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Abstract

Autism spectrum disorder (ASD) is a developmental disor-
der that influences communication and social behavior of a
person in a way that those in the spectrum have difficulty in
perceiving other people’s facial expressions, as well as pre-
senting and communicating emotions and affect via their own
faces and bodies. Some efforts have been made to predict
and improve children with ASD’s affect states in play ther-
apy, a common method to improve children’s social skills via
play and games. However, many previous works only used
pre-trained models on benchmark emotion datasets and failed
to consider the distinction in emotion between typically de-
veloping children and children with autism. In this paper,
we present an open-source two-stage multi-modal approach
leveraging acoustic and visual cues to predict three main af-
fect states of children with ASD’s affect states (positive, neg-
ative, and neutral) in real-world play therapy scenarios, and
achieved an overall accuracy of 72.40%. This work presents
a novel way to combine human expertise and machine intel-
ligence for ASD affect recognition by proposing a two-stage
schema.

1 Introduction
Autism is the fastest-growing developmental disorder in the
United States: approximately 1 in 54 children is on the
autism spectrum (Baio et al. 2018). Individuals with ASD
are characterized by having significant social communi-
cation impairments such as inefficient use of social gaze,
gestures, and verbal communication (National Institute of
Health 2018). Thus, individuals in the spectrum have dif-
ficulty perceiving and presenting communication cues such
as emotion. Previous research has shown that play therapy
can improve children’s social and emotional skills and per-
ceive their internal emotional world better (Chethik 2003).
The video recordings of play therapy interventions can pro-
vide a rich source to analyze children’s emotion or affect
states during treatment sessions.

In this paper, we present a two-stage affect prediction
method using video data (see Figure 1). We use a subset
of ASD-affect dataset from (Kaur and Bhat 2019) which in-
cludes more than four different therapeutic games for chil-

Copyright c© 2021, for this paper by its authors. Use permit-ted
under Creative Commons License Attribution 4.0 International(CC
BY 4.0).

Figure 1: The workflow of our proposed affect predic-
tion framework atop ASD-Affect dataset. Distinct emotional
habits of ASD children inspire the two-stage schema, as they
tend to scream and shout more in negative affect states and
smile more in positive ones. Given a video input, we first
classify negative data via speech emotion recognition (SER).
Non-negatives will be passed to the second stage, where the
model will decide whether it’s positive or neutral based on
facial expressions.

dren to play. Sample settings of ASD-affect are shown in
Figure 2.

Emotion recognition is the process of identifying human
emotion by multiple cues, including facial or spoken ex-
pressions, physiological and biological signals. Facilitated
by machine learning techniques, computer vision, speech
and signal processing, we can automate the process of emo-
tion recognition. Researchers have shown that messages
pertaining to feelings, affects and attitudes of interpersonal
communication significantly reside in facial expressions
and speech (Mehrabian et al. 1971; Dhall et al. 2012).
Inspired by that, in this paper, we define the problem as
automating emotion recognition for children with ASD
using multi-modal inputs, especially from visual and audio
signals.



Figure 2: Sample data of ASD-affect. ASD-affect is featured
by rich diversities in subjects and scenarios. Children with
ASD were conducting various activities under therapists’ in-
structions. These activities include singing, dancing, drum-
ming, yoga, and interaction with robots. The dataset consists
of more than 20 hours of therapy recordings.

However, there are several challenges in the process of
automatic emotion recognition on ASD-affect dataset:

Insufficient public dataset: having adequate labeled
training data that include as many variations of the popu-
lations and environments as possible is important for the
design of a deep expression recognition system. However,
due to privacy concerns, ASD dataset, especially from chil-
dren is very scarce. ASD-related multi-modal dataset, which
records children’s behaviors in play therapy, is even more
sparse.

Domain shifts: existing methods (Doyran et al. 2019)
have directly applied pre-trained model of normal people for
play therapy analysis, either explicitly or implicitly under
the assumption that emotional traits such as facial expres-
sions of typically developing people and ASD children are
the same or similar. We argue that such simplifications are
not always appropriate given that ASD children suffer from
affect and communication disorder and cannot express their
emotions appropriately, especially for children diagnosed at
level three (Weitlauf et al. 2014).

Data noise: many existing benchmarks for emotion
recognition (Lucey et al. 2010; Valstar and Pantic 2010;
Burkhardt et al. 2005) are posed and collected in a controlled
laboratory setting. In contrast, our dataset was collected in
an in-the-wild manner featuring various backgrounds, peo-
ple, activities, and durations. Therefore, ASD-affect has lots
of noise, which requires substantial data cleaning and post-
processing.

Sparse labeling: unlike other multi-modal benchmark
datasets (Dhall et al. 2012; Nojavanasghari et al. 2016)
where the duration of data samples are in the scale of sec-
onds (usually less than 5 seconds), examples of ASD-affect
dataset may last for minutes, equivalent to lacking ground
truth or introducing excessive noise to the dataset. This is be-
cause benchmark datasets were intentionally collected and
labeled for autonomous recognition by machine, but ASD-
affect was initially compiled and annotated to serve human
experts.

Despite all these challenges, we used transfer learning,
fine-tuning, and data post-processing - listed in the following
sections - to prepare ASD-affect for further analysis using
speech and facial emotion recognition methods.

In this paper, we propose a two-stage framework to eval-
uate affect states of children in play therapy scenarios using
multi-modal emotion clues. This method effectively com-
bines prior knowledge from human experts with machine
intelligence. To distinguish children between three differ-
ent affect states - neutral, positive, and negative - in stage
1, the model predicts whether children are in a negative state
based on negative symptoms (shouting and screaming) re-
siding in speech. In stage 2, children’s emotions in posi-
tive and neutral states are recognized by distinct facial ex-
pressions. The workflow of our framework is presented in
Figure 1. Our approach enables physical therapists to bet-
ter and more efficiently analyze the effectiveness of play
therapy interventions since human professionals require a
fair amount of training to better understand the behaviors
and emotional states of ASD children. This method can be
further applied to data annotation and label verification for
other ASD datasets, as actions of ASD children resemble
relatively well.

This paper is organized as follows. We first summarize re-
lated works in emotion recognition and play therapy analysis
in Section 2. Section 3 describes the method we proposed,
followed by experiment and results discussion presented in
Section 4, 5 and 6. Lastly, section 7 outlines the conclusion
and future steps for this research.

2 Related Work
Multi-modal Emotion Recognition
Emotions are convoluted psychological states composed
of several components: personal experience, physiological,
behavioral, and communicative reactions. There are two
mainstream emotion representations: discrete model (Ek-
man 1994) and dimensional model. In this paper, we used
discrete emotion models.

Emotions can be carried in various modalities of inputs.
Mehrabian shows that 55% of messages pertaining to feel-
ings and attitudes of interpersonal communication is in fa-
cial expressions (Mehrabian et al. 1971). Besides, Dhall
suggests that audio modality can bring extra gain in emo-
tion recognition accuracy (Dhall et al. 2012). Thus, multi-
modal emotion recognition approaches usually outperform
unimodal ones. Two main sub-sets of multi-modal emotion
recognition models are facial expression recognition (FER)
and speech emotion recognition (SER), which are also the
main focus of this work.

Facial Expression Recognition FER systems can be di-
vided into two main categories based on the feature repre-
sentations: static and dynamic. In static-based methods, the
feature representation is encoded with only spatial informa-
tion from a single image frame. In contrast, dynamic-based
approaches consider temporal relations among contiguous
frames in the input facial expression sequence (Li and Deng
2018). Li proposed a bi-modality method (Li et al. 2019),



where convolutional networks (CNNs) were used to recog-
nize static facial expressions while a bi-direction long short
term Memory (Bi-LSTM) was employed to learn dynamic
facial expression sequences extracted by CNNs. Liu also
embodied facial landmarks in the FER system (Liu et al.
2018). However, these works were conducted on benchmark
datasets (Dhall et al. 2012) where sequential relation of im-
ages is well-preserved so that sequential methods are able to
function. Conversely, our ASD dataset was recorded in the
natural or in-the-wild settings; so we could only use a static-
based method to classify facial expressions in each frame,
without considering temporal information.

Speech Emotion Recognition Speech is a rich, dense
form of communication that can convey information effec-
tively. There are two classical ways to extract emotional fea-
tures from speech. First is to obtain low-level discriminator
features of speech, such as Mel-frequency cepstral coeffi-
cients (Yeh, Lin, and Lee 2019; Yoon et al. 2020). Another
way is to convert audio to spectrograms then use CNNs as
feature extractors (Zhang et al. 2018; Zhao, Mao, and Chen
2019). In this paper, we use spectrograms as audio represen-
tations.

Play Therapy Analysis
Play therapy is an approach to psychotherapy where a
child is engaging in play activities. Doyran and colleagues
(Doyran et al. 2019) proposed a visual and text-based frame-
work to track the affective state of a child during a play ther-
apy session. However, audio modality was less explored in
their work, and categorical representations of facial expres-
sions needed more investigation. Bangerter investigated the
spontaneous production of facial expressions of individuals
with ASD as a response to entertaining videos (Bangerter
et al. 2020). It turned out that individuals with ASD showed
less evidence of facial action units relating to positive facial
expression than typically developing children. Due to small
face sizes and low resolution of ASD-affect dataset, using
facial action units approach in the current work was not fea-
sible, but we are looking into it in future.

3 Method
In this paper, we propose an open-source two-stage multi-
modal framework to predict children’s affect states in play
therapy leveraging visual and audio information1. First, we
distinguished negative videos from non-negative ones (neu-
tral and positive) using spectrograms generated from audio.
Next, to differentiate between positive and neutral videos,
we used static-based facial expression recognition methods.
The workflow of this method is illustrated in Figure 1.

Two-stage Schema
Our data assessment on ASD-affect inspires the two-stage
approach. Children who negatively and passively partici-
pated in play interventions tend to shout and scream more of-
ten, and such characteristic is manifest in speech. However,

1The source code is available to download at GitHub:
https://github.com/Li-Jicheng/Autism-Affect-and-Emotion-
Recognition.

there are no significant diversities in speech emotion be-
tween neutral and positive recordings. Instead, children are
smiling when positively engaged in therapy, while their fa-
cial expressions remain neutral more often in neutral states.
Therefore, we chose to leverage the variance in facial ex-
pressions to distinguish between positive and neutral data.

Stage 1: Negative vs Non-negative
Since distinct speech emotions exhibit different patterns
in the energy spectrum, to capture emotion features from
speech, we selected log-Mel spectrograms which have been
effective in speech emotion recognition tasks in the past
(Zhao, Mao, and Chen 2019; Zhang et al. 2018; Chen et al.
2018). A spectrogram is a visual representation of the spec-
trum of a signal’s frequencies as it varies with time. It is a
graph with two geometric dimensions: time and frequency.
The amplitude of a particular frequency at a particular time
is represented by the intensity or color of each pixel in the
spectrogram. A Mel-spectrogram is a spectrogram where the
frequencies are converted to the Mel scale - a perceptual
scale of pitches assessed by listeners to be equal in distance
from one another (Stevens, Volkmann, and Newman 1937).
We used the logarithmic form of Mel-spectrogram to better
reflect emotions, since humans perceive sound in a logarith-
mic scale (Venkataramanan and Rajamohan 2019).

Stage 2: Neutral vs Positive
As noted earlier, due to image resolution constraints, tem-
poral information was not well preserved as adjacent frames
were discarded frequently in the data cleaning stage, causing
sequential models to fail to converge. Therefore, we needed
to use static-based methods that solely depend on one frame
to predict facial expression. We choose ResNet-18 (He et al.
2016) with a decreased input size to better fit the average
face sizes detected in ASD-affect. We pre-trained the model
using EmoReact (Nojavanasghari et al. 2016), a multi-modal
emotion dataset of children and fine-tuned it on ASD-affect
dataset.

4 Experiment
Data Processing
ASD-affect Dataset Bhat and colleagues proposed that
use of embodied, multisystem interventions can en-
hance various social communication, perceptuo-motor, and
cognitive-behavioral impairments of children with ASD
(Kaur and Bhat 2019). They have studied the effects of vari-
ous embodied creative interventions, including the themes of
robotic, musical, physical activity, yoga, and dance therapy
interventions for children with ASD. The video recordings
of such interventions, known as the ASD-affect dataset, have
provided a rich source for analyzing children’s affect states
in play therapy. In this paper, we used a subset of ASD-affect
from six children. Sample data of ASD-affect are shown in
Figure 2.

Data Reconstruction Originally, there were eight differ-
ent types of labels in the ASD-affect: neutral, interested,
positive, positive and talking, odd positive, runs away, cam-
era difficulties, and negative. For our work, we reconstructed



the dataset, and excluded - runs away and camera difficul-
ties and odd positive labels - or merged some labels - inter-
ested, positive, positive and talking were all considered as
positive labels. After this reconstruction step, we had a to-
tal of 471 clips from six children in three classes of positive
(68 clips), neutral (384 clips), and negative (19 clips). Clips
lengths were varied. See Figure 3 for reconstructed data dis-
tribution.

Figure 3: A comparison of ASD-affect and benchmark
dataset AFEW (Dhall et al. 2012). Left: sample distribution
of reconstructed AFEW. We relabeled fear, disgust, angry
and sad as negative. Middle: data count distribution of ASD-
affect. Right: data duration percentage of ASD-affect.

Log-Mel Spectrograms We first extracted audio tracks
from video recordings. Audio files were stored in Wave-
form Audio File Format to retain high fidelity. We then ap-
plied noise reduction to audio files and removed silent ut-
terances. Afterwards, we split each audio file into equal-
length segments of 3 seconds, and zero-padding was ap-
plied to the utterances whose duration is less than 3 seconds.
We set this sequence length since the average audio dura-
tion in selected benchmark datasets for SER was 3 seconds
(Burkhardt et al. 2005; Livingstone and Russo 2018). After
that, log-Mel spectrograms were generated from each audio
segment using librosa toolkit (McFee et al. 2015). We set
the Fast Fourier Transform (FFT) window length and hop
length to 2,048 and 512, respectively. 64 Mel bands were
used in the spectrogram generation. A total of 9,968 log-Mel
spectrograms were generated, including 134 negative sam-
ples and 9,834 non-negative samples. We then used down-
sampling on non-negative spectrograms to even out data,
and reduce data imbalance. In both the training and testing
phase, all log-Mels were normalized by the global mean and
standard deviation of the training set. All spectrograms were
resized to 224× 224 to match the network’s input size.

Facial Images We first extracted image frames from raw
video clips at a specific sampling rate. Considering that du-
ration of neutral clips were typically longer than positive
ones in ASD-affect, we set the sampling rate to 3 frames per
second (FPS) for positive video clips and 1 FPS for the neu-
tral to stratify data proportionally. Then we used MTCNN
(Zhang et al. 2016) to detect human faces in each frame. We
selected 1,756 template faces of children (about 2% of the
total detected faces) to create a facial expression database
for ASD-affect, consisting of 1,159 neutral and 706 positive
faces. Each selected face was manually labeled as either neu-
tral or positive based on facial expressions. The children face
dataset served as training, validation, and test set for the FER
model used in the second stage via 5-fold cross-validation.
We used random crop, rotation, shifting, illumination adjust-

ment, and normalization techniques for data augmentation
and noise reduction. Before training, all facial images were
resized to 48 × 48 offline, then random cropped to 44 × 44
on-the-fly during training. In testing, faces were directly re-
sized to 44× 44.

Detected faces may belong to children, other persons in
the scene or due to noise. To localize children’s faces prop-
erly, we leveraged the children’s face dataset to create a face
embedding database, where each face was encoded as a 128-
dimensional vector. Whenever a new face is encountered, we
can compare its embedding with the embedding database
we have established to find matches. A ’match’ is defined
as the cosine similarity between the new face embedding
and a known face embedding is less than a given confidence
threshold. Only matched faces were used for predictions,
and unmatched faces were excluded.

Speech Emotion Recognition
Since the whole dataset is imbalanced, where negative video
clips are much less than non-negative ones, we applied
weighted sampling to enhance negative samples’ occurrence
while working with spectrograms. We chose a batch size of
32, and the network was trained for 25 epochs. We used
Adam (Kingma and Ba 2014) optimizer, and the learning
rate was set to 0.001.

Facial Expression Recognition
The training set was the selected ASD children’s faces, as
mentioned above. We set the batch size to 64 for training
while the total training epochs was 25, and chose Adam
(Kingma and Ba 2014) optimizer with an initial learning
rate of 0.001. The learning rate was decreased by a factor of
0.1 every 20 epochs. Unlike the training phase, in testing,
input images were captured every five frames from videos
on-the-fly. Note that inputs in testing were not face crops
but image frames, indicating that a face detector has to be
applied to capture human faces from frames. MTCNN was
then applied to test images to capture human faces. Detected
faces were compared with the established children’s face
database. Once children’s faces were matched and located,
a trained model predicted children’s facial expressions,
and such predictions were considered valid votes. Frames
were discarded if no target children’s faces were detected,
including no faces or only faces from others (e.g., therapists
or parents). At the end of each video, for all the valid
votes, if the portion of positive predictions exceeds a
certain threshold, the whole video is predicted as positive,
otherwise neutral. In this experiment, we set the threshold
to 0.5, equivalent to majority voting. The workflow of the
test phase is explained in Algorithm 1.

5 Results
We used 5-fold cross-validation to report findings from
our participant videos (recordings from two children were
merged together due to small number of video clips, to-
talling five batches of data from six children. Since we had



Algorithm 1 Stage 2 testing(input video v, face detector
face det , children face embedding child embeds, classi-
fier model, threshold T)

1: vote list = [] . Initialize a list to store valid votes
2: Load video v, capture one image as input every 5

frames. All captured images are stored in frame list
3: for img in frame list do
4: Detected face list fl = face det(img)
5: for each face f in fl do
6: if f ∈ child embeds then . Locate children
7: pred = model(f)
8: vote list.append(pred)
9: end if

10: end for
11: end for
12: pos ratio = count(pi==Positive) in vote list

vote list.length

13: if pos ratio >= T then . Majority voting
14: return Positive
15: else
16: return Neutral
17: end if

imbalanced classes, in addition to accuracy, we reported re-
call, F1 score, G-mean value, and ROC-AUC score for more
in-depth analysis.

Stage 1: Negative vs. Non-Negative

We achieved an accuracy of 94.48% and an F1 score of 0.97.
The recall of negative and non-negative labels is 68.42% and
95.57%. Besides, the G-mean value and ROC-AUC score
are 0.92 and 0.93, respectively. The confusion matrix of
stage 1 is shown in Figure 4. The classification results from
recordings of each participant is shown in Figure 5.

Figure 4: Confusion matrix for prediction of negative and
non-negative videos extracted from audio modality and
SER.

Figure 5: Classification results per participant in stage 1,
negative vs. non-negative. Y-axis shows the percentages
of predicted labels for video clips from every participant
(data is normalized based on total video clips from ev-
ery participant, because video counts vary significantly).
The legend format is: true label to predicted label (e.g.
neg to non − neg means a negative video is misclassified
as a non-negative one).

Stage 2: Neutral vs. Positive
We reached an overall accuracy of 75.93%, where recall for
neutral and positive class was 78.29% and 63.24%, respec-
tively. Confusion matrix is shown in Figure 6. Also, F-1
score is calculated as 0.79. The results from each partici-
pant’s videos are shown in Figure 7.

Overall Accuracy
According to the confusion matrix for all three classes
(Figure 8), we have correctly classified 285 neutral videos,
43 positive videos, and 13 negative ones. Adding them up,
we had 341 out of 471 precisely classified clips, leading to
an overall accuracy of 72.40% and an F1 score of 0.75.

6 Discussion
Overall, our method achieves an acceptable performance in
both stages. However, there is a noticeable accuracy gap be-
tween stage 1 and stage 2 and between dominant and non-
dominant classes of each stage. If we consider our problem
a two binary classification problems –stage one with nega-
tive vs non-negative samples, and stage two of non-negative
samples classified to positive and neutral samples– for non-
dominant labels in both stages, which are negatives in stage
1, and positives in stage 2, the recall rates are very compa-
rable: 68.42% and 63.24% respectively. On the other hand,
for both of dominant classes in stages 1 and 2, the recall
for non-negatives is significantly higher than neutral labels
(95.57% vs. 78.29%). This may because speech emotion



Figure 6: Confusion matrix for prediction of positive and
neutral videos extracted from FER.

Figure 7: Classification results per participant in stage 2,
neutral vs. positive. Y-axis shows the percentages of pre-
dicted labels for video clips from every participant (data is
normalized based on total video clips from every participant,
since video counts vary significantly). The legend format is:
true label to predicted label (e.g. neu to pos means a neu-
tral video is misclassified as a positive one). Blue and green
represent correct predictions for positive and neutral video
clips, while red and orange stand for miss-classified ones.
The more considerable sum of green and blue areas are, the
better accuracy our model achieves. This figure illustrates
that our model generalizes well among all individuals in
ASD-affect in distinguishing neutral and positive videos.

Figure 8: Confusion matrix for three classes.

features, such as shouting and screaming, are more distinct
and recognizable and describe negative videos better. More-
over, the distinction of positive from neutral labels in stage 2
was very tough even for subject matters experts due to data
noise and low video resolution. As such, SER performed rel-
atively better than FER for our ASD-Affect dataset.

7 Conclusion
This paper proposed a novel framework for automatic emo-
tion recognition of children with ASD using multi-modal in-
formation (facial and speech emotion), providing a baseline
model to affect states analysis in play therapy. This work
also has implications on automated affect annotation for play
therapy video recordings. Besides, the framework leverages
human expertise to a great extent by proposing a two-stage
schema, a novel way to combine human knowledge and ma-
chine intelligence in ASD-related research.

We anticipate expanding this project in the future in multi-
ple directions. We aim to offer a semi-automated annotation
framework to assist subject-matter experts swiftly annotat-
ing the recordings from children with autism. We discussed
some challenges of the pre-recorded videos in our dataset,
especially the low-resolution issue. To overcome the prob-
lem, we plan to collect more audio-visual data with higher
resolution to deploy other FER techniques, including se-
quential and action-unit based approaches mentioned in the
paper. Furthermore, deficits in mutual gaze, and shared gaze
is also known as a strong predictor of autism among children
(Zhao et al. 2017), which we are interested in investigating
in the future, as a next line of our previous research (Guo
and Barmaki 2020) on automatic detection of mutual gaze
among adults.
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