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Abstract  
The basic concept of a digital twin as widely used mandates the existence of an original 

counterpart – most commonly dubbed as “real” – which is represented by the digital instance. 

Subsequently, this co-existence of the real and digital twins poses a continuous interoperability 

issue between the physical and digital world. While in theory, the mapping of e.g. physical to 

digital properties is trivial, in practice, it usually is not. This paper presents a case study on 

how this interoperability problem can be addressed by the use of a unified data model for 

predictive maintenance applications, which has been developed in the EU-funded innovation 

action UPTIME. 

 

Keywords  1 
Paper template, paper formatting, CEUR-WS  

1. Problem Statement 

Digital Twins are commonly understood as “digital replications of living as well as non-living 

entities” [1] and sometimes also as means to represent intangible entities like processes [2]. While the 

definitions are as diverse as the domains to which digital twin concepts are applied to nowadays [3], all 

concepts rely on the interaction between the real and digital counterparts. While technology has made 

rapid progress over the last decade on the availability and integration of sensors and asset connectivity, 

the developments have also created a plethora of closed or semi-closed frameworks through which the 

digital twins are fed. This near-inevitable vendor lock provides a great hurdle in the extensive 

adoptability of the digital twin technology as it discourages the integration of complementary systems 

side by side. Furthermore, the prevailing systems are often built towards a specific digital twin 

application (e.g. simulation or visualisation) which hinders cashing in scale effects and the transfer of 

applications between domains. 

2. Digital Twins and Data Models 

While in public perception, digital twins are most commonly associated with the applications which 

are realised based on them (e.g. 3D visualisations), the main component of a digital twin is really the 

data it holds and subsequently the architecture and structure it utilises to do so. [3], [4] The different 

angles, from which digital twins are designed and implemented, naturally introduce different 

architectures. However, the vast majority are built around a more or less simple structure which 

identifies the represented asset and corresponds with the respective counterparts of the real twins 

structure.  

The asset breakdown structure can be detailed to very different depths, depending on the needs of 

the application. The properties and meta data which the digital twin holds about its real counterpart are 

then usually mapped onto this core structure. Many implementations of Digital Twins have a concise 
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physical object in their focus [5], which defines the asset breakdown structure used for the digital twin. 

While this provides clear connections between the digital and physical twins, their components and 

states, modelling and including external systems is increasingly difficult. Thus some architectures 

foresee the possibility of linking different digital twins and jointing their algorithms, e.g. for co-

simulation [6].  

Like the focus of implementation, also the approach to data storage and modelling varies 

significantly. For applications, in which the data to be managed is known precisely and / or which are 

tailor made for a specific application, a rigid data model can be applied for maximum efficiency and 

ease of use [7]. In cases, where interaction between digital twins is necessary or where integration of 

external systems is needed, however a simple tailor-made data model usually does not provide enough 

flexibility in itself. Here the usage of standardised modelling languages has been established [8]. This 

also ensures some extensibility for future integrations. 

With an increase in complexity of the asset and data structure at the same time also the complexity 

of the connection of the two twins grows as an increasing complexity is often followed by increased 

data volumes. For especially complex assets or when the digital twin is not only concerned with a single 

component but a whole assembly or fleet of products this growing complexity can easily lead towards 

a categorisation as big data application. In these cases, the architecture cannot sensibly be assessed for 

the isolated digital twin but only as a co-existence of both physical and digital twins. With moving the 

physical and digital twins closer together the paradigm of edge vs. cloud processing becomes one of 

the core issues [9]. The gap between physical and digital twins does not exclusively generate its 

importance from the complexity of the twins and their constraints but is also from the aspired versatility 

of the system and its applicability to diverse applications scenarios. 

3. Bridging the Gap between Real-life and Digital Twins 

While the different shapes, that the current implementations of digital twins are in, are arguably fit 

for purpose to address the respective application and sector, a challenge for progressing the current state 

of the art is creating a universally applicable structure for digital twins / representations, which is not 

limited to the peculiarities of few application / sector combinations. 

The “UPTIME – Unified Predictive Maintenance” project is creating a predictive maintenance 

system aimed at manufacturing and logistics applications utilising the digital twin paradigm. Due to the 

objectives of the action the system needs to be applicable to an extremely wide range of application 

scenarios. At the same time this puts the gap between physical and digital twins into the spotlight, as 

the universal applicability raises the aforementioned issues. In the system definition process the 

question of a unified data model which is applicable to a diverse set of digital twins has been identified 

as one of the main topics. 

The UPTIME project has initiated the work on an unified data model with a focus on the scope of 

information managed in a Predictive Maintenance solution, and how they are related. The resulting 

business data model allows both final users and technical partners to understand the logic behind the 

solution and associated processes, and how the different required inputs work together to provide the 

expected service. The UPTIME Business Data Model is not a technical data model, but rather the logical 

view which provides a framework for that technical data model and a visual & simplified way to explain 

it. For it six main areas have been identified with their main interactions. Figure 1 gives an overview of 

these data themes. 



 
Figure 1: High level UPTIME Business Data Model 

 

The arrows in the figure represent the key relationships between the distinct groups of data and is 

the link to the functional model of the project. The Semantic/Context Model information serves as the 

transverse structure for all other information. At the same time, the FMECA analysis serves as the 

knowledge base for UPTIME, and drives the key functionalities of Diagnosis, Prognosis, and Advisory 

Generation. Finally, the follow-up of Action Implementations can be used to update the models for 

more relevant results. The following table iterates the individual data themes which are used in the 

model. 

 

Table 1: UPTIME Business Data Model Data Themes 

Data Theme Description 

Semantic / Context 
Model  

Model logically describing the system that is to be monitored through 
predictive maintenance, down to the different sensors and maintainable 

items and their relationships  
FMECA Analysis  Model describing in detail the different failure modes of the system  

Data Inputs  
Inputs collected from the monitored system and relevant information 

systems, to be used in the Diagnosis and Prognosis algorithms  
Diagnosis & 
Prognosis 

 

Information used to define the Diagnosis & Prognosis algorithms in 
accordance to the monitored failure modes 

 

Advisory Generation 
 

Information used to define the decision algorithms for the advisory 
generation 

 
Action 

implementation 
Information managed in the context of the implementation of a 

maintenance action (if managed within the solution) 

 
Based on this high level busines data model the individual processes have been mapped into a 

detailed data model listing and linking the data classes. While this can partially be translated into a 

technical data model, it is an important step in order to be able to link the different data classes to 

business processes and merits. Figure 2 gives an overview of the detailed business data model. 

 



 
Figure 2: Detailed UPTIME Business Data Model 

 

4. Conclusion 

This paper has given an insight into a business-oriented approach to modelling the relevant data of 

a predictive maintenance system. In the UPTIME project, this has been deployed to create a unified 

technical data model for a wide variety of use cases while retaining a high level of flexibility and 

component integration. Together with the modelling of the business processes and customer journeys 

this business data model has helped significantly to join the business and technical perspectives of the 

project. 

While not in the scope of the UPTIME project future research should be directed at transferring this 

approach towards dynamic data environments and models. On the technical level representing such 

constructs in ontologies or as graph collections is established, but the business data modelling 

perspective is often lacking. 
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