the DFA. If

anyor none >
In other words, sine oS and g ae fna states in the NFA, overy node in e 3

DFAhatincludes g5 or o6 i s node label wilbecom fnal.

.a1.@2
®
@

A

ot —C)
o ov
eac

Cormect

Fig. 2: PI Frames examples

Programmed Instruction Demo 5

References

1. Eric Fouh, Ville Karavirta, Daniel A Breakiron, Sally Hamouda, Simin Hall,
Thomas L Naps, and Clifford A Shaffer. Design and Architecture of an Interactive
ETextbook—The OpenDSA System. Science of Computer Programming, 88:22-40,
2014.

2. Fred S Keller. “GOOD-BYE, TEACHER...” 1. Journal of applied behavior anal-
ysis, 1(1):79-89, 1968.

3. Barbara Lockee, David Moore, and John Burton. Foundations of Programmed
Instruction. Handbook of research on educational communications and technology,
pages 545569, 2004.

4. Michael Molenda. When Effectiveness Mattered. TechTrends, 52(2):53, 2008.

5. BF Skinner. Programmed Instruction Revisited. Phi Delta Kappan, 68(2):103-10,
1986.

6. Burrhus Frederic Skinner. Teaching Machines. Science, 128(3330):969-977, 1958.

